搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单分子器件的拉伸与断裂过程第一性原理研究: 末端基团效应

孙峰 刘然 索雨晴 牛乐乐 傅焕俨 季文芳 李宗良

引用本文:
Citation:

单分子器件的拉伸与断裂过程第一性原理研究: 末端基团效应

孙峰, 刘然, 索雨晴, 牛乐乐, 傅焕俨, 季文芳, 李宗良

First principle study on stretching and breaking process of single-molecule junction: Terminal group effect

Sun Feng, Liu Ran, Suo Yu-Qing, Niu Le-Le, Fu Huan-Yan, Ji Wen-Fang, Li Zong-Liang
PDF
HTML
导出引用
  • 基于密度泛函理论, 研究了含S以及含N末端基团的分子结的拉伸与断裂过程. 计算结果显示, 对于尖端为锥形的金电极, 当末端基团为—S时, 拉断分子结的作用力大小为0.59 nN, 大于H原子未解离的—SH从金电极上断裂所需的0.25 nN作用力, 但明显小于—S末端从平面金电极上断裂下来的约1.5 nN的作用力. 当末端基团是—NH2或—NO2时, 分子结断裂所需拉力分别为0.45和0.33 nN. 体系轨道分布表明, 分子与电极通过前线占据轨道耦合后形成的扩展体系分子轨道离域性越好, 拉断分子结所需的作用力越大. 自然键轨道(natural bond orbital, NBO)分析显示, 若分子末端与电极间未形成成键轨道, 末端原子上更多的NBO净电荷可以提高分子与电极间结合的稳定性. 结合我们以前的研究可以发现, —S末端和—NH2末端对金电极界面的微观构型具有明显的识别功能, 这为精确操控并理解分子与金电极间的相互作用及界面结构提供了有用信息.
    The stretching and breaking processes of stilbene-based molecular junctions, which contain S or N atoms in the terminal groups, are studied by using density functional theory. The numerical results show that for pyramid-shaped gold electrodes, a stretching force of about 0.59 nN is needed to break the molecular junction with —S terminals, which is larger than the force of 0.25 nN that is required by the molecule to stretch —SH terminals away from pyramid-shaped gold electrode. However, it is obviously smaller than the force of about 1.5 nN that is needed by the molecule to break —S terminals from planar-shaped gold electrode. If the terminal group is —NH2 or —NO2, the force for breaking the molecular junction is about 0.45 nN or 0.33 nN, respectively. More delocalized molecular orbitals formed by the coupling between the frontier occupied orbitals of molecule and electrodes, higher stretching force for breaking molecular junction is required. The natural bond orbital (NBO) analysis shows that more NBO net charges that the terminal atom possesses can enhance the stability of the molecule-electrode contact if there is no bonding orbital formed between end group of molecule and electrode. Based on the numerical results and the combination with previous studies, it can be found that —S terminal and —NH2 terminal show evident properties in distinguishing tip structures of gold electrodes, which provides useful information for precisely controlling the interactions and interface structures between molecule and electrodes.
      通信作者: 季文芳, wenfangji@sdnu.edu.cn ; 李宗良, lizongliang@sdnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974217, 11874242)和山东省自然科学基金(批准号: ZR2018MA037)资助的课题
      Corresponding author: Ji Wen-Fang, wenfangji@sdnu.edu.cn ; Li Zong-Liang, lizongliang@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974217, 11874242) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2018MA037)
    [1]

    Xu B, Tao N J 2003 Science 301 1221Google Scholar

    [2]

    Schneider N L, Johansson P, Berndt R 2013 Phys. Rev. B 87 045409Google Scholar

    [3]

    Rubio G, Agraït N, Vieira S 1996 Phys. Rev. Lett. 76 2302Google Scholar

    [4]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518Google Scholar

    [5]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252Google Scholar

    [6]

    Zhao Z K, Liu R, Mayer D, Coppola M, Sun L, Kim Y S, Wang C K, Ni L F, Chen X, Wang M N, Li Z L, Lee T, Xiang D 2018 Small 14 1703815Google Scholar

    [7]

    Liu R, Bi J J, Xie Z, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Applied 9 054023Google Scholar

    [8]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [9]

    Li Z L, Zou B, Wang C K 2006 Phys. Rev. B 73 075326Google Scholar

    [10]

    Kang L S, Zhang Y H, Xu X L, Tang X 2017 Phys. Rev. B 96 235417Google Scholar

    [11]

