搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化镓/石墨烯/碳化硅异质界面热输运特性的分子动力学研究

刘东静 周福 陈帅阳 胡志亮

引用本文:
Citation:

氮化镓/石墨烯/碳化硅异质界面热输运特性的分子动力学研究

刘东静, 周福, 陈帅阳, 胡志亮

Molecular dynamics of heat transport properties at gallium nitride/graphene/silicon carbide heterointerface

Liu Dong-Jing, Zhou Fu, Chen Shuai-Yang, Hu Zhi-Liang
PDF
HTML
导出引用
  • 为了探究氮化镓/石墨烯/碳化硅异质界面热输运特性, 采用非平衡分子动力学方法从温度、尺寸以及空位缺陷三个方面研究其对界面热导的影响, 通过声子态密度和声子参与率对界面热导的变化进一步阐述分析. 研究表明: 温度升高使界面热导增大, 分析认为随着温度升高晶格振动加剧, 低频声子态密度变大, 参与热输运声子数量增加; 其中单层石墨烯层结构界面热导的改变要高于多层石墨烯结构的界面热导. 当热输运方向的结构尺寸变化时, 同时改变氮化镓和碳化硅的层数, 界面热导无明显变化, 界面热输运声子散射几乎不受影响; 但中间石墨烯层从1层增加至5层时, 界面热导率先减小后缓慢增大, 由于在4层时低频声子参与率变小, 更多的声子局域化, 不参与传热声子数量更多, 故界面热导到达最小值0.021 GW/(m2·K). 随空位缺陷浓度增加界面热导先逐步增大后减小, 区别在于单空位缺陷在浓度为10%时, 界面热导达到最大值0.064 GW/(m2·K); 而双空位缺陷在浓度为12%时, 界面热导率达到最大值0.065 GW/(m2·K), 分析认为更多的声子从局域进入离域, 参与该传热声子较多, 导致界面热导增大. 研究结果有助于调控氮化镓器件的热输运性能, 可以为异质界面器件的设计提供理论依据.
    In order to study the thermal transport properties of heterogeneous gallium nitride/graphene/silicon carbide interface, the effects of temperature, size and vacancy defects on the thermal conductance of the interface are investigated by non-equilibrium molecular dynamics method, and the effects of changes of phonon state density and phonon participation rate on the thermal conductance of the interface are further analyzed. The results show that the thermal conductance of the interface increases with temperature increasing. The analysis shows that as temperature rises, the lattice vibration intensity, the density of low frequency phonon states, and the number of phonons involved in heat transport all increase. The change of thermal conductance at the interface of single-layer graphene is higher than that of multi-layer graphene. When the structural size of the heat transport direction is changed and the number of layers of gallium nitride and silicon carbide are changed at the same time, the thermal conductance at the interface does not change significantly, and the phonon scattering of the thermal transport at the interface is almost unaffected. However, as the number of graphene interlayers increases from the first layer to the fifth layer, the interface thermal conductance first decreases and then slowly increases. Because of the fourth layer, the participation rate of low frequency phonons decreases, more phonons are localized, and the number of phonons that do not participate in heat transfer increases, and the interfacial thermal conductance reaches a minimum value of 0.024 GW/(m2·K). As the vacancy defect concentration increases, the interfacial thermal conductance first increases gradually and then decreases. The difference is that when the concentration of single vacancy defects is 10%, the interface thermal conductance reaches a maximum value of 0.063 GW/(m2·K). When the concentration of double vacancy defects is 12%, the interfacial thermal conductance reaches a maximum value of 0.065 GW/(m2·K). The analysis shows that more phonons enter into the delocalisation from the local region and more phonons participate in the heat transfer, leading to the increase of the interface thermal conductance. The results are useful in adjusting the thermal transport performance of GaN devices and provide a theoretical basis for designing the devices with heterogeneous interfaces.
      通信作者: 刘东静, ldj168168@126.com
    • 基金项目: 广西制造系统重点实验室项目(批准号: 22-35-4-S017)和广西高校中青年教师科研基础能力提升项目(批准号: 2022KY0207)资助的课题.
      Corresponding author: Liu Dong-Jing, ldj168168@126.com
    • Funds: Project supported by the Guangxi Key Laboratory of Manufacturing System Project, China (Grant No. 22-35-4-S017) and the Guangxi University Young and Middle-aged Teachers Research Basic Research Ability Improvement Project, China (Grant No. 2022KY0207).
    [1]

    Lee J Y, Shin J H, Lee G H, Lee C H 2016 Nanomaterials (Basel) 6 193Google Scholar

