搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含活性剂液膜去润湿演化的稳定性特征

李春曦 姜凯 叶学民

引用本文:
Citation:

含活性剂液膜去润湿演化的稳定性特征

李春曦, 姜凯, 叶学民

Stability characteristics of thin film dewetting with insoluble surfactant

Li Chun-Xi, Jiang Kai, Ye Xue-Min
PDF
导出引用
  • 针对含非溶性活性剂的液膜在固体基底上的去润湿过程,基于润滑理论建立了基态和扰动态下液膜厚度和表面活性剂浓度的演化模型,应用非模态理论分析了演化过程的稳定性特征,探讨了分子间力对液膜去润湿过程的影响. 研究表明,微扰动波的引入(k=1)有利于液膜去润湿过程的稳定进行,扰动能量逐渐衰减,然而,该效果随着扰动波数的增加而显著改变,k ≥ 2时,液膜演化的稳定性反而恶化,扰动能量被逐步放大,演化呈现出非稳定特征. 增大初始液膜厚度可以有效改善液膜流动的稳定性. 范德华力放大了液膜表面的微扰动,使得液膜演化的稳定性下降;相反,Born斥力和静电斥力具有增强去润湿稳定性的作用.
    Considering the process of insoluble-surfactant-laden film dewetting on a solid substrate, we have established the base state and disturbance evolution equations for the film thickness and interfacial surfactant concentrations based on the lubrication approximation. Transient growth analysis (TGA) was carried out to investigate the stability characteristics of evolution process, and the effects of intermolecular forces were discussed. Results indicate that the introduction of disturbance wave for k=1 is conducive to enhance the stability of film evolution, and the disturbance energy gradually decays; however, the effect changes unexpectedly with the increment of wave number: when k ≥ 2, the stability of dewetting process is deteriorated while disturbance energy grows by degrees and the film flow shows unstable characteristics. Thickening the initial film thickness can effectively improve the stability of film dewetting. Van der Waals force enlarges the disturbance on the film surface and leads to the decline of stability. Conversely, Born force and electrostatic force are propitious for the film evolving stably.
    • 基金项目: 国家自然科学基金(批准号:10972077,11202079)和中央高校基本科研业务费(批准号:13MS97)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10972077, 11202079), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 13MS97).
    [1]

    Brown M S, Brasz C F, Ventikos Y, Arnold C B 2012 J. Fluid Mech. 709 341

    [2]

    Yuan Q Z, Zhao Y P 2010 Phys. Rev. Lett. 104 1

    [3]

    Eom C B, Trolier-McKinstry S 2012 MRS Bulletin 37 1007

    [4]

    Zhou Y J, Guo J G, Zhao Y P 2009 Chin. Phys. Lett. 26 222

    [5]

    Lin J, Zheng Z J, Yu J L, Bai Y L 2009 Chin. Phys. Lett. 26 086802

    [6]

    Yan C J 2010 MS Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [阎长江 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [7]

    Ye X M, Shen L, Li C X 2012 CIESC J. 63 2507 (in Chinese) [叶学民, 沈雷, 李春曦 2012 化工学报 63 2507]

    [8]

    Ye X M, Shen L, Li C X 2013 J. Comput Phys 30 361 (in Chinese) [叶学民, 沈雷, 李春曦 2013 计算物理 30 361]

    [9]

    Craster R V, Matar O K 2009 Rev. Mod. Phys. 81 1131

    [10]

    Warner M R E, Craster R V, Matar O K 2002 Phys. Fluids 14 1642

    [11]

    Wu K, Huang Q H, Zhang H J, Liao Q, He P M 2012 Chin. Phys. B 21 037202

    [12]

    Xie M H, Guo X, Xu Z J, He Y J 2013 Chin. Phys. B 22 068101

    [13]

    Mahmood T, Amirtharajah A, Sturm T W, Dennett K E 2001 Colloid Surface A. 177 99

    [14]

