-
本文应用基于密度泛函理论的第一原理方法,研究了NiAl金属间化合物中Ni空位对杂质C元素的多重俘获.研究结果表明:在Ni空位存在时,单个C原子最易于存在于空位中心附近的富Ni八面体间隙位置且与邻近的Ni原子和Al原子之间存在共价键形式的相互作用.多个C原子在NiAl中倾向于以Sequential的方式被Ni空位俘获,进而形成CnVNi(n=1,2,3,4)团簇.通过电荷密度和差分电荷密度分析得到,当Ni空位俘获多个C原子后,C原子之间有着优先于自身成键的特性.进一步,我们应用热力学模型计算了温度对于CnVNi(n=1,2,3,4)团簇浓度及空位浓度的影响.研究表明本征Ni空位的浓度会随着温度的升高而升高.在NiAl金属间化合物中,大多数的杂质C原子会被Ni空位俘获而不是存在于远离Ni空位的八面体间隙位置.由于C原子被Ni空位俘获的过程是一个放热过程,使得体系温度升高,因此会进一步激发更多的Ni空位产生.但是在一定的温度范围内(温度小于700 K时),Ni空位均以CnVNi团簇的形式存在.
-
关键词:
- NiAl金属间化合物 /
- 杂质碳 /
- 多重俘获 /
- 温度效应
By using a first-principles pseudopotential method based on the density functional theory and Vienna ab initio Simulation Package (VASP), we investigate the multiple trapping of C by Ni vacancy (VNi) and its temperature effects in NiAl intermetallics. A single C atom is energetically and favorably situated at the Ni-rich octahedron interstitial site that surrounds Ni vacancy, which is shown via calculating the formation energy of C atom in NiAl with Ni vacancy system. Single C atom prefers to interact with neighboring Ni atom and Al atom to form a covalent bond. In NiAl intermetallics, C atoms prefer to be trapped in the Ni vacancy in the sequential way, thus easily forming the CnVNi (n=1, 2, 3, 4) clusters, in which the C4VNi clusters are most energetically favorable. It is interesting to find that when C atoms are trapped by Ni vacancy, all the C atoms themselves prefer to be combined with each other to form a bond, surrounding Ni vacancy. With the C atoms further added, both the charge density and the deformation charge prefer to bind with each other despite the Ni or Al environment and the intrinsic bonding properties of CC bond contain obvious covalent characteristics. Furthermore, using first-principles calculations combined with statistical model, we quantitatively predict point defect concentration as a function of temperature in NiAl intermetallics. It is concluded that the concentration of intrinsic Ni vacancies (VNi) will obviously increase as temperature increases. With the increase of temperature, the concentration of C atoms in the CnVNi cluster is higher than that at the intrinsic position. Besides, it indicates that most of C atoms in NiAl intermetallics are trapped by Ni vacancy, which is due to the larger binding energy of the CnVNi clusters and most of the C atoms are trapped directly by vacancies at room temperature or high temperature to form CnVNi clusters. Since the formation of CnVNi clusters is a process of heat releasing which will further increase the temperature of the NiAl system and produce more and more Ni vacancies, we can conclude that much more vacancies are created as a result of the presence of C impurity in NiAl intermetallics. However, the Ni vacancies exist in the form of CnVNi clusters from our calculation in a certain temperature range (less than 700 K). The existence of this kind of CnVNi cluster can effectively restrain the generations of cracks in the vacancies, which will produce some influences on the mechanical properties of NiAl intermetallic compound. Consequently, our results will provide a valuable reference for understanding the effects of C and vacancy on the mechanical properties of the NiAl intermetallics.-
Keywords:
- NiAl intermetallic /
- impurity carbon atoms /
- trapping /
- heating effects