    [2]

    Liu Y, Fang Y, Yang D, Pi X, Wang P 2022 J. Phys. Condens. Matter. 34 183001Google Scholar

    [3]

    Xu H, Akbari M K, Zhuiykov S 2021 Nanoscale Res. Lett. 16 94Google Scholar

    [4]

    Islam M S, Mia I, Ahammed S, Stampfl C, Park J 2020 Sci. Rep. 10 22050Google Scholar

    [5]

    Zanane F Z, Sadki K, Drissi L B, Saidi E H 2022 J. Mol. Model. 28 88Google Scholar

    [6]

    Wu D, Ding H, Fan Z Q, Jia P Z, Xie H Q, Chen X K 2022 Appl. Surf. 581 152344Google Scholar

    [7]

    Li M, Zheng B, Duan K, Zhang Y, Huang Z, Zhou H 2018 J. Phys. Chem. C 122 14945Google Scholar

    [8]

    Littlejohn A J, Xiang Y, Rauch E, Lu T M, Wang G C 2017 J. Appl. Phys. 122 185305Google Scholar

    [9]

    Utama M I B, de la Mata M, Magen C, Arbiol J, Xiong Q 2013 Adv. Funct. Mater. 23 1636Google Scholar

    [10]

    Balandin A A 2011 Nat. Mater. 10 569Google Scholar

    [11]

    Yan Z, Liu G, Khan J M, Balandin A A 2012 Nat. Commun. 3 827Google Scholar

    [12]

    Kim Y, Cruz S S, Lee K, Alawode B O, Choi C, Song Y, Johnson J M, Heidelberger C, Kong W, Choi S, Qiao K, Almansouri I, Fitzgerald E A, Kong J, Kolpak A M, Hwang J, Kim J 2017 Nature 544 340Google Scholar

    [13]

    Zollner C J, Almogbel A, Yao Y, SaifAddin B K, Wu F, Iza M, DenBaars S P, Speck J S, Nakamura S 2019 Appl. Phys. Lett. 115 161101Google Scholar

    [14]

    Xu Y, Wang J, Cao B, Xu K 2022 Chin. Phys. B 31 117702Google Scholar

    [15]

    Al Balushi Z Y, Miyagi T, Lin Y C, Wang K, Calderin L, Bhimanapati G, Redwing J M, Robinson J A 2015 Surf. Sci. 634 81Google Scholar

    [16]

    Feldberg N, Klymov O, Garro N, Cros A, Mollard N, Okuno H, Gruart M, Daudin B 2019 Nanotechnology 30 375602Google Scholar

    [17]

    Fernandez-Garrido S, Ramsteiner M, Gao G, Galves L A, Sharma B, Corfdir P, Calabrese G, de Souza Schiaber Z, Pfuller C, Trampert A, Lopes J M J, Brandt O, Geelhaar L 2017 Nano Lett. 17 5213Google Scholar

    [18]

    Puybaret R, Patriarche G, Jordan M B, Sundaram S, El Gmili Y, Salvestrini J P, Voss P L, de Heer W A, Berger C, Ougazzaden A 2016 Appl. Phys. Lett. 108 103105Google Scholar

    [19]

    Xu Y, Cao B, Li Z, Zheng S, Cai D, Wang M, Zhang Y, Wang J, Wang C, Xu K 2019 Cryst. Eng. Comm. 21 6109Google Scholar

    [20]

    Hu M, Poulikakos D 2013 Int. J. Heat Mass Transfer 62 205Google Scholar

    [21]

    Yang B, Yang H, Li T, Yang J, Yang P 2021 Appl. Surf. Sci. 536 147828Google Scholar

    [22]

    刘东静, 王韶铭, 杨平 2021 物理学报 70 187302Google Scholar

    Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302Google Scholar

    [23]

    Xiong Y, Wu H, Gao J, Chen W, Zhang J, Yue Y 2019 Acta Phys. Chim. Sin. 35 1150Google Scholar

    [24]

    Yang Y, Ma J, Yang J, Zhang Y 2022 ACS Appl. Mater. Interfaces 14 45742Google Scholar

    [25]

    Teshome T, Datta A 2017 ACS Appl. Mater. Interfaces 9 34213Google Scholar

    [26]

    Liu Z, Su Z, Li Q, Sun L, Zhang X, Yang Z, Liu X, Li Y, Yu F, Zhao X 2019 RSC Adv. 9 32226Google Scholar

    [27]

    Stillinger F H, Weber T A 1985 Phys. Rev. B 31 5262Google Scholar

    [28]

