搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类特异材料半导体复合结构中的电子Tamm态

武执政 余坤 郭志伟 李云辉 江海涛

引用本文:
Citation:

类特异材料半导体复合结构中的电子Tamm态

武执政, 余坤, 郭志伟, 李云辉, 江海涛

Electronic Tamm states of metamaterial-like semiconductor composite structures

Wu Zhi-Zheng, Yu Kun, Guo Zhi-Wei, Li Yun-Hui, Jiang Hai-Tao
PDF
导出引用
  • 通过选取具有特殊能带结构的半导体材料碲镉汞(Hg1-xCdxTe), 类比电磁体系得到了电子体系中的类单负材料、类双负材料等类特异材料, 然后将其组合成一维复合异质结构. 通过数值计算, 发现复合结构中存在新型电子Tamm态, 包括返向电子Tamm态和含类近零折射率材料复合结构中的电子Tamm态. 这些结果拓展了人们对电子Tamm态的认识.
    In a semi-infinite crystal, the periodic potential is destroyed at the surface, and the electronic wave functions exponentially decay from the surface to both sides. Such localized electronic states in the vicinity of the surface are known as Tamm surface states. In analogy to the electronic Tamm states, in recent years, optical Tamm states have been found at the surface of the truncated photonic crystal composed of two kinds of dielectrics. Very recently, novel types of optical Tamm states including backward Tamm states in which the phase velocity and the group velocity of optical waves are in the opposite direction have been discovered in the photonic structures containing metamaterials. In fact, the concepts in electronic field and photonic field can inspire each other. Many unique phenomena in photonic systems can also be mapped to the electronic systems. In this paper, we study the novel types of electronic Tamm states in electronic systems, inspired by the novel types of optical Tamm states in photonic structures. #br#At first, comparing Maxwell equations with Schrodinger equations, one can see a correspondence between the parameters in electromagnetic system and the parameters in the electronic system. In particular, Hg1-xCdxTe semiconductors with special electronic band structures can realize various electronic materials in analogy to the optical metamaterials with various values of permittivity and permeability. By tuning the parameter x of Hg1-xCdxTe, we obtain a variety of metamaterial-like electronic materials, in analogy to the single-negative metamaterials, the double-negative metamaterials and the near-zero-index metamaterials in optical systems. Then, inspired by the one-dimensional heterostructures with metamaterials that generate optical Tamm states, we design a one-dimensional electronic heterostructure consisting of Hg0.847Cd0.153Te and CdTe/HgTe superlattice. When Hg0.847Cd0.153Te is analogous to the double-negative metamaterial, we find the backward electronic Tamm states in which the phase velocity and the group velocity of electronic waves are in the opposite directions. When Hg0.847Cd0.153Te is analogous to the near-zero-index metamaterial, we find a novel electronic Tamm states in which the amplitude of the electronic probability decays very slowly in Hg0.847Cd0.153Te. The discovery of these new types of electronic Tamm states enlarges our knowledge of electronic surface states.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB922001)、国家自然科学基金(批准号: 11234010, 11074187)、上海市教委科研创新基金(批准号: 14ZZ040)和中央高校基本科研专项资金资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB922001), the National Natural Science Foundation of China (Grant Nos. 11234010, 11074187), the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 14ZZ040), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Tamm I Y 1932 Phys. Z. Sowjetunion 1 733

    [2]

    Ohno H, Mendez E E, Brum J A, Hong J M, Agulló R F, Chang L L, Esaki L 1990 Phys. Rev. Lett. 64 2555

    [3]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [4]

    John S 1987 Phys. Rev. Lett. 58 2486

    [5]

    Yeh P, Yariv A, Cho A Y 1978 Appl. Phys. Lett. 32 104

    [6]

    Yeh P 1988 Optical Waves in Layered Media (New York: Wiley) pp337-344

    [7]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [8]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [9]

    Pendry J B, Holden A J, Robbins D J 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [10]

    Monticone F, Alù A 2014 Chin. Phys. B 23 047809

    [11]

    Martorell J, Sprung D W L, Morozov G V 2006 Pure Appl. Opt. 8 630

    [12]

    Malkova N, Ning C Z 2006 Phys. Rev. B 73 113113

    [13]

