搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多重影响力矩阵的有向加权网络节点重要性评估方法

王雨 郭进利

引用本文:
Citation:

基于多重影响力矩阵的有向加权网络节点重要性评估方法

王雨, 郭进利

Evaluation method of node importance in directed-weighted complex network based on multiple influence matrix

Wang Yu, Guo Jin-Li
PDF
导出引用
  • 本文基于有向加权网络模型,构建了三个影响力矩阵,并利用层次分析法对其赋权求和,形成多重影响力矩阵,从而提出了一种基于该矩阵的节点重要性评价方法.该方法通过新定义的交叉强度指标,来表征节点的局部重要性;利用全网节点对待评估节点的重要性影响总值,来表征节点在全网中的相对重要性.在分析影响节点对待评估节点的影响比例时,既考虑到节点间的距离因素,又引入了最短路径条数因素;既考虑了该影响节点对网络中其他节点的影响关系,又考虑了网络中其他节点对该待评估节点的影响关系,使得评价方法更加全面.将算法运用于ARPA网络,结果表明,该方法能有效地区分各节点之间的差异.最后,对实验结果进行连锁故障的仿真对比实验,进一步验证了方法的有效性.
    In complex networks, the node importance evaluation is of great significance for studying the robustness of network. The existing methods of evaluating the node importance mainly focus on undirected and unweighted networks, which fail to reflect the real scenarios comprehensively and objectively. In this paper, according to the directed and weighted complex network model, by analyzing the local importance of the nodes and the dependencies among all the nodes in the whole network, a new method of evaluating the node importance based on a multiple influence matrix is proposed. Firstly, the method defines the concept of cross strength to characterize the local importance of the nodes. The index not only distinguishes between the in-strength and out-strength of the nodes, but also helps to discriminate the differences in importance among each with an in-degree of 0. In addition, to characterize the global importance of the nodes to be evaluated, we use the total important influence value of all the nodes exerted on the nodes, which makes up the deficiencies of the other evaluation methods which just depend on adjacent nodes. Emphatically, in the analysis of the influence ratio of source node on node to be evaluated, we not only take into account the distance factor between nodes, but also introduce the number of the shortest path factors. In order to make the evaluation algorithm more accurate, according to the number of the shortest paths, we present two perspectives to analyze how other factors affect the influence ratio. One is to evaluate how this source node exerts important influence on the other nodes to be evaluated. The other is to analyze how the other source nodes perform important influence on this node to be evaluated. In view of the above factors, three influence matrices are constructed, including the efficiency matrix, and the other two influence matrices from the perspectives of fixing source nodes and target nodes, respectively. Then, we use analytic hierarchy process to weight the three matrices, thereby obtaining the multiple influence matrix, which makes the global importance evaluation more comprehensive. Finally, the method is applied to typical directed weighted networks. It is found that compared with other methods, our method can effectively distinguish between nodes. Furthermore, we carry out simulation experiments of cascading failure on each method. The simulation results further verify the effectiveness of the proposed method.
      通信作者: 郭进利, phd5816@163.com
    • 基金项目: 国家自然科学基金(批准号:71571119)资助的课题.
      Corresponding author: Guo Jin-Li, phd5816@163.com
    • Funds: Project Supported by the National Natural Science Foundation of China (Grant No. 71571119).
    [1]

    Barabsi A L, Bonabeau E 2003 Sci.Am.28850

    [2]

    LL Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016Phys.Rep. 650 1

    [3]

    Batool K, Niazi M A 2014PLoS One 9 e90283

    [4]

    Zhang Y L, Yang N D, Lall U 2016J.Syst.Sci.Syst.Eng. 25 102

    [5]

    Liu Y H, Jin J Z, Zhang Y, Xu C 2014 J.Supercomput.67723

    [6]

    Han Z M, Wu Y, Tan X S, Duan D G, Yang W J 2015Acta Phys.Sin. 64 058902(in Chinese)[韩忠明, 吴杨, 谭旭升, 段大高, 杨伟杰2015物理学报64 058902]