    Ghatak A Khanna R Sharma A 1999 J. Colloid Interf. Sci. 212 483

    [15]

    Warner M R E, Craster R V, Matar O K 2002 Phys. Fluids 14 4040

    [16]

    Bhakta A, Ruchkenstein E 1997 Adv. Colloid Interface Sci. 70 1

    [17]

    Ye X M, Shen L, Li C X 2013 Journal of Xi’an Jiao Tong University 47 96 (in Chinese) [叶学民, 沈雷, 李春曦 2013 西安交通大学学报 47 96]

    [18]

    Becker J, Grn G, Seemann R, Mantz H, Jacobs K, Mecke KR, Blossey R 2003 Nat. Mater. 2 59

    [19]

    King J R, Mnch A, Wagner B A 2009 J. Eng. Math. 63 177

    [20]

    Shklyaev S, Alabuzhev A A, Khenner M 2009 Phys. Rev. E 79 1

    [21]

    Hu G H 2005 Phys. Fluids 17 1

    [22]

    Wei Q, E W J 2012 Acta Phys. Sin. 61 103 (in Chinese) [魏琪, 鄂文汲 2012 物理学报 61 103]

    [23]

    Fischer B J, Troian S M 2003 Phys. Rev. E 67 1

    [24]

    Nouar C, Kabouya N, Duesk J, Mamou M 2007 J. Fluid Mech. 577 211

    [25]

    Wang S L, Li C X, Ye X M 2011 CIESC J. 62 2512 (in Chinese) [王松岭, 李春曦, 叶学民 2011 化工学报 62 2512]

    [26]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595]

    [27]

    Peng J, Zhu K Q 2010 Chin. Phys. Lett. 27 044703

    [28]

    Zhao Y P 2012 Physical Mechanics of Surfaces and Interfaces (Beijing: Science Press pp185–186m) (in Chinese) [赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第185–186页]

    [29]

    Warner M R E, Craster R V, Matar O K 2004 J. Fluid Mech. 510 169

    [30]

    Warner M R E, Craster R V 2004 Phys. Fluids 16 2933

    [31]

    Akyurtlu A, Akyurtlu J F, Denison K S Jr Hamrin C E 1986 Comput. Chem. Eng. 10 213

    [32]

    Li C X, Pei J J, Ye X M 2013 Acta Phys. Sin. 62 214704 (in Chinese) [李春曦, 裴建军, 叶学民 2013 物理学报 62 214704]

  • [1]

    Brown M S, Brasz C F, Ventikos Y, Arnold C B 2012 J. Fluid Mech. 709 341

    [2]

    Yuan Q Z, Zhao Y P 2010 Phys. Rev. Lett. 104 1

    [3]

    Eom C B, Trolier-McKinstry S 2012 MRS Bulletin 37 1007

    [4]

    Zhou Y J, Guo J G, Zhao Y P 2009 Chin. Phys. Lett. 26 222

    [5]

    Lin J, Zheng Z J, Yu J L, Bai Y L 2009 Chin. Phys. Lett. 26 086802

    [6]

    Yan C J 2010 MS Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [阎长江 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [7]

    Ye X M, Shen L, Li C X 2012 CIESC J. 63 2507 (in Chinese) [叶学民, 沈雷, 李春曦 2012 化工学报 63 2507]

    [8]

    Ye X M, Shen L, Li C X 2013 J. Comput Phys 30 361 (in Chinese) [叶学民, 沈雷, 李春曦 2013 计算物理 30 361]

    [9]

    Craster R V, Matar O K 2009 Rev. Mod. Phys. 81 1131

    [10]

    Warner M R E, Craster R V, Matar O K 2002 Phys. Fluids 14 1642

    [11]

    Wu K, Huang Q H, Zhang H J, Liao Q, He P M 2012 Chin. Phys. B 21 037202

    [12]

    Xie M H, Guo X, Xu Z J, He Y J 2013 Chin. Phys. B 22 068101

    [13]

