搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丝素氨基酸寡肽链生长过程中的尺寸效应

羊梦诗 李鑫 叶志鹏 陈亮 徐灿 储修祥

引用本文:
Citation:

丝素氨基酸寡肽链生长过程中的尺寸效应

羊梦诗, 李鑫, 叶志鹏, 陈亮, 徐灿, 储修祥

Size effect of silk fibroin peptide chains in the growth process

Yang Meng-Shi, Li Xin, Ye Zhi-Peng, Chen Liang, Xu Can, Chu Xiu-Xiang
PDF
导出引用
  • 运用密度泛函理论,对甘氨酸丙氨酸依次交替组成的13 条丝素寡肽链进行结构优化,并计算了平均结合能、偶极矩,绘出寡肽链的振动红外光谱. 计算结果发现,随着寡肽链的生长,平均结合能单调变化,典型官能团的红外特征峰均发生频移. 但官能团的伸缩振动和弯曲振动表现出相反的红移和蓝移趋势. 揭示出丝素氨基肽链的物理化学性质在生长过程存在尺寸效应及各向异性. 该现象源于同类官能团之间的耦合效应,以及分子内氢键作用对伸缩振动和弯曲振动具有不同的影响.
    A theoretical study on 13 oligopeptides of glycine and alanine by density function theory (DFT) is given in this paper. Geometric structures, vibration frequency, average binding energies, dipole moment are studied, and IR spectra of the oligopeptides are examined. Results show that with increasing number of residues the average binding energies tend to a regular pattern, IR frequencies of typical functional groups start to shift, but stretching and bending vibrations of the groups show the opposite trend of red shift and blue shift. It is revealed that the physical and chemical properties of the silk fibroin peptide chain show size effect and anisotropic in the growth process. This phenomenon may come from the coupling effect of the similar groups, and the different effects of intramolecular hydrogen bond on the stretching and bending vibration.
    • 基金项目: 国家杰出青年科学基金(批准号:50925103)和浙江农林大学理学院大学生创新训练基地项目资助的课题.
    • Funds: Supported by the National Science Fund for Distinguished Young Scholars (Grant No. 50925103), and the Students Innovation Training Base of Science College, Zhejiang AF University.
    [1]

    Liu H T, Xu W L, Zhao S P, Yang H J, Huang J J, Wang Y L, Ouyang C X 2010 J. Appl. Polym. Sci. 117 235

    [2]

    Zhou W, Chen X, Shao Z Z 2006 Prog. Chem. 18 1514 (in Chinese) [周文, 陈新, 邵正中 2006 化学进展 18 1514]

    [3]

    Chen G L, Zheng X, L"u G H, Zhang Z X, Massey S, Smith W, Tatoulian M, Yang S Z 2012 Chin. Phys. B 21 105201

    [4]

    Liu H T, Xu W L, Huang J J, Zuo D Y, Ke G Z 2009 Polym. Bull. 6 48 (in Chinese) [刘洪涛, 徐卫林, 黄菁菁, 左丹英, 柯贵珍 2009 高分子通报 6 48]

    [5]

    Smeenk J M, Ayres L, Stunnenberg H G, Hest J C M 2005 Macrom. Symp 225 1

    [6]

    Jin H J, Park J, Valluzzi R, Cebe P, Kaplan D L 2004 Biomacromolecules 5 711

    [7]

    Hu A, Zuo B, Zhang F, Zhang H, Lan Q 2013 Oto Neurotol. 34 311

    [8]

    Yu W B, Liang L, Lin Z J, Ling S L, Haranczyk M, Gutowski M 2009 J. Comput. Chem. 30 589

    [9]

    Yu W B, Wu Z Q, Chen H B, Liu X, MacKerell A D, Jr, Lin Z J 2012 J. Phys. Chem. B 116 2269

    [10]

    Yu W B, Xu X, Li H B, Pang R, Fang K, Lin Z J 2009 J. Comput. Chem. 30 2105

    [11]

    Chen Y, Wang J, Wang W 2007 Chin. Phys. 16 868

    [12]

    Zhu P, Xu Z Y, Tang X Q 2009 Chin. Phys. B 18 363

    [13]

    Li W F, Qin M, Tie Z X, Wang W 2011 Phys. Rev. E 84 041933

    [14]