    Miao Y Y, Qiu S, Zhang G P, Ren J F, Wang C K, Hu G C 2018 Phys. Rev. B 98 235415Google Scholar

    [12]

    闫瑞, 吴泽文, 谢稳泽, 李丹, 王音 2018 物理学报 67 097301Google Scholar

    Yan R, Wu Z W, Xie W Z, Li D, Wang Y 2018 Acta Phys. Sin. 67 097301Google Scholar

    [13]

    Ji W F, Li Z L, Shen L, Kong D X, Zhang H Y 2007 J. Phys. Chem. B 111 485Google Scholar

    [14]

    Chen L J, Feng A, Wang M N, Liu J Y, Hong W J, Guo X F, Xiang D 2018 Sci. China Chem. 61 1368Google Scholar

    [15]

    Yi X H, Liu R, Bi J J, Jiao Y, Wang C K, Li Z L 2016 Chin. Phys. B 25 128503Google Scholar

    [16]

    Xie F, Fan Z Q, Chen K Q, Zhang X J, Long M Q 2017 Org. Electron. 50 198Google Scholar

    [17]

    Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D Y, Wang C K 2019 Physica E 106 270Google Scholar

    [18]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1443Google Scholar

    [19]

    Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar

    [20]

    Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J Y, Duan L L, Huo Y, Shao X F, Hong W J, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [21]

    Meng L N, Xin N, Hu C, Wang J Y, Gui B, Shi J J, Wang C, Shen C, Zhang G Y, Guo H, Meng S, Guo X F 2019 Nat. Commun. 10 1450Google Scholar

    [22]

    Zhang G P, Mu Y Q, Zhao J M, Huang H, Hu G C, Li Z L, Wang C K 2019 Physica E 109 1Google Scholar

    [23]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [24]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509Google Scholar

    [25]

    Hu G C, Zhang Z, Li Y, Ren J F, Wang C K 2016 Chin. Phys. B 25 057308Google Scholar

    [26]

    Li D D, Wu D, Zhang X J, Zeng B W, Li M J, Duan H M, Yang B C, Long M Q 2018 Phys. Lett. A 382 1401Google Scholar

    [27]

    Wei M Z, Wang Z Q, Fu X X, Hu G C, Li Z L, Wang C K, Zhang G P 2018 Physica E 103 397Google Scholar

    [28]

    俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 物理学报 66 098501Google Scholar

    Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501Google Scholar

    [29]

    Guo C L, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B Q 2016 Nat. Chem. 8 484Google Scholar

    [30]

    Hu G C, Zhang Z, Zhang G P, Ren J F, Wang C K 2016 Org. Electron. 37 485Google Scholar

    [31]

    崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋 2018 物理学报 67 118501Google Scholar

    Cui Y, Xia C J, Su Y H, Zhang B Q, Chen A M, Yang A Y, Zhang T T, Liu Y 2018 Acta Phys. Sin. 67 118501Google Scholar

    [32]

    An Y P, Zhang M J, Wu D P, Wang T X, Jiao Z Y, Xia C X, Fu Z M, Wang K 2016 Phys. Chem. Chem. Phys. 18 27976Google Scholar

    [33]

    Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867Google Scholar

    [34]

    Zeng J, Xie F, Chen K Q 2016 Carbon 98 607Google Scholar

    [35]

    Yu C J, Miao Y Y, Qiu S, Cui Y J, He G M, Zhang G P, Wang C K, Hu G C 2018 J. Phys. D: Appl. Phys. 51 345302Google Scholar

    [36]

    Wang M, Li X T, Li Y, Zuo X, Li D M, Cui B, Liu D S 2018 Org. Electron. 58 63Google Scholar

    [37]

    Zhao W K, Zou D Q, Sun Z P, Xu Y Q, Yu Y J, Yang C L 2018 Chem. Electro. Chem. 5 1

    [38]

    Zuo X, Han L, Li H M, Li X T, Zhao J F, Cui B, Liu D S 2019 Phys. Lett. A 383 640Google Scholar

    [39]

    Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K, Hu G C 2019 J. Magn. Magn. Mater. 479 247Google Scholar

    [40]

    Wang Z Q, Li Y F, Niu X, Wei M Z, Dong M M, Hu G C, Li Z L, Wang D Y, Wang C K, Zhang G P 2019 Org. Electron. 64 7Google Scholar

    [41]

    Song H W, Kim Y S, Jang Y H, Jeong H J, Reed M A, Lee T 2009 Nature 462 1039Google Scholar