    Liu D J 2020 Phys. Lett. A. 384 126077Google Scholar

    [29]

    Li M, Zhang J C, Hu X J, Yue Y N 2015 Appl. Phys. A. 119 415Google Scholar

    [30]

    Farago O 2019 Physica A 534 122210Google Scholar

    [31]

    叶振强, 曹炳阳, 过增元 2014 物理学报 63 154704Google Scholar

    Ye Z Q, Cao B Y, Guo Z Y 2014 Acta Phys. Sin. 63 154704Google Scholar

    [32]

    Han D, Wang X, Ding W, Chen Y, Zhang J, Xin G, Cheng L 2019 Nanotechnology 30 075403Google Scholar

    [33]

    Guo Y, Bescond M, Zhang Z, Xiong S, Hirakawa K, Nomura M, Volz S 2021 APL Materials 9 091104Google Scholar

    [34]

    Schulz J 2003 J. Reprod. Infant. Psyc. 21 363Google Scholar

  • 图 1  氮化镓(12层)/石墨烯(1层)/碳化硅(12层)异质结构界面模型

    Fig. 1.  Interface model of gallium nitride (12 layers)/graphene (1 layer)/silicon carbide (12 layers) heterostructure.

    图 2  氮化镓/石墨烯/碳化硅异质结构沿热流方向的温度分布

    Fig. 2.  Temperature distribution of gallium nitride/graphene/silicon carbide heterostructures along the heat flow direction.

    图 3  单层石墨烯和多层石墨烯下界面热导与温度变化的关系

    Fig. 3.  Relationship between interfacial thermal conductance and temperature change under single-layer graphene and multi-layer graphene.

    图 4  温度变化下石墨烯为单层时异质界面结构中各组分的PDOS图 (a)氮化镓; (b)石墨烯; (c)碳化硅

    Fig. 4.  PDOS plot of each component in heterogeneous interface structure when graphene is a single layer under temperature change: (a) GaN; (b) Graphene; (c) SiC

    图 5  界面热导与氮化镓/碳化硅和石墨烯层数变化的关系

    Fig. 5.  Relationship between interfacial thermal conductance and change in number of layers of gallium nitride/silicon carbide and graphene.

    图 6  氮化镓/碳化硅层数变化的PDOS图 (a)氮化镓; (b)石墨烯; (c)碳化硅

    Fig. 6.  PDOS plot of GaN/SiC layer number change: (a) GaN; (b) Graphene; (c) SiC

    图 7  (a)石墨烯层数变化的PDOS图; (b) 石墨烯层数变化的PPR图

    Fig. 7.  (a) PDOS plot of graphene layer number change; (b) PPR plot of graphene layer number change.

    图 8  界面热导与空位缺陷浓度变化的关系

    Fig. 8.  Relationship between interface thermal conductance and vacancy defect concentration change.

    图 9  (a) SV缺陷和(b) DV缺陷浓度变化的PDOS图; (c) SV缺陷和(d) DV缺陷浓度变化的PPR图

    Fig. 9.  PDOS plot of (a) SV defect and (b) DV defect with change in vacancy defect concentration; PPR plot of (c) SV defect and (d) DV defect with change in vacancy defect concentration.

    表 1  LJ势函数参数

    Table 1.  Lennard-Jones parameter.

    参数$\varepsilon /{\text{eV}}$σ
    C-C0.004553.851
    Si-C0.008914.073
    Ga-C0.009054.117
    N-C0.006173.757
    Si-Ga0.017714.339
    Si-N0.012073.979
    下载: 导出CSV
  • [1]

    Lee J Y, Shin J H, Lee G H, Lee C H 2016 Nanomaterials (Basel) 6 193Google Scholar

    [2]

    Liu Y, Fang Y, Yang D, Pi X, Wang P 2022 J. Phys. Condens. Matter. 34 183001Google Scholar

    [3]

    Xu H, Akbari M K, Zhuiykov S 2021 Nanoscale Res. Lett. 16 94Google Scholar

    [4]

    Islam M S, Mia I, Ahammed S, Stampfl C, Park J 2020 Sci. Rep. 10 22050Google Scholar

    [5]

    Zanane F Z, Sadki K, Drissi L B, Saidi E H 2022 J. Mol. Model. 28 88Google Scholar

    [6]

    Wu D, Ding H, Fan Z Q, Jia P Z, Xie H Q, Chen X K 2022 Appl. Surf. 581 152344Google Scholar

    [7]