    Xu C, Cao J, Zhu L F, Gao C Y 2006 Acta Phys. Chim. Sin. 22 445 (in Chinese) [徐灿, 曹娟, 朱莉芳, 高晨阳 2006 物理化学学报 22 445]

    [15]

    Xu C, Zhang X F, Chen L, Zhu L F, Zhang R J 2007 Acta Phys. Chim. Sin. 23 1733 (in Chinese) [徐灿, 张小芳, 陈亮, 张荣君 2007 物理化学学报 23 1733]

    [16]

    Zhou G R, Teng X Y, Wang Y, Geng H R, Hur B Y 2012 Acta Phys. Sin. 61 066101 (in Chinese) [周国荣, 滕新营, 王艳, 耿浩然, 徐甫宁 2012 物理学报 61 066101]

    [17]

    Wei J, Chen Y J, Xu Z 2012 Acta Phys. Sin. 61 057502 (in Chinese) [魏杰, 陈彦均, 徐卓 2012 物理学报 61 057502]

    [18]

    Li C, Hou Q Y, Zhang Z D, Zhang B 2012 Acta Phys. Sin. 61 077102 (in Chinese) [李聪, 侯清玉, 张振铎, 张冰 2012 物理学报 61 077102]

    [19]

    Hou G H, Wang H Y, Liu T, Yuan Z, Fang J, Li D H, Qiu Q, Guo S D 2005 Chem. J. Chinese U 26 1277 (in Chinese) [侯光辉, 王慧彦, 刘涛, 袁直, 房杰, 李冬华, 邱奇, 郭世铎 2005 高等学校化学学报 26 1277]

    [20]

    Li Y, Zhang H J, Liao M X, Liu T 2011 Chem. J. Chinese U 32 1100 (in Chinese) [李晔, 张恒建, 廖明霞, 刘涛 2011 高等学校化学学报 32 1100 ]

    [21]

    Stewart J J P 1989 J. Comput. Chem. 10 209

    [22]

    Becke A D 1988 Phys. Rev. A 38 3098

    [23]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [24]

    Frisch M J, Trucks G W, Schlegel H B 2010 Gaussian 09, Revision C. 01, Wallingford CT: Gaussian, Inc.

    [25]

    Puente E de la, Aguado A, Ayucla A, Lopez J M 1997 Phys Rev B 56 7607

    [26]

    Roberts C, Johnston R L 2001 Phys. Chem. Phys. 3 5024

    [27]

    Santosh K, Amareshwar K R, Singh V B, Rai S B 2005 Spectrochim. Acta A 61 2741

    [28]

    Malgorzata B, Julien B, Ivan C, Pawel P, Vincenzo B 2012 J. Mol. Struct. 1009 74

    [29]

    Wolpert M, Hellwig P 2006 Spectrochim. Acta A 64 987

    [30]

    Barth A 2000 Prog. Biophy. Mol. Bio. 74 141

    [31]

    Balaj O P, Kapota C, Lemaire J, Ohanessian G 2008 Int. J Mass. Spectrom. 269 196

    [32]

    Barth A 2007 Biochim. Biophys. Acta 1767 1073

    [33]

    Rosado M T, Duarte M L T S, Fausto R 1998 Vib. Spectrosc 16 35

    [34]

    Zhou R M, Shen Y J 1997 J. East China Univ. Sci. Technol. 23 422 (in Chinese) [周瑞明, 沈永嘉 1997 华东理工大学学报 23 422]

    [35]

    Cao J, Xu C, Zhu L F, Wang X M 2007 Spectrosc. Spect. Anal. 27 1715 (in Chinese) [曹娟, 徐灿, 朱莉芳, 王喜民 2007 光谱学与光谱分析 27 1715]

    [36]

    Wang C S, Qi X J, Ma Y G, Yang Z Z 2004 Chem. J. Chinese U 25 1111 (in Chinese) [王长生, 齐学洁, 马英格, 杨忠志 2004 高等学校化学学报 25 1111]

    [37]

    Zhang Y, Wang C S 2007 J. At. Mol. Phys. 24 1166 (in Chinese) [张艳, 王长生 2007 原子与分子物理学报 24 1166]

    [38]