    [42]

    Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar

    [43]

    Xiang D, Jeong H, Kim D K, Lee T, Cheng Y J, Wang Q L, Mayer D 2013 Nano Lett. 13 2809Google Scholar

    [44]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185Google Scholar

    [45]

    Guo C Y, Chen X, Ding S Y, Mayer D, Wang Q L, Zhao Z K, Ni L F, Liu H T, Lee T, Xu B Q, Xiang D 2018 ACS Nano 12 11229Google Scholar

    [46]

    Motta S D, Donato E D, Negri F, Orlandi G, Fazzi D, Castiglioni C 2009 J. Am. Chem. Soc. 131 6591Google Scholar

    [47]

    Wang Q L, Liu R, Xiang D, Sun M Y, Zhao Z K, Sun L, Mei T T, Wu P F, Liu H T, Guo X F, Li Z L, Lee T 2016 ACS Nano 10 9695Google Scholar

    [48]

    Jiang Z L, Wang H, Wang Y F, Sanvito S F, Hou S M 2017 J. Phys. Chem. C 121 27344Google Scholar

    [49]

    Liu R, Wang C K, Li Z L 2016 Sci. Rep. 6 21946Google Scholar

    [50]

    Li Z H, Smeu M, Afsari S, Xing Y J, Ratner M A, Borguet E 2014 Angew. Chem. 126 1116Google Scholar

    [51]

    Zou D Q, Zhao W K, Cui B, Li D M, Liu D S 2018 Phys. Chem. Chem. Phys. 20 2048Google Scholar

    [52]

    Xu B Q, Xiao X Y, Yang X M, Zang L, Tao N J 2005 J. Am. Chem. Soc. 127 2386Google Scholar

    [53]

    Li X T, Li H M, Zuo X, Kang L, Li D M, Cui B, Liu D S 2018 J. Phys. Chem. C 122 21763Google Scholar

    [54]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [55]

    樊帅伟, 王日高 2018 物理学报 67 213101Google Scholar

    Fan S W, Wang R G 2018 Acta Phys. Sin. 67 213101Google Scholar

    [56]

    Batra A, Darancet P, Chen Q, Meisner J S, Widawsky J R, Neaton J B, Nuckolls C, Venkataraman L 2013 Nano Lett. 13 6233Google Scholar

    [57]

    Bao D L, Liu R, Leng J C, Zuo X, Jiao Y, Li Z L, Wang C K 2014 Phys. Lett. A 378 1290Google Scholar

    [58]

    Li Z L, Zhang G P, Wang C K 2011 J. Phys. Chem. C 115 15586Google Scholar

    [59]

    Xu B Q, Li X L, Xiao X Y, Sakaguchi H, Tao N J 2005 Nano Lett. 5 1491Google Scholar

    [60]

    Chen I W P, Tseng W H, Gu M W, Su L C, Hsu C H, Chang W H, Chen C H 2013 Angew. Chem. Int. Ed. 52 2449Google Scholar

    [61]

    Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003Google Scholar

    [62]

    刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 物理学报 63 068501Google Scholar

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501Google Scholar

  • 图 1  M-S, M-SH, M-NH2和M-NO2分子结体系的界面构型

    Fig. 1.  Interface configurations for M-S, M-SH, M-NH2 and M-NO2 molecular junctions.

    图 2  M-S, M-SH, M-NH2和M-NO2分子结体系的能量及作用力随电极距离的变化曲线

    Fig. 2.  Energy and force curves as functions of electrode distances for M-S, M-SH, M-NH2 and M-NO2 molecular junctions

    图 3  M-S, M-SH和M-NH2分子结体系的拉伸过程及分子相对于电极的旋转演化过程

    Fig. 3.  Stretching processes for M-S, M-SH and M-NH2 molecular junctions and rotation-evolution processes of the molecules relative to the electrodes of the molecular junctions.

    图 4  M-S, M-SH, M-NH2和M-NO2分子结体系在能量最低点以及体系断裂前后的轨道空间分布图

    Fig. 4.  Spatial distributions of molecular orbitals for M-S, M-SH, M-NH2 and M-NO2 molecular junctions at the lowest ground-state energy points, before and after the breaks of the systems.