    Mahmood T, Amirtharajah A, Sturm T W, Dennett K E 2001 Colloid Surface A. 177 99

    [14]

    Ghatak A Khanna R Sharma A 1999 J. Colloid Interf. Sci. 212 483

    [15]

    Warner M R E, Craster R V, Matar O K 2002 Phys. Fluids 14 4040

    [16]

    Bhakta A, Ruchkenstein E 1997 Adv. Colloid Interface Sci. 70 1

    [17]

    Ye X M, Shen L, Li C X 2013 Journal of Xi’an Jiao Tong University 47 96 (in Chinese) [叶学民, 沈雷, 李春曦 2013 西安交通大学学报 47 96]

    [18]

    Becker J, Grn G, Seemann R, Mantz H, Jacobs K, Mecke KR, Blossey R 2003 Nat. Mater. 2 59

    [19]

    King J R, Mnch A, Wagner B A 2009 J. Eng. Math. 63 177

    [20]

    Shklyaev S, Alabuzhev A A, Khenner M 2009 Phys. Rev. E 79 1

    [21]

    Hu G H 2005 Phys. Fluids 17 1

    [22]

    Wei Q, E W J 2012 Acta Phys. Sin. 61 103 (in Chinese) [魏琪, 鄂文汲 2012 物理学报 61 103]

    [23]

    Fischer B J, Troian S M 2003 Phys. Rev. E 67 1

    [24]

    Nouar C, Kabouya N, Duesk J, Mamou M 2007 J. Fluid Mech. 577 211

    [25]

    Wang S L, Li C X, Ye X M 2011 CIESC J. 62 2512 (in Chinese) [王松岭, 李春曦, 叶学民 2011 化工学报 62 2512]

    [26]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595]

    [27]

    Peng J, Zhu K Q 2010 Chin. Phys. Lett. 27 044703

    [28]

    Zhao Y P 2012 Physical Mechanics of Surfaces and Interfaces (Beijing: Science Press pp185–186m) (in Chinese) [赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第185–186页]

    [29]

    Warner M R E, Craster R V, Matar O K 2004 J. Fluid Mech. 510 169

    [30]

    Warner M R E, Craster R V 2004 Phys. Fluids 16 2933

    [31]

    Akyurtlu A, Akyurtlu J F, Denison K S Jr Hamrin C E 1986 Comput. Chem. Eng. 10 213

    [32]

    Li C X, Pei J J, Ye X M 2013 Acta Phys. Sin. 62 214704 (in Chinese) [李春曦, 裴建军, 叶学民 2013 物理学报 62 214704]

