搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孪晶对Be材料冲击加-卸载动力学影响的数值模拟研究

潘昊 王升涛 吴子辉 胡晓棉

引用本文:
Citation:

孪晶对Be材料冲击加-卸载动力学影响的数值模拟研究

潘昊, 王升涛, 吴子辉, 胡晓棉

Effect of twining on dynamic behaviors of beryllium materials under impact loading and unloading

Pan Hao, Wang Sheng-Tao, Wu Zi-Hui, Hu Xiao-Mian
PDF
导出引用
  • 在高压、高应变率加载条件下,孪晶变形对材料的塑性变形具有重要的贡献,而目前孪晶对金属材料的动态屈服强度、冲击响应等的影响还没有被充分揭示.为此,本文考虑孪晶变形和晶粒碎化,针对铍(Be)材料在高应变率加载下的动态力学响应发展了含孪晶的热弹-黏塑性晶体塑性模型.经过和实验结果的对比,发现该模型可以更准确地预测Be材料在动态加载下,尤其是高压动态加载下的屈服强度.进一步,基于该塑性模型研究了Be材料在冲击加载下的准弹性卸载行为,结果表明剪切波速随着压力和剪应变的变化而发生变化是材料产生准弹性卸载现象的主要原因.此外,研究了冲击波卸载过程中Be材料孪晶的演化过程,发现Be材料卸载过程中也伴随着孪晶的产生.
    As a rare metal material with low density, high strength and high melting point, beryllium (Be) is widely utilized in many fields including aerospace and vehicles. Dynamic loadings such as impact and high-rate compression often happen in the applications of Be materials in these fields. However, the dynamic behaviors of Be materials under high pressure and high-rate loading have not been fully investigated, although they are valuable for better applications of Be materials. articularly, the effect of twinning on dynamic behaviors of Be material is very important for better understanding the plasticity deformation mechanism of Be material. In this paper, a thermoelastic-viscoplastic crystal plasticity model is developed for dynamic behaviors of Be material under high pressure and high strain-rate loading based on the physical mechanism of plasticity deformation. Besides, the dislocation motion and work hardening are considered within the constitutive framework by the Orowan relation and the Taylor equation respectively, and the contribution of twinning to the plasticity deformation is also considered via twinning fraction evolution and fragmentation of crystal due to twinning deformation. With the model, dynamic behaviors of Be material are investigated, including effect of pressure on the dynamic yield strength, the quasi-elastic unloading behavior, and evolution of twinning in shock loading and unloading. Compared with the classical SG model, the model developed in this paper accords better with the experimental results in predicting yield strength of Be material under impact loading, especially with high pressure. Moreover, it is revealed that the condition of yield strength of the Be material is divided into three cases, namely the non-twinning under low pressure, the twinning deformation under moderate pressure, and the twinning fragmentation under high pressure. The unloading behavior of Be material under impact loading is also studied with the model, and the quasi-elastic unloading behavior observed in experiments many times, is faithfully predicted. It is found that the quasi-elastic unloading phenomenon of the material is closely related to the variation of the shear velocity of shock wave with the shear strain, which suggests that the non-linear elastic property of the material is an important reason for this phenomenon. Finally, the evolution of twinning of Be material in the shock loading is studied, showing that the increasing of twinning friction happens not only in the loading process but also in the unloading process of the shock waves. Some crystals break up into sub-crystals due to the fact that the volume fraction of twinning exceeds the critical fraction in the evolution of twinning.
      通信作者: 胡晓棉, Hu_xiaomian@iapcm.ac.cn
    • 基金项目: 科学挑战专题(批准号:TZ2018001)和国家自然科学基金(批准号:11702031)资助的课题.
      Corresponding author: Hu Xiao-Mian, Hu_xiaomian@iapcm.ac.cn
    • Funds: Project supported by Science Challenge Project, China (Grant No. TZ2018001) and the National Natural Science Foundation of China (Grant No. 11702031).
    [1]

    Zhang Y S, Qin Y J, Wu D Z, Xie Z Q 2001 Trans. China Welding Inst. 22 92 (in Chinese) [张友寿, 秦有钧, 吴东周, 谢志强 2001 焊接学报 22 92]

    [2]

    Johnson W, Rice S L 1972 Impact Strength of Materials (London: Edward Arnold)

    [3]

    Meyers M A 1994 Dynamic Behavior of Materials (New York: John wiley & Sons)

    [4]

    Brown D W, Clausen B, Sisneros T A, Balogh I, Beyerlein I J 2013 Metall. Mater. Trans. A 44 5665

    [5]

    Champman C L, Wise J L, Asay J R 1982 AIP Conference Proceedings 78 422

    [6]

    Steinberg D, Breithaupt D, Honodel C 1986 Physica B+C 139 762

    [7]

    Brown J L, Knudson M D, Alexander C S, Asay J R 2014 J. Appl. Phys. 116 033502

    [8]