    表 1  M-S, M-SH, M-NH2和M-NO2体系分子与电极间的结合能、末端原子与电极间的成键轨道数、末端原子的孤对电子数以及末端原子的NBO净电荷数

    Table 1.  Binding energies between the molecules and the electrodes, the numbers of bonding orbitals between the terminal atoms and the electrodes, the numbers of lone electrons on the terminal atoms and the NBO net charges on the terminal atoms for M-S, M-SH, M-NH2 and M-NO2 molecular junctions.

    体系 M-S M-SH M-NH2 M-NO2
    结合能E/eV 0.505 0.229 0.277 0.186
    成键轨道数 1 0 0 0
    孤对电子数 2 2 1 3
    NBO净电荷 S (–0.056) S (0.020) N (–0.910) O (–0.412)
    下载: 导出CSV
  • [1]

    Xu B, Tao N J 2003 Science 301 1221Google Scholar

    [2]

    Schneider N L, Johansson P, Berndt R 2013 Phys. Rev. B 87 045409Google Scholar

    [3]

    Rubio G, Agraït N, Vieira S 1996 Phys. Rev. Lett. 76 2302Google Scholar

    [4]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518Google Scholar

    [5]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252Google Scholar

    [6]

    Zhao Z K, Liu R, Mayer D, Coppola M, Sun L, Kim Y S, Wang C K, Ni L F, Chen X, Wang M N, Li Z L, Lee T, Xiang D 2018 Small 14 1703815Google Scholar

    [7]

    Liu R, Bi J J, Xie Z, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Applied 9 054023Google Scholar

    [8]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [9]

    Li Z L, Zou B, Wang C K 2006 Phys. Rev. B 73 075326Google Scholar

    [10]

    Kang L S, Zhang Y H, Xu X L, Tang X 2017 Phys. Rev. B 96 235417Google Scholar

    [11]

    Miao Y Y, Qiu S, Zhang G P, Ren J F, Wang C K, Hu G C 2018 Phys. Rev. B 98 235415Google Scholar

    [12]

    闫瑞, 吴泽文, 谢稳泽, 李丹, 王音 2018 物理学报 67 097301Google Scholar

    Yan R, Wu Z W, Xie W Z, Li D, Wang Y 2018 Acta Phys. Sin. 67 097301Google Scholar

    [13]

    Ji W F, Li Z L, Shen L, Kong D X, Zhang H Y 2007 J. Phys. Chem. B 111 485Google Scholar

    [14]

    Chen L J, Feng A, Wang M N, Liu J Y, Hong W J, Guo X F, Xiang D 2018 Sci. China Chem. 61 1368Google Scholar

    [15]

    Yi X H, Liu R, Bi J J, Jiao Y, Wang C K, Li Z L 2016 Chin. Phys. B 25 128503Google Scholar

    [16]

    Xie F, Fan Z Q, Chen K Q, Zhang X J, Long M Q 2017 Org. Electron. 50 198Google Scholar

    [17]

    Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D Y, Wang C K 2019 Physica E 106 270Google Scholar

    [18]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1443Google Scholar

    [19]

    Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar

    [20]

    Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J Y, Duan L L, Huo Y, Shao X F, Hong W J, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [21]

    Meng L N, Xin N, Hu C, Wang J Y, Gui B, Shi J J, Wang C, Shen C, Zhang G Y, Guo H, Meng S, Guo X F 2019 Nat. Commun. 10 1450Google Scholar

    [22]

    Zhang G P, Mu Y Q, Zhao J M, Huang H, Hu G C, Li Z L, Wang C K 2019 Physica E 109 1Google Scholar

    [23]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [24]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509Google Scholar

    [25]

    Hu G C, Zhang Z, Li Y, Ren J F, Wang C K 2016 Chin. Phys. B 25 057308Google Scholar

    [26]

    Li D D, Wu D, Zhang X J, Zeng B W, Li M J, Duan H M, Yang B C, Long M Q 2018 Phys. Lett. A 382 1401Google Scholar

    [27]

    Wei M Z, Wang Z Q, Fu X X, Hu G C, Li Z L, Wang C K, Zhang G P 2018 Physica E 103 397Google Scholar

    [28]

    俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 物理学报 66 098501Google Scholar

    Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501Google Scholar

    [29]

    Guo C L, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B Q 2016 Nat. Chem. 8 484Google Scholar

    [30]

    Hu G C, Zhang Z, Zhang G P, Ren J F, Wang C K 2016 Org. Electron. 37 485Google Scholar

    [31]

    崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋 2018 物理学报 67 118501Google Scholar