    Namdar A, Shadrivov I V, Kivshar Y S 2007 Phys. Rev. A 75 053812

    [14]

    Cheianov V V, Vladimir F, Altshuler B L 2007 Science 315 1252

    [15]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [16]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2009 Nature 461 772

    [17]

    Zandbergen S R, Michiel J A 2010 Phys. Rev. Lett. 104 043903

    [18]

    Jelinek L, Baena J D, Voves J, Marquesn R 2011 New J. Phys. 13 083011

    [19]

    Kane E O 1957 J. Phys. Chem. Sol. 1 249

    [20]

    Bastard G 1988 Wave Mechanics Applied to Semiconductor Heterostructures (New York: Wiley) pp41-48

    [21]

    Kowalczyk S P, Cheng J T, Kraut E A 1986 Phys. Rev. Lett. 56 1605

    [22]

    Johnson N F, Hui P M, Ehrenreich H 1988 Phys. Rev. Lett. 61 1993

    [23]

    Mecabih L, Amrane N, Belgoumene B 2000 Physica A 276 495

    [24]

    Yu Y F, Lu C, Wei L Y, Lin S 2012 Chin. Phys. B 21 017804

    [25]

    Jiang H T, Chen H, Li H Q, Zhang Y W 2004 Phys. Rev. E 69 066607

  • [1]

    Tamm I Y 1932 Phys. Z. Sowjetunion 1 733

    [2]

    Ohno H, Mendez E E, Brum J A, Hong J M, Agulló R F, Chang L L, Esaki L 1990 Phys. Rev. Lett. 64 2555

    [3]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [4]

    John S 1987 Phys. Rev. Lett. 58 2486

    [5]

    Yeh P, Yariv A, Cho A Y 1978 Appl. Phys. Lett. 32 104

    [6]

    Yeh P 1988 Optical Waves in Layered Media (New York: Wiley) pp337-344

    [7]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [8]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [9]

    Pendry J B, Holden A J, Robbins D J 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [10]

    Monticone F, Alù A 2014 Chin. Phys. B 23 047809

    [11]

    Martorell J, Sprung D W L, Morozov G V 2006 Pure Appl. Opt. 8 630

    [12]

    Malkova N, Ning C Z 2006 Phys. Rev. B 73 113113

    [13]

    Namdar A, Shadrivov I V, Kivshar Y S 2007 Phys. Rev. A 75 053812

    [14]

    Cheianov V V, Vladimir F, Altshuler B L 2007 Science 315 1252

    [15]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [16]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2009 Nature 461 772

    [17]

    Zandbergen S R, Michiel J A 2010 Phys. Rev. Lett. 104 043903

    [18]

    Jelinek L, Baena J D, Voves J, Marquesn R 2011 New J. Phys. 13 083011

    [19]

    Kane E O 1957 J. Phys. Chem. Sol. 1 249

    [20]

    Bastard G 1988 Wave Mechanics Applied to Semiconductor Heterostructures (New York: Wiley) pp41-48

    [21]

    Kowalczyk S P, Cheng J T, Kraut E A 1986 Phys. Rev. Lett. 56 1605

    [22]

    Johnson N F, Hui P M, Ehrenreich H 1988 Phys. Rev. Lett. 61 1993

    [23]

    Mecabih L, Amrane N, Belgoumene B 2000 Physica A 276 495

    [24]

    Yu Y F, Lu C, Wei L Y, Lin S 2012 Chin. Phys. B 21 017804

    [25]