    Frahan M T H, Belof J L, Cavallo R M, Raevsky V A, Ignatova O N, Lebedev A, Ancheta D S, El-dasher B S, Florando J N, Gallegos G F, Johnsen E, LeBlanc M M 2015 J. Appl. Phys. 117 225901

    [9]

    van Houtte P 1978 Acta Metar. 26 591

    [10]

    Tomé C N, Lebensohn R A, Kocks U F 1991 Acta Mater. 39 2667

    [11]

    Lebensohn R A, Tomé C N 1993 Acta Mater. 41 2611

    [12]

    Kalidindi S R, Bronkhorst C A, Anand L 1992 J. Mech. Phys. Solids 40 537

    [13]

    Winey J M, Gupta Y M 2014 J. Appl. Phys. 116 033505

    [14]

    Pan H 2017 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [潘昊 2017 博士学位论文 (绵阳:中国工程物理研究院)]

    [15]

    Salem A A, Kalidindi S R, Doherty R D 2002 Scripta Mater. 46 419

    [16]

    Wang J, Beyerlein I J, Tomé C N 2010 Scripta Mater. 63 741

    [17]

    Wu X, Kalidindi S R, Necker C, Salem A A 2007 Acta Mater. 55 423

    [18]

    Salem A A, Kalidindi S R, Doherty R D 2003 Acta Mater. 51 4225

    [19]

    Brown D W, Beyerlein I J, Sisneros T A, Clausen B, Tomé C N 2012 Int. J. Plast. 29 120

    [20]

    Knezevic M, Beyerlein I J, Brown D W, Sisneros T A, Tomé C N 2013 Int. J. Plast. 49 185

    [21]

    Kalidindi S R 1998 J. Mech. Phys. Solids 46 267273

    [22]

    Johnson J N, Rohde R W 1971 J. Appl. Phys. 42 4171

    [23]

    Wang H, Wu P D, Wang J, Tomé C N 2013 Int. J. Plast. 49 36

    [24]

    Proust G, Tomé C N, Jain A, Agnew S R 2009 Int. J. Plast. 25 861

    [25]

    Borodin E N, Mayer A E 2015 Int. J. Plast. 74 141

    [26]

    Chhabildas L C, Wise J L, Asay J R 1982 AIP Confer. Proceed. 78 422

    [27]

    Igonin V V 2014 Report on Task 3 Agreement# B590737 LLNL Livermore, CA

    [28]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

  • [1]

    Zhang Y S, Qin Y J, Wu D Z, Xie Z Q 2001 Trans. China Welding Inst. 22 92 (in Chinese) [张友寿, 秦有钧, 吴东周, 谢志强 2001 焊接学报 22 92]

    [2]

    Johnson W, Rice S L 1972 Impact Strength of Materials (London: Edward Arnold)

    [3]

    Meyers M A 1994 Dynamic Behavior of Materials (New York: John wiley & Sons)

    [4]

    Brown D W, Clausen B, Sisneros T A, Balogh I, Beyerlein I J 2013 Metall. Mater. Trans. A 44 5665

    [5]

    Champman C L, Wise J L, Asay J R 1982 AIP Conference Proceedings 78 422

    [6]

    Steinberg D, Breithaupt D, Honodel C 1986 Physica B+C 139 762

    [7]

    Brown J L, Knudson M D, Alexander C S, Asay J R 2014 J. Appl. Phys. 116 033502

    [8]

    Frahan M T H, Belof J L, Cavallo R M, Raevsky V A, Ignatova O N, Lebedev A, Ancheta D S, El-dasher B S, Florando J N, Gallegos G F, Johnsen E, LeBlanc M M 2015 J. Appl. Phys. 117 225901

    [9]

    van Houtte P 1978 Acta Metar. 26 591

    [10]

    Tomé C N, Lebensohn R A, Kocks U F 1991 Acta Mater. 39 2667

    [11]

    Lebensohn R A, Tomé C N 1993 Acta Mater. 41 2611

    [12]

    Kalidindi S R, Bronkhorst C A, Anand L 1992 J. Mech. Phys. Solids 40 537

    [13]

    Winey J M, Gupta Y M 2014 J. Appl. Phys. 116 033505

    [14]

    Pan H 2017 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [潘昊 2017 博士学位论文 (绵阳:中国工程物理研究院)]

    [15]

    Salem A A, Kalidindi S R, Doherty R D 2002 Scripta Mater. 46 419

    [16]

    Wang J, Beyerlein I J, Tomé C N 2010 Scripta Mater. 63 741

    [17]

    Wu X, Kalidindi S R, Necker C, Salem A A 2007 Acta Mater. 55 423

    [18]

    Salem A A, Kalidindi S R, Doherty R D 2003 Acta Mater. 51 4225

    [19]