    Yang Y, Zhang W J, Pei S X, Shao J, Huang W, Gao X M 2006 Sci. China Ser. B. 36 218 (in Chinese) [杨颙, 张为俊, 裴世鑫, 邵杰, 黄伟, 高晓明 2006 中国科学 B 辑-化学 36 218]

    [39]

    Yu W B, Lin Z J, Huang Z J 2006 Chem. Phys. Chem. 7 828

    [40]

    Clark S A C, Bawagan A O, Brion C E 1989 Chem. Phys. 137 407

    [41]

    Linder R, Seefeld K, Vavra A, Kleinermanns K 2008 Chem Phys. Lett. 453

  • [1]

    Liu H T, Xu W L, Zhao S P, Yang H J, Huang J J, Wang Y L, Ouyang C X 2010 J. Appl. Polym. Sci. 117 235

    [2]

    Zhou W, Chen X, Shao Z Z 2006 Prog. Chem. 18 1514 (in Chinese) [周文, 陈新, 邵正中 2006 化学进展 18 1514]

    [3]

    Chen G L, Zheng X, L"u G H, Zhang Z X, Massey S, Smith W, Tatoulian M, Yang S Z 2012 Chin. Phys. B 21 105201

    [4]

    Liu H T, Xu W L, Huang J J, Zuo D Y, Ke G Z 2009 Polym. Bull. 6 48 (in Chinese) [刘洪涛, 徐卫林, 黄菁菁, 左丹英, 柯贵珍 2009 高分子通报 6 48]

    [5]

    Smeenk J M, Ayres L, Stunnenberg H G, Hest J C M 2005 Macrom. Symp 225 1

    [6]

    Jin H J, Park J, Valluzzi R, Cebe P, Kaplan D L 2004 Biomacromolecules 5 711

    [7]

    Hu A, Zuo B, Zhang F, Zhang H, Lan Q 2013 Oto Neurotol. 34 311

    [8]

    Yu W B, Liang L, Lin Z J, Ling S L, Haranczyk M, Gutowski M 2009 J. Comput. Chem. 30 589

    [9]

    Yu W B, Wu Z Q, Chen H B, Liu X, MacKerell A D, Jr, Lin Z J 2012 J. Phys. Chem. B 116 2269

    [10]

    Yu W B, Xu X, Li H B, Pang R, Fang K, Lin Z J 2009 J. Comput. Chem. 30 2105

    [11]

    Chen Y, Wang J, Wang W 2007 Chin. Phys. 16 868

    [12]

    Zhu P, Xu Z Y, Tang X Q 2009 Chin. Phys. B 18 363

    [13]

    Li W F, Qin M, Tie Z X, Wang W 2011 Phys. Rev. E 84 041933

    [14]

    Xu C, Cao J, Zhu L F, Gao C Y 2006 Acta Phys. Chim. Sin. 22 445 (in Chinese) [徐灿, 曹娟, 朱莉芳, 高晨阳 2006 物理化学学报 22 445]

    [15]

    Xu C, Zhang X F, Chen L, Zhu L F, Zhang R J 2007 Acta Phys. Chim. Sin. 23 1733 (in Chinese) [徐灿, 张小芳, 陈亮, 张荣君 2007 物理化学学报 23 1733]

    [16]

    Zhou G R, Teng X Y, Wang Y, Geng H R, Hur B Y 2012 Acta Phys. Sin. 61 066101 (in Chinese) [周国荣, 滕新营, 王艳, 耿浩然, 徐甫宁 2012 物理学报 61 066101]

    [17]

    Wei J, Chen Y J, Xu Z 2012 Acta Phys. Sin. 61 057502 (in Chinese) [魏杰, 陈彦均, 徐卓 2012 物理学报 61 057502]

    [18]

    Li C, Hou Q Y, Zhang Z D, Zhang B 2012 Acta Phys. Sin. 61 077102 (in Chinese) [李聪, 侯清玉, 张振铎, 张冰 2012 物理学报 61 077102]

    [19]

    Hou G H, Wang H Y, Liu T, Yuan Z, Fang J, Li D H, Qiu Q, Guo S D 2005 Chem. J. Chinese U 26 1277 (in Chinese) [侯光辉, 王慧彦, 刘涛, 袁直, 房杰, 李冬华, 邱奇, 郭世铎 2005 高等学校化学学报 26 1277]

