搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单轴应变对H在α-Fe中占位及扩散的影响

李守英 王勇 赵卫民

引用本文:
Citation:

单轴应变对H在α-Fe中占位及扩散的影响

李守英, 王勇, 赵卫民

Influence of single axis strain on site occupation and diffusion of hydrogen atom in α-Fe

Li Shou-Ying, Wang Yong, Zhao Wei-Min
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理方法,研究了H在不同单轴应变下α-Fe中的间隙占位,计算了H原子的溶解能、态密度、电荷差分密度和电荷布居.结果表明:不同单轴拉压应变作用下,H原子优先占据四面体间隙(Ts)位,且随着压应变减小、拉应变增加,H原子越易溶于α-Fe.压应变使得Ts位的H获得更多的电子,而拉应变减少了这种电荷转移.应用LST/QST过渡态搜索计算垂直应变方向的扩散.八面体间隙位是邻近Ts位H的扩散过渡态.扩散激活能与应变呈线性关系,且随着压应变的增加,扩散激活能降低,扩散更容易.
    As is well known, hydrogen plays an important role in degrading mechanical properties of steel due to hydrogen embrittlement behavior. Thus, much attention should be paid to the interaction between hydrogen atom and Fe matrix especially in theoretical calculation and mechanism study. In this paper, the site occupations of hydrogen atom under different single axis strains in interstitial of α-Fe atoms are studied by the first principles calculation based on the spin-polarized density functional theory. The Kohn-Sham equations are solved under periodic boundary conditions, by using revised Perdew-Burke-Ernzerhof version of the generalized gradient approximation to account for the electron exchange and correlation. The total energy of the steady state crystal, binding energy, solution energy, density of states, charge density difference and charge population are calculated. The analyses of solution energy and density of states indicate that the hydrogen atom preferentially occupies the tetrahedral interstitial of α-Fe atoms under different single axis strains. With increasing tensile strain or reducing compressive strain, hydrogen atom prefers to occupy the site of tetrahedral interstitial. The analyses of charge population and charge density difference reveal that the hydrogen atom collects charges from Fe atoms, leading to electron density redistribution. The tensile strain reduces the charge transfer slightly while the compressive stress promotes the transfer process. The LST/QST (linear synchronous transit/quadratic synchronous transit) transition state search method is used to investigate the diffusion of hydrogen atom between two tetrahedral interstitials along the direction perpendicular to strain. Diffusion of hydrogen atom goes through transition state where the hydrogen atom is coordinated at octahedral interstitial. The minimum energy pathway for hydrogen diffusion under strainless state indicates the diffusion activation energy with a value of 0.58 eV. It is noticeable that the diffusion activation energy and the strain conforms to linear relation and are consistent with the fitting formula, Q=0.508+2.6ε. The diffusion activation energy increases with reducing compressive strain or increasing tensile strain. According to the calculation process and analysis results, we introduce the interaction between hydrogen atom and α-Fe at a level of electronic structure systematically and figure out the diffusion of hydrogen influenced by different states of stress.
      通信作者: 赵卫民, zhaowm@upc.edu.cn
      Corresponding author: Zhao Wei-Min, zhaowm@upc.edu.cn
    [1]

    Zhao Y Z, Meng B 2015 Chem. Ind. Eng. Prog. 34 3248(in Chinese)[赵永志, 蒙波2015化工进展 34 3248]

    [2]

    Dodds P E, McDowall W 2013 Energy Policy 60 305

    [3]

    Nanninga N, Slifka A, Levy Y 2010 J. Res. Natl. Inst. Stan. 115 437

    [4]

    Dodds P E, Demoullin S 2013 Int. J. Hydrogen Energy 38 7189

    [5]

    Jothi S, Croft T N, Wright L 2015 Int. J. Hydrogen. Energy 40 15105

    [6]

    Briottet T, Batisse R, Dinechin G D 2012 Int. J. Hydrogen Energy 37 9423

    [7]

    Han Y D, Jing H Y, Xu L Y 2012 Mater. Chem. Phys. 132 216

    [8]

    Nanninga N, Grochowsi J, Heldt L 2010 Corros. Sci. 52 1237

    [9]

    Sánchez 2008 Phys. Rev. B 78 014113

    [10]

    Gong X G, Zeng Z, Zheng Q Q 1989 J. Phys. Condens. Matter 1 7577

    [11]