    Brown D W, Beyerlein I J, Sisneros T A, Clausen B, Tomé C N 2012 Int. J. Plast. 29 120

    [20]

    Knezevic M, Beyerlein I J, Brown D W, Sisneros T A, Tomé C N 2013 Int. J. Plast. 49 185

    [21]

    Kalidindi S R 1998 J. Mech. Phys. Solids 46 267273

    [22]

    Johnson J N, Rohde R W 1971 J. Appl. Phys. 42 4171

    [23]

    Wang H, Wu P D, Wang J, Tomé C N 2013 Int. J. Plast. 49 36

    [24]

    Proust G, Tomé C N, Jain A, Agnew S R 2009 Int. J. Plast. 25 861

    [25]

    Borodin E N, Mayer A E 2015 Int. J. Plast. 74 141

    [26]

    Chhabildas L C, Wise J L, Asay J R 1982 AIP Confer. Proceed. 78 422

    [27]

    Igonin V V 2014 Report on Task 3 Agreement# B590737 LLNL Livermore, CA

    [28]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

  • [1] 华颖鑫, 刘福生, 耿华运, 郝龙, 于继东, 谭叶, 李俊. 多次冲击加载-卸载路径下铁α-ε相变动力学特性研究. 物理学报, 2021, 70(16): 166201. doi: 10.7498/aps.70.20210089
    [2] 徐波, 田永君. 纳米孪晶超硬材料的高压合成. 物理学报, 2017, 66(3): 036201. doi: 10.7498/aps.66.036201
    [3] 潘昊, 吴子辉, 胡晓棉. 非对称冲击-卸载实验中纵波声速的特征线分析方法. 物理学报, 2016, 65(11): 116201. doi: 10.7498/aps.65.116201
    [4] 姜太龙, 喻寅, 宦强, 李永强, 贺红亮. 设计脆性材料的冲击塑性. 物理学报, 2015, 64(18): 188301. doi: 10.7498/aps.64.188301
    [5] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭 华. 钒的高压声速测量. 物理学报, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [6] 王文鹏, 刘福生, 张宁超. 冲击加载下液态水的结构相变. 物理学报, 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [7] 俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅, 胡昌明. 冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为. 物理学报, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [8] 关庆丰, 顾倩倩, 李艳, 邱冬华, 彭冬晋, 王雪涛. 强流脉冲电子束作用下金属纯Cu的微观结构状态变形结构. 物理学报, 2011, 60(8): 086106. doi: 10.7498/aps.60.086106
    [9] 何安民, 邵建立, 王裴, 秦承森. 单晶Cu(001)薄膜塑性变形的分子动力学模拟. 物理学报, 2010, 59(12): 8836-8842. doi: 10.7498/aps.59.8836
    [10] 何安民, 邵建立, 秦承森, 王裴. 单晶Cu冲击加载及卸载下塑性行为的微观模拟. 物理学报, 2009, 58(8): 5667-5672. doi: 10.7498/aps.58.5667
    [11] 王海燕, 祝文军, 邓小良, 宋振飞, 陈向荣. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究. 物理学报, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [12] 邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦. 冲击加载下孔洞贯通的微观机理研究. 物理学报, 2009, 58(7): 4772-4778. doi: 10.7498/aps.58.4772
    [13] 陈 军, 徐 云, 陈栋泉, 孙锦山. 冲击作用下纳米孔洞动力学行为的多尺度方法模拟研究. 物理学报, 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [14] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化. 物理学报, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [15] 朱宏喜, 毛卫民, 冯惠平, 吕反修, I. I. Vlasov, V. G. Ralchenko, A. V. Khomich. CVD金刚石薄膜孪晶形成的原子机理分析. 物理学报, 2007, 56(7): 4049-4055. doi: 10.7498/aps.56.4049
    [16] 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为. 物理学报, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [17] 郭可信, 吴玉琨, 梁金忠, 常昕. 非晶Ni-P合金晶化过程中生成的六角亚稳相(Ⅱ)——孪晶生长关系. 物理学报, 1983, 32(7): 939-946. doi: 10.7498/aps.32.939
    [18] 俞振中, 金刚, 陈新强, 马可军. 锑化铟单晶的小平面生长及孪晶. 物理学报, 1980, 29(1): 11-18. doi: 10.7498/aps.29.11
    [19] 邹本三, 叶恒强, 吴玉琨, 郭可信. 面心立方晶体高次孪晶化为一次旋转对称关系. 物理学报, 1979, 28(3): 297-304. doi: 10.7498/aps.28.297
    [20] 郭可信. 面心立方晶体中生成孪晶或六角密堆相的电子衍射分析. 物理学报, 1978, 27(5): 547-553. doi: 10.7498/aps.27.547
计量
  • 文章访问数:  6452
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-15
  • 修回日期:  2018-05-22
  • 刊出日期:  2019-08-20

/

返回文章
返回