    [7]

    Li S M, Xu X H 2015Chinese J.Aeronaut. 28 780

    [8]

    Fan W L, Hu P, Liu Z G 2016IET Gener.Transm.Distrib. 10 2027

    [9]

    Liu R R, Jia C X, Zhang J L, Wang B H 2012J.Univ.Shanghai Sci.Technol. 34 235(in Chinese)[刘润然, 贾春晓, 章剑林, 汪秉宏2012上海理工大学学报34 235]

    [10]

    Yu H, Liu Z, Li Y J 2013Acta Phys.Sin. 62 020204(in Chinese)[于会, 刘尊, 李勇军2013物理学报62 020204]

    [11]

    Han Z M, Chen Y, Li M Q, Liu W, Yang W J 2016Acta Phys.Sin. 65 168901(in Chinese)[韩忠明, 陈炎, 李梦琪, 刘雯, 杨伟杰2016物理学报65 168901]

    [12]

    Li J R, Yu L, Zhao J 2014J.UESTC. 43 322(in Chinese)[李静茹, 喻莉, 赵佳2014电子科技大学学报43 322]

    [13]

    Jeong H, Mason S, Barabsi A L 2001Nature 411 41

    [14]

    Freeman L 1977Sociometry 40 35

    [15]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010Nat.Phys. 6 888

    [16]

    LL Y, Zhang Y C, Yeung C H, Zhou T 2011PLoS One 6 e21202

    [17]

    Brin S, Page L 1998Comput.Net.ISDN Syst. 30 107

    [18]

    Xu J, Li J X, Xu S 2012J.Zhejiang Univ.:Sci.C 13 118

    [19]

    Wang B, Ma R N, Wang G, Chen B 2015J.Comput.Appl. 35 1820(in Chinese)[王班, 马润年, 王刚, 陈波2015计算机应用35 1820]

    [20]

    Zhou X, Zhang F M, Li K W, Hui X B, Wu H S 2012Acta Phys.Sin. 61 050201(in Chinese)[周漩, 张凤鸣, 李克武, 惠晓滨, 吴虎胜2012物理学报61 050201]

    [21]

    Hu P, Fan W L, Mei S W 2015Physica A:Stat.Mech.Appl. 429 169

    [22]

    Fan W L, Liu Z G 2014J.Southwest Jiaotong Univ. 49 337(in Chinese)[范文礼, 刘志刚2014西南交通大学学报49 337]

    [23]

    Kudelka M, Zehnalova S, Horak Z, Kromer P, Snasel V 2015Int.J.Appl.Math.Comput.Sci. 25 281

    [24]

    Thomas J B, Brier M R, Ortega M, Benzinger T L, Ances B M 2015Neurobiol.Aging 36 401

    [25]

    Latora V, Marchiori M 2007New J.Phys. 9 188

    [26]

    Shao F, Cheng B 2014Int.J.Comput.Commun.Cont. 9 602

    [27]

    Griffith D A, Chun Y 2015Netw.Spat.Econ. 15 337

    [28]

    Cai Q S, Liu Y, Niu J W, Sun L M 2015Acta Electron.Sinica. 43 1705(in Chinese)[蔡青松, 刘燕, 牛建伟, 孙利民2015电子学报43 1705]

    [29]

    Zhu Y, Meng Z Y, Kan S Y 1999J.Northern Jiaotong Univ. 23 119(in Chinese)[朱茵, 孟志勇, 阚叔愚1999北方交通大学学报23 119]

    [30]

    Sun S L, Lin J Y, Xie L H, Xiao W D 200722nd IEEE International Symposium on Intelligent Control Singapore, October 1-3, 2007 p7

  • [1]

    Barabsi A L, Bonabeau E 2003 Sci.Am.28850

    [2]

    LL Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016Phys.Rep. 650 1

    [3]

    Batool K, Niazi M A 2014PLoS One 9 e90283

    [4]

