搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳秒激光诱导空气等离子体射频辐射特性研究

戴宇佳 宋晓伟 高勋 王兴生 林景全

引用本文:
Citation:

纳秒激光诱导空气等离子体射频辐射特性研究

戴宇佳, 宋晓伟, 高勋, 王兴生, 林景全

Characteristics of radio-frequency emission from nanosecond laser-induced breakdown plasma of air

Dai Yu-Jia, Song Xiao-Wei, Gao Xun, Wang Xing-Sheng, Lin Jing-Quan
PDF
导出引用
  • 开展了波长为532 nm、脉宽为8 ns的纳秒激光诱导空气等离子体射频电磁辐射特性实验研究,基于锥形天线探测空气等离子体在30–800 MHz频谱范围有较强的射频电磁辐射,是等离子体内电偶极子振荡变速运动造成的.实验结果表明:随激光能量增加,30–200 MHz范围内射频辐射强度逐渐变强,但360–600 MHz频率范围射频辐射强度逐渐变弱.等离子体射频辐射的空间分布依赖于入射激光的偏振方向,当激光偏振方向与天线放置方向一致时,该方向上空气等离子体的射频辐射强度高,谱线较丰富.射频辐射总功率随激光能量先增加后降低,采用等离子体电子密度变化对等离子体频率及等离子体衰减系数影响(制约)关系,对射频辐射总功率随激光能量的变化规律进行了解释.
    The radio-frequency (RF) emissions in a range from 30 MHz to 800 MHz from the plasma, which is produced by the nanosecond laser (532 nm, 8 ns) induced breakdown of atmospheric air, are presented. A spectrum analyzer which can scan over a spectral range of 9 kHz-26.5 GHz is used to record the RF-range radiation intensities of the emission from the plasma. RF electromagnetic radiations from the laser induced breakdown of atmospheric air are obtained for different input laser energies. A half-wave plate and a Glan prism are used to vary the input laser energy. Experimental results show that the intensities of RF radiation in a range of 30-200 MHz increase with the increase of laser energy, but the intensities of RF radiation in a 360-600 MHz frequency range decrease. To study the effect of input laser polarization on the RF radiation, we adopt the input lasers with vertical and horizontal polarization respectively. When the polarizations of the input laser and the antenna are the same, the RF radiation intensity is relatively high, and the frequency lines are relatively abundant. The changing relationship between the total power of RF radiation and the energy of the input laser is calculated and analyzed. It is observed that the total power of RF radiation first increases and then decreases with the increase of input laser energy. The influences of the plasma electron density on the plasma frequency and the plasma attenuation coefficient are investigated to explain the relationship between the total power of the RF radiation and the laser energy. The RF radiation is caused by the following processes. The generated electrons and ions are accelerated away from the core by their thermal pressures. This leads to charge separation and forming the electric dipole moments. These oscillating electric dipoles radiate electromagnetic waves in the RF range. Furthermore, the interactions of electrons with atomic and molecular clusters within the plasma play a major role in RF radiation, and the low frequency electromagnetic radiation takes place from the plasma that is far from fully ionized state. Further study of the characteristics of RF electromagnetic radiation is of great significance for understanding the physical mechanism of the interaction between laser and matter.
      Corresponding author: Gao Xun, songxiaowei@cust.edu.cn;lasercust@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575030).
    [1]

    Chen Z Y, Li J F, Li J, Peng Q X 2011 Phys. Scr. 83 055503

    [2]

    Li N, Bai Y, Liu P 2016 Acta Phys. Sin. 65 110701(in Chinese)[李娜, 白亚, 刘鹏2016物理学报 65 110701]

    [3]

    Dai J M, Lu X F, Liu J, Ho I C, Karpowicz N, Zhang X 2009 THz Sci. Tech. 2 131

    [4]

    Sizyuk T, Hassanein A 2014 Phys. Plasmas 21 083106

    [5]

    Nakajima H, Shimada Y, Somekawa T, Fujita M, Tanaka K A 2009 IEEE Geosci. Remote. Sens. Lett. 6 718

    [6]

    Basov N G, Kriukov P, Zakharov S, Senatsky Y, Tchekalin S 1968 IEEE J. Quant. Elect. 4 4864

    [7]

    Brown C G, Bond E, Clancy T, Dangi S, Eder D C, Ferguson W, Kimbrough J, Throop A 2010 J. Phys.:Conf. Ser. 244 032001

    [8]

    Pearlman J S, Dahlbacka G H 1978 J. Appl. Phys. 49 457

    [9]

    Cheng C C, Wright E M, Moloney J V 2001 Phys. Rev. Lett. 87 213001

    [10]

    Hosseini S A, Ferland B, Chin S L 2003 Appl. Phys. B 76 583

    [11]