[1] Hou S X, Liu D Y, Liu Z D, Ma Y M 2007 Heat Treat. Met. 3260(in Chinese)[侯世香, 刘东雨, 刘宗德, 马一民2007金属热处理32 60]
[2] Sun Y, Liu R Y, Zhang J S, Zhu M L 2003 Mater. Rev. 17 10(in Chinese)[孙岩, 刘瑞岩, 张俊善, 祝美丽2003材料导报17 10]
[3] Li H, Han P, Qi Y H, Tong S W 2006 J. Liaoning University of Technology 26 394(in Chinese)[李慧, 韩萍, 齐义辉, 佟圣旺2006辽宁工学院学报26 394]
[4] Stoloff N S 1996 Microstructure and Properties of Materials 1 53
[5] Djajaputra D, Cooper B R 2001 Phys. Rev. B 64 085121
[6] Djajaputra D, Cooper B R 2002 Phys. Rev. B 66 205108
[7] Hu X L, Ma J, Dou H W, Niu Y F, Zhang Y F, Song Q G 2014 Prog. Nat. Sci.:Mater. Int. 6 637
[8] Li H 2007 M. S. Thesis (Liaoning:Liaoning Institute) (in Chinese)[李慧2007硕士学位论文(辽宁:辽宁工学院)]
[9] Qi Y H, Li H, Han P, Guo J T 2008 Rare Metal Mater. and Eng. 37 887(in Chinese)[齐义辉, 李慧, 韩萍, 郭建亭2008稀有金属材料与工程37 887]
[10] Zhang L Z 2007 M. S. Thesis (Beijing:Chinese Academy (in Chinese)[张兰芝2007硕士学位论文(北京:中国科学院)]
[11] Liu Y L, Dai Z H, Wang W T 2014 Comput. Mater. Sci. 83 1
[12] Liu Y L, Zhou H B, Zhang Y, Duan C 2012 Comput. Mater. Sci. 62 282
[13] Hautojarvi P, Johansson J, Vehanen A 1980 Phys. Rev. Lett. 44 1326
[14] Domains C, Becquart C S, Foct J 2004 Phys. Rev. B 69 144112
[15] Gui L J, Liu Y L, Jin S, Zhang Y, Lu J H, Yao J E 2013 J. Nucl. Mater. 442 S688
[16] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[17] Vanderbilt D R 1990 Phys. Rev. B 41 7892
[18] Monkhorst M J, Pack J D 1976 Phys. Rev. B 13 5188
[19] Jiang D E, Carter E A 2003 Phys. Rev. B 67 214103
[20] Fu C C, Meslin E, Barbu A 2008 Solid State Phenom. 139 157
[21] Forst C J, Slycke J, van Vliet K J 2006 Phys. Rev. Lett. 96 175501
-
[1] Hou S X, Liu D Y, Liu Z D, Ma Y M 2007 Heat Treat. Met. 3260(in Chinese)[侯世香, 刘东雨, 刘宗德, 马一民2007金属热处理32 60]
[2] Sun Y, Liu R Y, Zhang J S, Zhu M L 2003 Mater. Rev. 17 10(in Chinese)[孙岩, 刘瑞岩, 张俊善, 祝美丽2003材料导报17 10]
[3] Li H, Han P, Qi Y H, Tong S W 2006 J. Liaoning University of Technology 26 394(in Chinese)[李慧, 韩萍, 齐义辉, 佟圣旺2006辽宁工学院学报26 394]
[4] Stoloff N S 1996 Microstructure and Properties of Materials 1 53
[5] Djajaputra D, Cooper B R 2001 Phys. Rev. B 64 085121
[6] Djajaputra D, Cooper B R 2002 Phys. Rev. B 66 205108
[7] Hu X L, Ma J, Dou H W, Niu Y F, Zhang Y F, Song Q G 2014 Prog. Nat. Sci.:Mater. Int. 6 637
[8] Li H 2007 M. S. Thesis (Liaoning:Liaoning Institute) (in Chinese)[李慧2007硕士学位论文(辽宁:辽宁工学院)]
[9] Qi Y H, Li H, Han P, Guo J T 2008 Rare Metal Mater. and Eng. 37 887(in Chinese)[齐义辉, 李慧, 韩萍, 郭建亭2008稀有金属材料与工程37 887]
[10] Zhang L Z 2007 M. S. Thesis (Beijing:Chinese Academy (in Chinese)[张兰芝2007硕士学位论文(北京:中国科学院)]
[11] Liu Y L, Dai Z H, Wang W T 2014 Comput. Mater. Sci. 83 1
[12] Liu Y L, Zhou H B, Zhang Y, Duan C 2012 Comput. Mater. Sci. 62 282
[13] Hautojarvi P, Johansson J, Vehanen A 1980 Phys. Rev. Lett. 44 1326
[14] Domains C, Becquart C S, Foct J 2004 Phys. Rev. B 69 144112
[15] Gui L J, Liu Y L, Jin S, Zhang Y, Lu J H, Yao J E 2013 J. Nucl. Mater. 442 S688
[16] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[17] Vanderbilt D R 1990 Phys. Rev. B 41 7892
[18] Monkhorst M J, Pack J D 1976 Phys. Rev. B 13 5188
[19] Jiang D E, Carter E A 2003 Phys. Rev. B 67 214103
[20] Fu C C, Meslin E, Barbu A 2008 Solid State Phenom. 139 157
[21] Forst C J, Slycke J, van Vliet K J 2006 Phys. Rev. Lett. 96 175501
计量
- 文章访问数: 6264
- PDF下载量: 218
- 被引次数: 0