    Cui Y, Xia C J, Su Y H, Zhang B Q, Chen A M, Yang A Y, Zhang T T, Liu Y 2018 Acta Phys. Sin. 67 118501Google Scholar

    [32]

    An Y P, Zhang M J, Wu D P, Wang T X, Jiao Z Y, Xia C X, Fu Z M, Wang K 2016 Phys. Chem. Chem. Phys. 18 27976Google Scholar

    [33]

    Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867Google Scholar

    [34]

    Zeng J, Xie F, Chen K Q 2016 Carbon 98 607Google Scholar

    [35]

    Yu C J, Miao Y Y, Qiu S, Cui Y J, He G M, Zhang G P, Wang C K, Hu G C 2018 J. Phys. D: Appl. Phys. 51 345302Google Scholar

    [36]

    Wang M, Li X T, Li Y, Zuo X, Li D M, Cui B, Liu D S 2018 Org. Electron. 58 63Google Scholar

    [37]

    Zhao W K, Zou D Q, Sun Z P, Xu Y Q, Yu Y J, Yang C L 2018 Chem. Electro. Chem. 5 1

    [38]

    Zuo X, Han L, Li H M, Li X T, Zhao J F, Cui B, Liu D S 2019 Phys. Lett. A 383 640Google Scholar

    [39]

    Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K, Hu G C 2019 J. Magn. Magn. Mater. 479 247Google Scholar

    [40]

    Wang Z Q, Li Y F, Niu X, Wei M Z, Dong M M, Hu G C, Li Z L, Wang D Y, Wang C K, Zhang G P 2019 Org. Electron. 64 7Google Scholar

    [41]

    Song H W, Kim Y S, Jang Y H, Jeong H J, Reed M A, Lee T 2009 Nature 462 1039Google Scholar

    [42]

    Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar

    [43]

    Xiang D, Jeong H, Kim D K, Lee T, Cheng Y J, Wang Q L, Mayer D 2013 Nano Lett. 13 2809Google Scholar

    [44]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185Google Scholar

    [45]

    Guo C Y, Chen X, Ding S Y, Mayer D, Wang Q L, Zhao Z K, Ni L F, Liu H T, Lee T, Xu B Q, Xiang D 2018 ACS Nano 12 11229Google Scholar

    [46]

    Motta S D, Donato E D, Negri F, Orlandi G, Fazzi D, Castiglioni C 2009 J. Am. Chem. Soc. 131 6591Google Scholar

    [47]

    Wang Q L, Liu R, Xiang D, Sun M Y, Zhao Z K, Sun L, Mei T T, Wu P F, Liu H T, Guo X F, Li Z L, Lee T 2016 ACS Nano 10 9695Google Scholar

    [48]

    Jiang Z L, Wang H, Wang Y F, Sanvito S F, Hou S M 2017 J. Phys. Chem. C 121 27344Google Scholar

    [49]

    Liu R, Wang C K, Li Z L 2016 Sci. Rep. 6 21946Google Scholar

    [50]

    Li Z H, Smeu M, Afsari S, Xing Y J, Ratner M A, Borguet E 2014 Angew. Chem. 126 1116Google Scholar

    [51]

    Zou D Q, Zhao W K, Cui B, Li D M, Liu D S 2018 Phys. Chem. Chem. Phys. 20 2048Google Scholar

    [52]

    Xu B Q, Xiao X Y, Yang X M, Zang L, Tao N J 2005 J. Am. Chem. Soc. 127 2386Google Scholar

    [53]

    Li X T, Li H M, Zuo X, Kang L, Li D M, Cui B, Liu D S 2018 J. Phys. Chem. C 122 21763Google Scholar

    [54]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [55]

    樊帅伟, 王日高 2018 物理学报 67 213101Google Scholar

    Fan S W, Wang R G 2018 Acta Phys. Sin. 67 213101Google Scholar

    [56]

    Batra A, Darancet P, Chen Q, Meisner J S, Widawsky J R, Neaton J B, Nuckolls C, Venkataraman L 2013 Nano Lett. 13 6233Google Scholar

    [57]

    Bao D L, Liu R, Leng J C, Zuo X, Jiao Y, Li Z L, Wang C K 2014 Phys. Lett. A 378 1290Google Scholar

    [58]

    Li Z L, Zhang G P, Wang C K 2011 J. Phys. Chem. C 115 15586Google Scholar

    [59]

    Xu B Q, Li X L, Xiao X Y, Sakaguchi H, Tao N J 2005 Nano Lett. 5 1491Google Scholar