  • [1] 李春曦, 施智贤, 庄立宇, 叶学民. 活性剂对表面声波作用下薄液膜铺展的影响. 物理学报, 2019, 68(21): 214703. doi: 10.7498/aps.68.20190791
    [2] 叶学民, 李明兰, 张湘珊, 李春曦. 表面弹性和分离压耦合作用下的垂直液膜排液过程. 物理学报, 2018, 67(16): 164701. doi: 10.7498/aps.67.20180349
    [3] 叶学民, 杨少东, 李春曦. 分离压和表面黏度的协同作用对液膜排液过程的影响. 物理学报, 2017, 66(19): 194701. doi: 10.7498/aps.66.194701
    [4] 叶学民, 杨少东, 李春曦. 随活性剂浓度变化的分离压对垂直液膜排液过程的影响. 物理学报, 2017, 66(18): 184702. doi: 10.7498/aps.66.184702
    [5] 许多, 丁建宁, 袁宁一, 张忠强, 程广贵, 郭立强, 凌智勇. 壁面材质和温度场对熔融硅润湿角的影响. 物理学报, 2015, 64(11): 116801. doi: 10.7498/aps.64.116801
    [6] 王超, 刘骋远, 胡元萍, 刘志宏, 马建峰. 社交网络中信息传播的稳定性研究. 物理学报, 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [7] 李秀平, 王善进, 陈琼, 罗诗裕. 参数激励与晶体摆动场辐射的稳定性. 物理学报, 2013, 62(22): 224102. doi: 10.7498/aps.62.224102
    [8] 王参军, 李江城, 梅冬成. 噪声对集合种群稳定性的影响. 物理学报, 2012, 61(12): 120506. doi: 10.7498/aps.61.120506
    [9] 张娟, 周志刚, 石玉仁, 杨红娟, 段文山. 修正KP方程及其孤波解的稳定性. 物理学报, 2012, 61(13): 130401. doi: 10.7498/aps.61.130401
    [10] 罗松江, 丘水生, 骆开庆. 混沌伪随机序列的复杂度的稳定性研究. 物理学报, 2009, 58(9): 6045-6049. doi: 10.7498/aps.58.6045
    [11] 时培明, 蒋金水, 刘彬. 耦合相对转动非线性动力系统的稳定性与近似解. 物理学报, 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [12] 薛纭, 刘延柱. Kirchhoff弹性直杆在力螺旋作用下的稳定性. 物理学报, 2009, 58(10): 6737-6742. doi: 10.7498/aps.58.6737
    [13] 王作雷. 一类简化Lang-Kobayashi方程的Hopf分岔及其稳定性. 物理学报, 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [14] 王晓秋, 王保林. 嵌入La和Gd原子的Si24笼团簇的稳定性. 物理学报, 2008, 57(10): 6259-6264. doi: 10.7498/aps.57.6259
    [15] 欧阳玉, 彭景翠, 王 慧, 易双萍. 碳纳米管的稳定性研究. 物理学报, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [16] 邹继军, 常本康, 杨 智, 高 频, 乔建良, 曾一平. GaAs光电阴极在不同强度光照下的稳定性. 物理学报, 2007, 56(10): 6109-6113. doi: 10.7498/aps.56.6109
    [17] 李 娟, 吴春亚, 赵淑云, 刘建平, 孟志国, 熊绍珍, 张 芳. 微晶硅薄膜晶体管稳定性研究. 物理学报, 2006, 55(12): 6612-6616. doi: 10.7498/aps.55.6612
    [18] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性. 物理学报, 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [19] 张 凯, 冯 俊. 相对论Birkhoff系统的对称性与稳定性. 物理学报, 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
    [20] 欧阳世根, 江德生, 佘卫龙. 复色光伏孤子的稳定性. 物理学报, 2004, 53(9): 3033-3041. doi: 10.7498/aps.53.3033
计量
  • 文章访问数:  2709
  • PDF下载量:  430
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-11
  • 修回日期:  2013-08-02
  • 刊出日期:  2013-12-05

含活性剂液膜去润湿演化的稳定性特征

  • 1. 华北电力大学 电站设备状态监测与控制教育部重点实验室, 保定市 071003
    基金项目: 国家自然科学基金(批准号:10972077,11202079)和中央高校基本科研业务费(批准号:13MS97)资助的课题.

摘要: 针对含非溶性活性剂的液膜在固体基底上的去润湿过程,基于润滑理论建立了基态和扰动态下液膜厚度和表面活性剂浓度的演化模型,应用非模态理论分析了演化过程的稳定性特征,探讨了分子间力对液膜去润湿过程的影响. 研究表明,微扰动波的引入(k=1)有利于液膜去润湿过程的稳定进行,扰动能量逐渐衰减,然而,该效果随着扰动波数的增加而显著改变,k ≥ 2时,液膜演化的稳定性反而恶化,扰动能量被逐步放大,演化呈现出非稳定特征. 增大初始液膜厚度可以有效改善液膜流动的稳定性. 范德华力放大了液膜表面的微扰动,使得液膜演化的稳定性下降;相反,Born斥力和静电斥力具有增强去润湿稳定性的作用.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回