    Jiang H T, Chen H, Li H Q, Zhang Y W 2004 Phys. Rev. E 69 066607

  • [1] 骆全斌, 黄学勤, 邓伟胤, 吴迎, 陆久阳, 刘正猷. 声子晶体板中的第二类狄拉克点和边缘传输. 物理学报, 2021, 70(18): 184302. doi: 10.7498/aps.70.20210712
    [2] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [3] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变. 物理学报, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [4] 徐国庆, 刘向阳, 张可锋, 杜云辰, 李向阳. 离子束刻蚀碲镉汞晶体的电学特性研究. 物理学报, 2015, 64(11): 116102. doi: 10.7498/aps.64.116102
    [5] 张姗, 胡晓宁. Si基碲镉汞光伏探测器的深能级研究. 物理学报, 2011, 60(6): 068502. doi: 10.7498/aps.60.068502
    [6] 殷菲, 胡伟达, 全知觉, 张波, 胡晓宁, 李志锋, 陈效双, 陆卫. 激光束诱导电流法提取HgCdTe光伏探测器的电子扩散长度. 物理学报, 2009, 58(11): 7884-7890. doi: 10.7498/aps.58.7884
    [7] 崔昊杨, 李志锋, 李亚军, 刘昭麟, 陈效双, 陆 卫, 叶振华, 胡晓宁, 王 茺. 双光子吸收的Franz-Keldysh效应. 物理学报, 2008, 57(1): 238-242. doi: 10.7498/aps.57.238
    [8] 乔 辉, 廖 毅, 胡伟达, 邓 屹, 袁永刚, 张勤耀, 李向阳, 龚海梅. 碲镉汞焦平面光伏器件的实时γ辐照效应研究. 物理学报, 2008, 57(11): 7088-7093. doi: 10.7498/aps.57.7088
    [9] 越方禹, 邵 军, 魏彦峰, 吕 翔, 黄 炜, 杨建荣, 褚君浩. 变温吸收谱研究液相外延碲镉汞浅能级. 物理学报, 2007, 56(5): 2878-2881. doi: 10.7498/aps.56.2878
    [10] 全知觉, 孙立忠, 叶振华, 李志锋, 陆 卫. 碲镉汞异质结能带结构的优化设计. 物理学报, 2006, 55(7): 3611-3616. doi: 10.7498/aps.55.3611
    [11] 孙立忠, 陈效双, 周孝好, 孙沿林, 全知觉, 陆 卫. 碲镉汞材料中Hg空位缺陷的第一性原理研究. 物理学报, 2005, 54(4): 1756-1761. doi: 10.7498/aps.54.1756
    [12] 黄杨程, 刘大福, 梁晋穗, 龚海梅. 短波碲镉汞光伏器件的低频噪声研究. 物理学报, 2005, 54(5): 2261-2266. doi: 10.7498/aps.54.2261
    [13] 陈贵宾, 李志锋, 蔡炜颖, 何 力, 胡晓宁, 陆 卫, 沈学础. 质子注入MBE碲镉汞n-on-p结性能研究. 物理学报, 2003, 52(6): 1496-1499. doi: 10.7498/aps.52.1496
    [14] 李 毅, 易新建, 蔡丽萍. 液相外延碲镉汞薄膜表面氧化特性的光电子能谱研究. 物理学报, 2000, 49(1): 132-136. doi: 10.7498/aps.49.132
    [15] 刘家璐, 张廷庆, 罗宏伟, 严北平, 郎维和, 张宝峰. 碲溶剂法生长碲镉汞晶体的数值模拟. 物理学报, 1998, 47(2): 275-285. doi: 10.7498/aps.47.275
    [16] 龚海梅, 李言谨, 方家熊. 碲镉汞表面钝化新方法. 物理学报, 1997, 46(7): 1400-1405. doi: 10.7498/aps.46.1400
    [17] 严北平, 刘家璐, 张廷庆, 王朝东, 郎维和, 张宝峰. 移动加热器法生长碲镉汞晶体的数值模拟. 物理学报, 1995, 44(3): 439-445. doi: 10.7498/aps.44.439
    [18] 黄河, 汤定元, 童斐明, 郑国珍. n型碲镉汞MIS器件动态存储时间研究. 物理学报, 1994, 43(11): 1883-1888. doi: 10.7498/aps.43.1883
    [19] 宋祥云, 温树林. 碲镉汞辐射损伤的微观过程. 物理学报, 1988, 37(2): 301-304. doi: 10.7498/aps.37.301
    [20] 马可军, 沈杰, 宋祥云, 温树林. 碲镉汞晶体中缺陷的晶格像. 物理学报, 1985, 34(12): 1641-1643. doi: 10.7498/aps.34.1641
计量
  • 文章访问数:  5323
  • PDF下载量:  503
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-08
  • 修回日期:  2014-12-25
  • 刊出日期:  2015-05-05

/

返回文章
返回