    Lee B J, Jang J W 2007 Acta Mater. 55 6779

    [12]

    Sorescu D C 2005 Catal. Today 105 44

    [13]

    Dong N, Zhang C, Liu H, Li J, Wu X 2014 Comp. Mater. Sci. 90 137

    [14]

    Wen P, Li C F, Zhao Y, Zhang F C, Tong L H 2014 Acta Phys. Sin. 63 197101(in Chinese)[文平, 李春福, 赵毅, 张凤春, 童丽华2014物理学报 63 197101]

    [15]

    Jiang D E, Carter E A 2004 Phys. Rev. B 70 064102

    [16]

    Counts W, Wolverton C, Gibala R 2011 Acta Mater. 59 5812

    [17]

    Sichone 2014 M. S. Thesis (Harbin:Harbin Institute of Technology)

    [18]

    Zhao W M, Zhang T M, Sun J B 2016 Electrochim. Acta 214 336

    [19]

    Mouanga M, Berçot P, Takadoum J 2010 Corros. Sci. 52 2010

    [20]

    Wang Y F 2014 J. Shanghai. Jiaotong Univ. 48 610(in Chinese)[王燕飞2014上海交通大学学报 48 610]

    [21]

    Kecik D, Aydinol M K 2009 Surf. Sci. 603 304

    [22]

    Zhang F C, Li C F, Wen P, Luo Q, Ran Z L 2014 Acta Phys. Sin. 63 227101(in Chinese)[张凤春, 李春福, 文平, 罗强, 冉曾令2014物理学报 63 227101]

    [23]

    Li X, Gao C, Xiong X L 2015 Int. J. Hydrogen Energy 40 10340

    [24]

    Flynn C P 1972 Point Defects and Diffusion (London:Oxford University) pp25-30

    [25]

    Zang B, Yi D Q 2013 J. Cent. South. Univ. T. 44 2214(in Chinese)[臧冰, 易丹青2013中南大学学报 44 2214]

    [26]

    Li J, Zhen Z Q, Chen D Q, Li S C, Yin S G 2005 Rare Metal 29 539(in Chinese)[李剑, 郑子樵, 陈大钦, 李世晨, 殷顺高2005稀有金属 29 539]

  • [1]

    Zhao Y Z, Meng B 2015 Chem. Ind. Eng. Prog. 34 3248(in Chinese)[赵永志, 蒙波2015化工进展 34 3248]

    [2]

    Dodds P E, McDowall W 2013 Energy Policy 60 305

    [3]

    Nanninga N, Slifka A, Levy Y 2010 J. Res. Natl. Inst. Stan. 115 437

    [4]

    Dodds P E, Demoullin S 2013 Int. J. Hydrogen Energy 38 7189

    [5]

    Jothi S, Croft T N, Wright L 2015 Int. J. Hydrogen. Energy 40 15105

    [6]

    Briottet T, Batisse R, Dinechin G D 2012 Int. J. Hydrogen Energy 37 9423

    [7]

    Han Y D, Jing H Y, Xu L Y 2012 Mater. Chem. Phys. 132 216

    [8]

    Nanninga N, Grochowsi J, Heldt L 2010 Corros. Sci. 52 1237

    [9]

    Sánchez 2008 Phys. Rev. B 78 014113

    [10]

    Gong X G, Zeng Z, Zheng Q Q 1989 J. Phys. Condens. Matter 1 7577

    [11]

    Lee B J, Jang J W 2007 Acta Mater. 55 6779

    [12]

    Sorescu D C 2005 Catal. Today 105 44

    [13]

    Dong N, Zhang C, Liu H, Li J, Wu X 2014 Comp. Mater. Sci. 90 137

    [14]

    Wen P, Li C F, Zhao Y, Zhang F C, Tong L H 2014 Acta Phys. Sin. 63 197101(in Chinese)[文平, 李春福, 赵毅, 张凤春, 童丽华2014物理学报 63 197101]

    [15]

    Jiang D E, Carter E A 2004 Phys. Rev. B 70 064102

    [16]

    Counts W, Wolverton C, Gibala R 2011 Acta Mater. 59 5812

    [17]

    Sichone 2014 M. S. Thesis (Harbin:Harbin Institute of Technology)

    [18]

    Zhao W M, Zhang T M, Sun J B 2016 Electrochim. Acta 214 336

    [19]