    [60]

    Chen I W P, Tseng W H, Gu M W, Su L C, Hsu C H, Chang W H, Chen C H 2013 Angew. Chem. Int. Ed. 52 2449Google Scholar

    [61]

    Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003Google Scholar

    [62]

    刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 物理学报 63 068501Google Scholar

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501Google Scholar

  • [1] 谢忠祥, 喻霞, 贾聘真, 陈学坤, 邓元祥, 张勇, 周五星. 并苯分子结的热电性质. 物理学报, 2023, 72(12): 124401. doi: 10.7498/aps.72.20230354
    [2] 李瑞豪, 刘俊扬, 洪文晶. 单分子器件电输运中基于量子干涉效应的调控策略. 物理学报, 2022, 71(6): 067303. doi: 10.7498/aps.71.20211819
    [3] 李瑞豪, 刘俊扬, 洪文晶. 单分子器件电输运中基于量子干涉效应的调控策略. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211819
    [4] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控. 物理学报, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [5] 索雨晴, 刘然, 孙峰, 牛乐乐, 王双双, 刘琳, 李宗良. 分子结拉伸与界面识别: 破解4, 4′-二吡啶分子结拉伸过程中高低电导之谜. 物理学报, 2020, 69(20): 208502. doi: 10.7498/aps.69.20201297
    [6] 何欣, 白清顺, 白锦轩. 多晶石墨烯拉伸断裂行为的分子动力学模拟. 物理学报, 2016, 65(11): 116101. doi: 10.7498/aps.65.116101
    [7] 李丽丽, Xia Zhen-Hai, 杨延清, 韩明. SiC纳米纤维/C/SiC复合材料拉伸行为的分子动力学研究. 物理学报, 2015, 64(11): 117101. doi: 10.7498/aps.64.117101
    [8] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究. 物理学报, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [9] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究. 物理学报, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [10] 彭德锋, 江五贵, 彭川. 碳纳米管从硅基板上剥离的拉伸分子动力学模拟研究. 物理学报, 2012, 61(14): 146102. doi: 10.7498/aps.61.146102
    [11] 胡伟, 李宗良, 马勇, 李英德, 王传奎. 单硫醇分子结的几何结构和电输运性质:压力效应与末端基团效应. 物理学报, 2011, 60(1): 017304. doi: 10.7498/aps.60.017304
    [12] 王 禹, 章林溪. 外力诱导吸附高分子单链的拉伸分子动力学研究. 物理学报, 2008, 57(5): 3281-3286. doi: 10.7498/aps.57.3281
    [13] 刘 浩, 柯孚久, 潘 晖, 周 敏. 铜-铝扩散焊及拉伸的分子动力学模拟. 物理学报, 2007, 56(1): 407-412. doi: 10.7498/aps.56.407
    [14] 夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰. 分子的位置取向对分子器件电输运特性的影响. 物理学报, 2007, 56(8): 4884-4890. doi: 10.7498/aps.56.4884
    [15] 王利光, 陈 蕾, 郁鼎文, 李 勇, Terence K. S. W.. 单分子器件与电极间耦合界面对电子传输的影响. 物理学报, 2007, 56(11): 6526-6530. doi: 10.7498/aps.56.6526
    [16] 李英德. 分子结电学特性的理论研究. 物理学报, 2006, 55(6): 2997-3002. doi: 10.7498/aps.55.2997
    [17] 李宗良, 王传奎, 罗毅, 薛其坤. 电极维度对单分子器件伏-安特性的影响. 物理学报, 2004, 53(5): 1490-1495. doi: 10.7498/aps.53.1490
    [18] 王伟, 黄岚, 张宇, 李昌敏, 张海黔, 顾宁, 沈浩瀛, 陈堂生, 郝丽萍, 彭力, 赵丽新. 用分子自组装技术制备的单电子器件的Monte Carlo模拟. 物理学报, 2002, 51(1): 63-67. doi: 10.7498/aps.51.63
    [19] 邓容平;蒋维栋;孙恒慧. 分子束外延生长Si/GaP(III)异质结的界面特性. 物理学报, 1989, 38(8): 1265-1270. doi: 10.7498/aps.38.1265
    [20] 刘福绥, 倪嘉陵. 色散扩散控制的单分子和双分子过程. 物理学报, 1982, 31(6): 764-771. doi: 10.7498/aps.31.764
计量
  • 文章访问数:  8113
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-07
  • 修回日期:  2019-07-11
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回