    Zhang Y L, Yang N D, Lall U 2016J.Syst.Sci.Syst.Eng. 25 102

    [5]

    Liu Y H, Jin J Z, Zhang Y, Xu C 2014 J.Supercomput.67723

    [6]

    Han Z M, Wu Y, Tan X S, Duan D G, Yang W J 2015Acta Phys.Sin. 64 058902(in Chinese)[韩忠明, 吴杨, 谭旭升, 段大高, 杨伟杰2015物理学报64 058902]

    [7]

    Li S M, Xu X H 2015Chinese J.Aeronaut. 28 780

    [8]

    Fan W L, Hu P, Liu Z G 2016IET Gener.Transm.Distrib. 10 2027

    [9]

    Liu R R, Jia C X, Zhang J L, Wang B H 2012J.Univ.Shanghai Sci.Technol. 34 235(in Chinese)[刘润然, 贾春晓, 章剑林, 汪秉宏2012上海理工大学学报34 235]

    [10]

    Yu H, Liu Z, Li Y J 2013Acta Phys.Sin. 62 020204(in Chinese)[于会, 刘尊, 李勇军2013物理学报62 020204]

    [11]

    Han Z M, Chen Y, Li M Q, Liu W, Yang W J 2016Acta Phys.Sin. 65 168901(in Chinese)[韩忠明, 陈炎, 李梦琪, 刘雯, 杨伟杰2016物理学报65 168901]

    [12]

    Li J R, Yu L, Zhao J 2014J.UESTC. 43 322(in Chinese)[李静茹, 喻莉, 赵佳2014电子科技大学学报43 322]

    [13]

    Jeong H, Mason S, Barabsi A L 2001Nature 411 41

    [14]

    Freeman L 1977Sociometry 40 35

    [15]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010Nat.Phys. 6 888

    [16]

    LL Y, Zhang Y C, Yeung C H, Zhou T 2011PLoS One 6 e21202

    [17]

    Brin S, Page L 1998Comput.Net.ISDN Syst. 30 107

    [18]

    Xu J, Li J X, Xu S 2012J.Zhejiang Univ.:Sci.C 13 118

    [19]

    Wang B, Ma R N, Wang G, Chen B 2015J.Comput.Appl. 35 1820(in Chinese)[王班, 马润年, 王刚, 陈波2015计算机应用35 1820]

    [20]

    Zhou X, Zhang F M, Li K W, Hui X B, Wu H S 2012Acta Phys.Sin. 61 050201(in Chinese)[周漩, 张凤鸣, 李克武, 惠晓滨, 吴虎胜2012物理学报61 050201]

    [21]

    Hu P, Fan W L, Mei S W 2015Physica A:Stat.Mech.Appl. 429 169

    [22]

    Fan W L, Liu Z G 2014J.Southwest Jiaotong Univ. 49 337(in Chinese)[范文礼, 刘志刚2014西南交通大学学报49 337]

    [23]

    Kudelka M, Zehnalova S, Horak Z, Kromer P, Snasel V 2015Int.J.Appl.Math.Comput.Sci. 25 281

    [24]

    Thomas J B, Brier M R, Ortega M, Benzinger T L, Ances B M 2015Neurobiol.Aging 36 401

    [25]

    Latora V, Marchiori M 2007New J.Phys. 9 188

    [26]

    Shao F, Cheng B 2014Int.J.Comput.Commun.Cont. 9 602

    [27]

    Griffith D A, Chun Y 2015Netw.Spat.Econ. 15 337

    [28]

    Cai Q S, Liu Y, Niu J W, Sun L M 2015Acta Electron.Sinica. 43 1705(in Chinese)[蔡青松, 刘燕, 牛建伟, 孙利民2015电子学报43 1705]

    [29]

    Zhu Y, Meng Z Y, Kan S Y 1999J.Northern Jiaotong Univ. 23 119(in Chinese)[朱茵, 孟志勇, 阚叔愚1999北方交通大学学报23 119]