    Mouanga M, Berçot P, Takadoum J 2010 Corros. Sci. 52 2010

    [20]

    Wang Y F 2014 J. Shanghai. Jiaotong Univ. 48 610(in Chinese)[王燕飞2014上海交通大学学报 48 610]

    [21]

    Kecik D, Aydinol M K 2009 Surf. Sci. 603 304

    [22]

    Zhang F C, Li C F, Wen P, Luo Q, Ran Z L 2014 Acta Phys. Sin. 63 227101(in Chinese)[张凤春, 李春福, 文平, 罗强, 冉曾令2014物理学报 63 227101]

    [23]

    Li X, Gao C, Xiong X L 2015 Int. J. Hydrogen Energy 40 10340

    [24]

    Flynn C P 1972 Point Defects and Diffusion (London:Oxford University) pp25-30

    [25]

    Zang B, Yi D Q 2013 J. Cent. South. Univ. T. 44 2214(in Chinese)[臧冰, 易丹青2013中南大学学报 44 2214]

    [26]

    Li J, Zhen Z Q, Chen D Q, Li S C, Yin S G 2005 Rare Metal 29 539(in Chinese)[李剑, 郑子樵, 陈大钦, 李世晨, 殷顺高2005稀有金属 29 539]

  • [1] 张江林, 王仲民, 王殿辉, 胡朝浩, 王凤, 甘伟江, 林振琨. V/Pd界面氢吸附扩散行为的第一性原理研究. 物理学报, 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [2] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究. 物理学报, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [3] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究. 物理学报, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [4] 杨亮, 王才壮, 林仕伟, 曹阳. 氧原子在钛晶体中扩散的第一性原理研究. 物理学报, 2017, 66(11): 116601. doi: 10.7498/aps.66.116601
    [5] 朱玥, 李永成, 王福合. Li掺杂对MgH2(001)表面H2分子扩散释放影响的第一性原理研究. 物理学报, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [6] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [7] 石瑜, 白洋, 莫丽玢, 向青云, 黄亚丽, 曹江利. H掺杂α-Fe2O3的第一性原理研究. 物理学报, 2015, 64(11): 116301. doi: 10.7498/aps.64.116301
    [8] 杨彪, 王丽阁, 易勇, 王恩泽, 彭丽霞. C, N, O原子在金属V中扩散行为的第一性原理计算. 物理学报, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [9] 张凤春, 李春福, 文平, 罗强, 冉曾令. 金属Fe与间隙H原子相互作用的密度泛函研究. 物理学报, 2014, 63(22): 227101. doi: 10.7498/aps.63.227101
    [10] 范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛. 六角相ErAx (A=H, He)体系弹性性质的第一性原理研究. 物理学报, 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [11] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究. 物理学报, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [12] 卢志鹏, 祝文军, 卢铁城. 高压下Fe从bcc到hcp结构相变机理的第一性原理计算. 物理学报, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [13] 孟凡顺, 赵星, 李久会. B掺入Cu∑5晶界间隙位性质的第一性原理研究. 物理学报, 2013, 62(11): 117102. doi: 10.7498/aps.62.117102
    [14] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究. 物理学报, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [15] 范开敏, 杨莉, 彭述明, 龙兴贵, 吴仲成, 祖小涛. 第一性原理计算α-ScDx(D=H,He)的弹性常数. 物理学报, 2011, 60(7): 076201. doi: 10.7498/aps.60.076201
    [16] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [17] 张辉, 张国英, 肖明珠, 路广霞, 朱圣龙, 张轲. 金属元素替代对Li4BN3H10储氢材料释氢影响机理的第一性原理研究. 物理学报, 2011, 60(4): 047109. doi: 10.7498/aps.60.047109
    [18] 尚家香, 于潭波. NiAl和Cr材料中H原子间隙的第一性原理计算. 物理学报, 2009, 58(2): 1179-1184. doi: 10.7498/aps.58.1179
    [19] 赵巍, 汪家道, 刘峰斌, 陈大融. H2O分子在Fe(100), Fe(110), Fe(111)表面吸附的第一性原理研究. 物理学报, 2009, 58(5): 3352-3358. doi: 10.7498/aps.58.3352
    [20] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究. 物理学报, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
计量
  • 文章访问数:  4727
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-16
  • 修回日期:  2017-04-29
  • 刊出日期:  2017-09-05

/

返回文章
返回