    Vinoth Kumar L, Manikanta E, Leela Ch, Prem Kiran P 2014 Appl. Phys. Lett. 105 064102

    [12]

    Consoli F, Angelis R D, Andreoli P, Cristofari G, Giorgio G D 2015 Phys. Procedia 62 11

    [13]

    Balanis C A 1982 Antenna Theory:Analysis and Design (New York:John Wiley & Sons) pp989-990

    [14]

    Kumar V, Elle M, Paturi P K 2017 J. Phys.:Conf. Ser. 823 012008

    [15]

    Smith D, Adams N G, Miller T M 1978 J. Chem. Phys. 69 308

    [16]

    Leela C, Bagchi S, Kumar V R, Tewari S P, Kiran P P 2013 Laser. Part. Beams. 31 263

    [17]

    Tian Y, Yu W, He F, Xu H, Kumar V, Deng D, Wang Y, Li R, Xu Z Z 2006 Phys. Plasmas 13 123106

    [18]

    Akcasu A Z, Wald L H 1967 Phys. Fluids 10 1327

    [19]

    Jackson J D 1975 Classical Electrodynamics (New York:John Wiley & Sons) pp13-34

    [20]

    Gosnell T R 2002 Fundamentals of Spectroscopy and Laser Physics (Cambridge:Cambridge University Press) p12

    [21]

    Zhang H, Cheng X L, Yang X D, Xie F J, Zhang J Y, Yang G H 2003 Acta Phys. Sin. 52 3098(in Chinese)[张红, 程新路, 杨向东, 谢方军, 张继彦, 杨国洪2003物理学报 52 3098]

    [22]

    Vinoth Kumar L, Manikanta E, Leela Ch, Prem Kiran P 2016 J. Appl. Phys. 119 214904

  • [1]

    Chen Z Y, Li J F, Li J, Peng Q X 2011 Phys. Scr. 83 055503

    [2]

    Li N, Bai Y, Liu P 2016 Acta Phys. Sin. 65 110701(in Chinese)[李娜, 白亚, 刘鹏2016物理学报 65 110701]

    [3]

    Dai J M, Lu X F, Liu J, Ho I C, Karpowicz N, Zhang X 2009 THz Sci. Tech. 2 131

    [4]

    Sizyuk T, Hassanein A 2014 Phys. Plasmas 21 083106

    [5]

    Nakajima H, Shimada Y, Somekawa T, Fujita M, Tanaka K A 2009 IEEE Geosci. Remote. Sens. Lett. 6 718

    [6]

    Basov N G, Kriukov P, Zakharov S, Senatsky Y, Tchekalin S 1968 IEEE J. Quant. Elect. 4 4864

    [7]

    Brown C G, Bond E, Clancy T, Dangi S, Eder D C, Ferguson W, Kimbrough J, Throop A 2010 J. Phys.:Conf. Ser. 244 032001

    [8]

    Pearlman J S, Dahlbacka G H 1978 J. Appl. Phys. 49 457

    [9]

    Cheng C C, Wright E M, Moloney J V 2001 Phys. Rev. Lett. 87 213001

    [10]

    Hosseini S A, Ferland B, Chin S L 2003 Appl. Phys. B 76 583

    [11]

    Vinoth Kumar L, Manikanta E, Leela Ch, Prem Kiran P 2014 Appl. Phys. Lett. 105 064102

    [12]

    Consoli F, Angelis R D, Andreoli P, Cristofari G, Giorgio G D 2015 Phys. Procedia 62 11

    [13]

    Balanis C A 1982 Antenna Theory:Analysis and Design (New York:John Wiley & Sons) pp989-990

    [14]

    Kumar V, Elle M, Paturi P K 2017 J. Phys.:Conf. Ser. 823 012008

    [15]

    Smith D, Adams N G, Miller T M 1978 J. Chem. Phys. 69 308

    [16]

    Leela C, Bagchi S, Kumar V R, Tewari S P, Kiran P P 2013 Laser. Part. Beams. 31 263

    [17]

    Tian Y, Yu W, He F, Xu H, Kumar V, Deng D, Wang Y, Li R, Xu Z Z 2006 Phys. Plasmas 13 123106

    [18]

    Akcasu A Z, Wald L H 1967 Phys. Fluids 10 1327

    [19]

    Jackson J D 1975 Classical Electrodynamics (New York:John Wiley & Sons) pp13-34

    [20]

    Gosnell T R 2002 Fundamentals of Spectroscopy and Laser Physics (Cambridge:Cambridge University Press) p12

    [21]

    Zhang H, Cheng X L, Yang X D, Xie F J, Zhang J Y, Yang G H 2003 Acta Phys. Sin. 52 3098(in Chinese)[张红, 程新路, 杨向东, 谢方军, 张继彦, 杨国洪2003物理学报 52 3098]

    [22]