    [20]

    Li Y, Zhang H J, Liao M X, Liu T 2011 Chem. J. Chinese U 32 1100 (in Chinese) [李晔, 张恒建, 廖明霞, 刘涛 2011 高等学校化学学报 32 1100 ]

    [21]

    Stewart J J P 1989 J. Comput. Chem. 10 209

    [22]

    Becke A D 1988 Phys. Rev. A 38 3098

    [23]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [24]

    Frisch M J, Trucks G W, Schlegel H B 2010 Gaussian 09, Revision C. 01, Wallingford CT: Gaussian, Inc.

    [25]

    Puente E de la, Aguado A, Ayucla A, Lopez J M 1997 Phys Rev B 56 7607

    [26]

    Roberts C, Johnston R L 2001 Phys. Chem. Phys. 3 5024

    [27]

    Santosh K, Amareshwar K R, Singh V B, Rai S B 2005 Spectrochim. Acta A 61 2741

    [28]

    Malgorzata B, Julien B, Ivan C, Pawel P, Vincenzo B 2012 J. Mol. Struct. 1009 74

    [29]

    Wolpert M, Hellwig P 2006 Spectrochim. Acta A 64 987

    [30]

    Barth A 2000 Prog. Biophy. Mol. Bio. 74 141

    [31]

    Balaj O P, Kapota C, Lemaire J, Ohanessian G 2008 Int. J Mass. Spectrom. 269 196

    [32]

    Barth A 2007 Biochim. Biophys. Acta 1767 1073

    [33]

    Rosado M T, Duarte M L T S, Fausto R 1998 Vib. Spectrosc 16 35

    [34]

    Zhou R M, Shen Y J 1997 J. East China Univ. Sci. Technol. 23 422 (in Chinese) [周瑞明, 沈永嘉 1997 华东理工大学学报 23 422]

    [35]

    Cao J, Xu C, Zhu L F, Wang X M 2007 Spectrosc. Spect. Anal. 27 1715 (in Chinese) [曹娟, 徐灿, 朱莉芳, 王喜民 2007 光谱学与光谱分析 27 1715]

    [36]

    Wang C S, Qi X J, Ma Y G, Yang Z Z 2004 Chem. J. Chinese U 25 1111 (in Chinese) [王长生, 齐学洁, 马英格, 杨忠志 2004 高等学校化学学报 25 1111]

    [37]

    Zhang Y, Wang C S 2007 J. At. Mol. Phys. 24 1166 (in Chinese) [张艳, 王长生 2007 原子与分子物理学报 24 1166]

    [38]

    Yang Y, Zhang W J, Pei S X, Shao J, Huang W, Gao X M 2006 Sci. China Ser. B. 36 218 (in Chinese) [杨颙, 张为俊, 裴世鑫, 邵杰, 黄伟, 高晓明 2006 中国科学 B 辑-化学 36 218]

    [39]

    Yu W B, Lin Z J, Huang Z J 2006 Chem. Phys. Chem. 7 828

    [40]

    Clark S A C, Bawagan A O, Brion C E 1989 Chem. Phys. 137 407

    [41]