    Li M, Zheng B, Duan K, Zhang Y, Huang Z, Zhou H 2018 J. Phys. Chem. C 122 14945Google Scholar

    [8]

    Littlejohn A J, Xiang Y, Rauch E, Lu T M, Wang G C 2017 J. Appl. Phys. 122 185305Google Scholar

    [9]

    Utama M I B, de la Mata M, Magen C, Arbiol J, Xiong Q 2013 Adv. Funct. Mater. 23 1636Google Scholar

    [10]

    Balandin A A 2011 Nat. Mater. 10 569Google Scholar

    [11]

    Yan Z, Liu G, Khan J M, Balandin A A 2012 Nat. Commun. 3 827Google Scholar

    [12]

    Kim Y, Cruz S S, Lee K, Alawode B O, Choi C, Song Y, Johnson J M, Heidelberger C, Kong W, Choi S, Qiao K, Almansouri I, Fitzgerald E A, Kong J, Kolpak A M, Hwang J, Kim J 2017 Nature 544 340Google Scholar

    [13]

    Zollner C J, Almogbel A, Yao Y, SaifAddin B K, Wu F, Iza M, DenBaars S P, Speck J S, Nakamura S 2019 Appl. Phys. Lett. 115 161101Google Scholar

    [14]

    Xu Y, Wang J, Cao B, Xu K 2022 Chin. Phys. B 31 117702Google Scholar

    [15]

    Al Balushi Z Y, Miyagi T, Lin Y C, Wang K, Calderin L, Bhimanapati G, Redwing J M, Robinson J A 2015 Surf. Sci. 634 81Google Scholar

    [16]

    Feldberg N, Klymov O, Garro N, Cros A, Mollard N, Okuno H, Gruart M, Daudin B 2019 Nanotechnology 30 375602Google Scholar

    [17]

    Fernandez-Garrido S, Ramsteiner M, Gao G, Galves L A, Sharma B, Corfdir P, Calabrese G, de Souza Schiaber Z, Pfuller C, Trampert A, Lopes J M J, Brandt O, Geelhaar L 2017 Nano Lett. 17 5213Google Scholar

    [18]

    Puybaret R, Patriarche G, Jordan M B, Sundaram S, El Gmili Y, Salvestrini J P, Voss P L, de Heer W A, Berger C, Ougazzaden A 2016 Appl. Phys. Lett. 108 103105Google Scholar

    [19]

    Xu Y, Cao B, Li Z, Zheng S, Cai D, Wang M, Zhang Y, Wang J, Wang C, Xu K 2019 Cryst. Eng. Comm. 21 6109Google Scholar

    [20]

    Hu M, Poulikakos D 2013 Int. J. Heat Mass Transfer 62 205Google Scholar

    [21]

    Yang B, Yang H, Li T, Yang J, Yang P 2021 Appl. Surf. Sci. 536 147828Google Scholar

    [22]

    刘东静, 王韶铭, 杨平 2021 物理学报 70 187302Google Scholar

    Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302Google Scholar

    [23]

    Xiong Y, Wu H, Gao J, Chen W, Zhang J, Yue Y 2019 Acta Phys. Chim. Sin. 35 1150Google Scholar

    [24]

    Yang Y, Ma J, Yang J, Zhang Y 2022 ACS Appl. Mater. Interfaces 14 45742Google Scholar

    [25]

    Teshome T, Datta A 2017 ACS Appl. Mater. Interfaces 9 34213Google Scholar

    [26]

    Liu Z, Su Z, Li Q, Sun L, Zhang X, Yang Z, Liu X, Li Y, Yu F, Zhao X 2019 RSC Adv. 9 32226Google Scholar

    [27]

    Stillinger F H, Weber T A 1985 Phys. Rev. B 31 5262Google Scholar

    [28]

    Liu D J 2020 Phys. Lett. A. 384 126077Google Scholar

    [29]

    Li M, Zhang J C, Hu X J, Yue Y N 2015 Appl. Phys. A. 119 415Google Scholar

    [30]

    Farago O 2019 Physica A 534 122210Google Scholar

    [31]

    叶振强, 曹炳阳, 过增元 2014 物理学报 63 154704Google Scholar

    Ye Z Q, Cao B Y, Guo Z Y 2014 Acta Phys. Sin. 63 154704Google Scholar

    [32]

    Han D, Wang X, Ding W, Chen Y, Zhang J, Xin G, Cheng L 2019 Nanotechnology 30 075403Google Scholar

    [33]