    Vinoth Kumar L, Manikanta E, Leela Ch, Prem Kiran P 2016 J. Appl. Phys. 119 214904

  • [1] 何新, 江涛, 张振福, 杨俊波. 束缚态特征温度方法及应用. 物理学报, 2022, 71(8): 085201. doi: 10.7498/aps.71.20212115
    [2] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [3] 王兴生, 马彦明, 高勋, 林景全. 纳秒脉冲激光诱导空气等离子体的近红外辐射特性. 物理学报, 2020, 69(2): 029502. doi: 10.7498/aps.69.20190753
    [4] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [5] 姜炜曼, 李玉同, 张喆, 朱保君, 张翌航, 袁大伟, 魏会冈, 梁贵云, 韩波, 刘畅, 原晓霞, 华能, 朱宝强, 朱健强, 方志恒, 王琛, 黄秀光, 张杰. 纳秒激光等离子体相互作用过程中激光强度对微波辐射影响的研究. 物理学报, 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [6] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [7] 郭凯敏, 高 勋, 郝作强, 鲁毅, 孙长凯, 林景全. 空气中飞秒激光等离子体荧光辐射光谱研究. 物理学报, 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [8] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究. 物理学报, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [9] 杨宏道, 李晓红, 李国强, 袁春华, 唐多昌, 徐琴, 邱荣, 王俊波. 1064 nm纳秒脉冲激光诱导硅表面微结构研究. 物理学报, 2011, 60(2): 027901. doi: 10.7498/aps.60.027901
    [10] 张宏超, 陆建, 倪晓武. 干涉法诊断由纳秒激光诱导产生的大气等离子体的电子密度. 物理学报, 2009, 58(6): 4034-4040. doi: 10.7498/aps.58.4034
    [11] 张娜珍, 仓怀文, 王卫国, 苗书一, 金峰, 吴庆浩, 花磊, 李海洋. 乙醚团簇在纳秒激光场中的多价电离及其电子能量分布的研究. 物理学报, 2009, 58(7): 4556-4562. doi: 10.7498/aps.58.4556
    [12] 吴 翊, 荣命哲, 杨 飞, 王小华, 马 强, 王伟宗. 引入6波段P-1辐射模型的三维空气电弧等离子体数值分析. 物理学报, 2008, 57(9): 5761-5767. doi: 10.7498/aps.57.5761
    [13] 仲佳勇, 李玉同, 鲁 欣, 张 翼, Bernhardt Jens, 刘 峰, 郝作强, 张 喆, 于全芝, 陈 民, 远晓辉, 梁文锡, 赵 刚, 张 杰. 空气中单个激光等离子体通道的形成条件. 物理学报, 2007, 56(12): 7114-7119. doi: 10.7498/aps.56.7114
    [14] 郝作强, 张 杰, 俞 进, 张 喆, 仲佳勇, 臧充之, 金 展, 王兆华, 魏志义. 空气中激光等离子体通道的荧光探测和声学诊断两种方法的比较实验研究. 物理学报, 2006, 55(1): 299-303. doi: 10.7498/aps.55.299
    [15] 张 喆, 张 杰, 李玉同, 郝作强, 郑志远, 远晓辉, 王兆华. 空气中激光等离子体通道导电性能的研究. 物理学报, 2006, 55(1): 357-361. doi: 10.7498/aps.55.357
    [16] 林兆祥, 吴金泉, 龚顺生. 延迟双脉冲激光产生的空气等离子体的光谱研究. 物理学报, 2006, 55(11): 5892-5898. doi: 10.7498/aps.55.5892
    [17] 郝作强, 张 杰, 张 喆, 奚婷婷, 郑志远, 远晓辉, 王兆华. 空气中激光等离子体通道的三次谐波辐射研究. 物理学报, 2005, 54(7): 3173-3177. doi: 10.7498/aps.54.3173
    [18] 罗晓琳, 孔祥蕾, 牛冬梅, 渠洪波, 李海洋. 团簇增强的纳秒激光电离产生Xez+(z≤20)高价离子. 物理学报, 2005, 54(2): 606-611. doi: 10.7498/aps.54.606
    [19] 孔祥蕾, 罗晓琳, 牛冬梅, 张先燚, 阚瑞峰, 李海洋. 纳秒强激光场中甲醇光电离产生高价离子的研究. 物理学报, 2004, 53(5): 1340-1345. doi: 10.7498/aps.53.1340
    [20] 卞保民, 陈建平, 杨玲, 倪晓武, 陆建. 空气中激光等离子体冲击波的传输特性研究. 物理学报, 2000, 49(3): 445-448. doi: 10.7498/aps.49.445
计量
  • 文章访问数:  6675
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-06
  • 修回日期:  2017-06-08
  • 刊出日期:  2017-09-05

/

返回文章
返回