    Linder R, Seefeld K, Vavra A, Kleinermanns K 2008 Chem Phys. Lett. 453

  • [1] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究. 物理学报, 2022, 71(10): 107201. doi: 10.7498/aps.71.20220011
    [2] 邱梓恒, AhmedYousif Ghazal, 龙金友, 张嵩. 三乙胺分子构象与红外光谱的理论研究. 物理学报, 2022, 71(10): 103601. doi: 10.7498/aps.71.20220123
    [3] 邰建鹏, 郭伟玲, 李梦梅, 邓杰, 陈佳昕. GaN基微缩化发光二极管尺寸效应和阵列显示. 物理学报, 2020, 69(17): 177301. doi: 10.7498/aps.69.20200305
    [4] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [5] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究. 物理学报, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [6] 张龙艳, 徐进良, 雷俊鹏. 尺寸效应对微通道内固液界面温度边界的影响. 物理学报, 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [7] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [8] 王安静, 方勇华, 李大成, 崔方晓, 吴军, 刘家祥, 李扬裕, 赵彦东. 面阵探测下的污染云团红外光谱仿真. 物理学报, 2017, 66(11): 114203. doi: 10.7498/aps.66.114203
    [9] 阳喜元, 全军. 金属纳米线弹性性能的尺寸效应及其内在机理的模拟研究. 物理学报, 2015, 64(11): 116201. doi: 10.7498/aps.64.116201
    [10] 谷卓, 班士良. 纤锌矿结构ZnO/MgxZn1-xO量子阱中带间光吸收的尺寸效应和三元混晶效应. 物理学报, 2014, 63(10): 107301. doi: 10.7498/aps.63.107301
    [11] 任丹, 杜平安, 聂宝林, 曹钟, 刘文奎. 一种考虑小孔尺寸效应的孔阵等效建模方法. 物理学报, 2014, 63(12): 120701. doi: 10.7498/aps.63.120701
    [12] 李鑫, 羊梦诗, 叶志鹏, 陈亮, 徐灿, 储修祥. 甘氨酸色氨酸寡肽链的红外光谱的密度泛函研究. 物理学报, 2013, 62(15): 156103. doi: 10.7498/aps.62.156103
    [13] 张祺, 厚美瑛. 直剪颗粒体系的尺寸效应研究. 物理学报, 2012, 61(24): 244504. doi: 10.7498/aps.61.244504
    [14] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响. 物理学报, 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [15] 刘晓东, 陶万军, 郑旭光, 萩原雅人, 孟冬冬, 张森林, 郭其新. 磁几何阻挫材料羟基氯化钴的中红外光谱特征. 物理学报, 2011, 60(3): 037803. doi: 10.7498/aps.60.037803
    [16] 周志东, 张春祖, 张颖. 外延铁电薄膜相变温度的尺寸效应. 物理学报, 2010, 59(9): 6620-6625. doi: 10.7498/aps.59.6620
    [17] 张然, 何军, 彭增辉, 宣丽. 向列相液晶nCB(4-n-alkyl-4′-cyanobiphenyls, n=5—8)的旋转黏度及其奇偶效应的分子动力学模拟. 物理学报, 2009, 58(8): 5560-5566. doi: 10.7498/aps.58.5560
    [18] 艾树涛, 蔡元贞. 与相变潜热有关的铁电-顺电相界动力学及其尺寸效应. 物理学报, 2006, 55(7): 3721-3724. doi: 10.7498/aps.55.3721
    [19] 孙友梅, 刘 杰, 张崇宏, 王志光, 金运范, 段敬来, 宋 银. 快重离子辐照聚酰亚胺潜径迹的电子能损效应. 物理学报, 2005, 54(11): 5269-5273. doi: 10.7498/aps.54.5269
    [20] 王松有, 巨晓华, 李合印, 许旭东, 周鹏, 张荣君, 杨月梅, 周仕明, 陈良尧. Fe-Ag颗粒膜的光学与磁光尺寸效应. 物理学报, 2001, 50(11): 2252-2257. doi: 10.7498/aps.50.2252
计量
  • 文章访问数:  3888
  • PDF下载量:  515
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-10
  • 修回日期:  2013-08-28
  • 刊出日期:  2013-12-05

丝素氨基酸寡肽链生长过程中的尺寸效应

  • 1. 浙江农林大学工程学院, 临安 311300;
  • 2. 浙江农林大学理学院, 临安 311300;
  • 3. 兰州大学磁学与磁性材料教育部重点实验室, 兰州 730000
    基金项目: 国家杰出青年科学基金(批准号:50925103)和浙江农林大学理学院大学生创新训练基地项目资助的课题.

摘要: 运用密度泛函理论,对甘氨酸丙氨酸依次交替组成的13 条丝素寡肽链进行结构优化,并计算了平均结合能、偶极矩,绘出寡肽链的振动红外光谱. 计算结果发现,随着寡肽链的生长,平均结合能单调变化,典型官能团的红外特征峰均发生频移. 但官能团的伸缩振动和弯曲振动表现出相反的红移和蓝移趋势. 揭示出丝素氨基肽链的物理化学性质在生长过程存在尺寸效应及各向异性. 该现象源于同类官能团之间的耦合效应,以及分子内氢键作用对伸缩振动和弯曲振动具有不同的影响.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回