    Guo Y, Bescond M, Zhang Z, Xiong S, Hirakawa K, Nomura M, Volz S 2021 APL Materials 9 091104Google Scholar

    [34]

    Schulz J 2003 J. Reprod. Infant. Psyc. 21 363Google Scholar

  • [1] 刘东静, 周福, 胡志亮, 黄家强. 石墨烯/GaN异质结构界面热输运性质的分子动力学研究. 物理学报, 2024, 73(13): 137901. doi: 10.7498/aps.73.20240021
    [2] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛. 基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究. 物理学报, 2024, 73(15): 150202. doi: 10.7498/aps.73.20240515
    [3] 陈琼, 薛春霞, 王勋. 基于温度效应的无限长压电圆杆纵波分析. 物理学报, 2021, 70(3): 035201. doi: 10.7498/aps.70.20200774
    [4] 刘东静, 王韶铭, 杨平. 石墨烯/碳化硅异质界面热学特性的分子动力学模拟. 物理学报, 2021, 70(18): 187302. doi: 10.7498/aps.70.20210613
    [5] 邰建鹏, 郭伟玲, 李梦梅, 邓杰, 陈佳昕. GaN基微缩化发光二极管尺寸效应和阵列显示. 物理学报, 2020, 69(17): 177301. doi: 10.7498/aps.69.20200305
    [6] 张龙艳, 徐进良, 雷俊鹏. 尺寸效应对微通道内固液界面温度边界的影响. 物理学报, 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [7] 金鑫, 杨春明, 滑文强, 李怡雯, 王劼. PS3000-b-PAA5000球形胶束温度效应的原位小角X射线散射技术研究. 物理学报, 2018, 67(4): 048301. doi: 10.7498/aps.67.20172167
    [8] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [9] 胡雪兰, 罗阳, 赵若汐, 胡艳敏, 张艳峰, 宋庆功. NiAl中Ni空位对杂质C原子的多重俘获及温度效应的第一性原理研究. 物理学报, 2016, 65(20): 206101. doi: 10.7498/aps.65.206101
    [10] 阳喜元, 全军. 金属纳米线弹性性能的尺寸效应及其内在机理的模拟研究. 物理学报, 2015, 64(11): 116201. doi: 10.7498/aps.64.116201
    [11] 谷卓, 班士良. 纤锌矿结构ZnO/MgxZn1-xO量子阱中带间光吸收的尺寸效应和三元混晶效应. 物理学报, 2014, 63(10): 107301. doi: 10.7498/aps.63.107301
    [12] 任丹, 杜平安, 聂宝林, 曹钟, 刘文奎. 一种考虑小孔尺寸效应的孔阵等效建模方法. 物理学报, 2014, 63(12): 120701. doi: 10.7498/aps.63.120701
    [13] 羊梦诗, 李鑫, 叶志鹏, 陈亮, 徐灿, 储修祥. 丝素氨基酸寡肽链生长过程中的尺寸效应. 物理学报, 2013, 62(23): 236101. doi: 10.7498/aps.62.236101
    [14] 张祺, 厚美瑛. 直剪颗粒体系的尺寸效应研究. 物理学报, 2012, 61(24): 244504. doi: 10.7498/aps.61.244504
    [15] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响. 物理学报, 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [16] 周志东, 张春祖, 张颖. 外延铁电薄膜相变温度的尺寸效应. 物理学报, 2010, 59(9): 6620-6625. doi: 10.7498/aps.59.6620
    [17] 吴亚敏, 陈国庆. 带壳颗粒复合介质光学双稳的温度效应. 物理学报, 2009, 58(3): 2056-2060. doi: 10.7498/aps.58.2056
    [18] 陈英杰, 肖景林. 抛物线性限制势二能级系统量子点量子比特的温度效应. 物理学报, 2008, 57(11): 6758-6762. doi: 10.7498/aps.57.6758
    [19] 艾树涛, 蔡元贞. 与相变潜热有关的铁电-顺电相界动力学及其尺寸效应. 物理学报, 2006, 55(7): 3721-3724. doi: 10.7498/aps.55.3721
    [20] 王松有, 巨晓华, 李合印, 许旭东, 周鹏, 张荣君, 杨月梅, 周仕明, 陈良尧. Fe-Ag颗粒膜的光学与磁光尺寸效应. 物理学报, 2001, 50(11): 2252-2257. doi: 10.7498/aps.50.2252
计量
  • 文章访问数:  3530
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-06
  • 修回日期:  2023-05-09
  • 上网日期:  2023-06-02
  • 刊出日期:  2023-08-05

/

返回文章
返回