    [30]

    Sun S L, Lin J Y, Xie L H, Xiao W D 200722nd IEEE International Symposium on Intelligent Control Singapore, October 1-3, 2007 p7

  • [1] 李江, 刘影, 王伟, 周涛. 识别高阶网络传播中最有影响力的节点. 物理学报, 2024, 73(4): 048901. doi: 10.7498/aps.73.20231416
    [2] 王博雅, 杨小春, 卢升荣, 唐勇平, 洪树权, 蒋惠园. 基于图卷积神经网络的多维度节点重要性评估方法. 物理学报, 2024, 73(22): 226401. doi: 10.7498/aps.73.20240937
    [3] 汪亭亭, 梁宗文, 张若曦. 基于信息熵与迭代因子的复杂网络节点重要性评价方法. 物理学报, 2023, 72(4): 048901. doi: 10.7498/aps.72.20221878
    [4] 阮逸润, 老松杨, 汤俊, 白亮, 郭延明. 基于引力方法的复杂网络节点重要度评估方法. 物理学报, 2022, 71(17): 176401. doi: 10.7498/aps.71.20220565
    [5] 林泓, 夏永祥, 蒋路茸. 基于最短路径长度的空间网络路由. 物理学报, 2022, 71(6): 068901. doi: 10.7498/aps.71.20211621
    [6] 刘慧, 王炳珺, 陆君安, 李增扬. 复杂网络牵制控制优化选点算法及节点组重要性排序. 物理学报, 2021, 70(5): 056401. doi: 10.7498/aps.70.20200872
    [7] 杨松青, 蒋沅, 童天驰, 严玉为, 淦各升. 基于Tsallis熵的复杂网络节点重要性评估方法. 物理学报, 2021, 70(21): 216401. doi: 10.7498/aps.70.20210979
    [8] 黄丽亚, 汤平川, 霍宥良, 郑义, 成谢锋. 基于加权K-阶传播数的节点重要性. 物理学报, 2019, 68(12): 128901. doi: 10.7498/aps.68.20190087
    [9] 杨剑楠, 刘建国, 郭强. 基于层间相似性的时序网络节点重要性研究. 物理学报, 2018, 67(4): 048901. doi: 10.7498/aps.67.20172255
    [10] 孔江涛, 黄健, 龚建兴, 李尔玉. 基于复杂网络动力学模型的无向加权网络节点重要性评估. 物理学报, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [11] 阮逸润, 老松杨, 王竣德, 白亮, 陈立栋. 基于领域相似度的复杂网络节点重要度评估算法. 物理学报, 2017, 66(3): 038902. doi: 10.7498/aps.66.038902
    [12] 胡庆成, 尹龑燊, 马鹏斐, 高旸, 张勇, 邢春晓. 一种新的网络传播中最有影响力的节点发现方法. 物理学报, 2013, 62(14): 140101. doi: 10.7498/aps.62.140101
    [13] 刘建国, 任卓明, 郭强, 汪秉宏. 复杂网络中节点重要性排序的研究进展. 物理学报, 2013, 62(17): 178901. doi: 10.7498/aps.62.178901
    [14] 任卓明, 邵凤, 刘建国, 郭强, 汪秉宏. 基于度与集聚系数的网络节点重要性度量方法研究. 物理学报, 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [15] 于会, 刘尊, 李勇军. 基于多属性决策的复杂网络节点重要性综合评价方法. 物理学报, 2013, 62(2): 020204. doi: 10.7498/aps.62.020204
    [16] 张水舰, 刘学军, 杨洋. 动态随机最短路径算法研究. 物理学报, 2012, 61(16): 160201. doi: 10.7498/aps.61.160201
    [17] 周漩, 张凤鸣, 李克武, 惠晓滨, 吴虎胜. 利用重要度评价矩阵确定复杂网络关键节点. 物理学报, 2012, 61(5): 050201. doi: 10.7498/aps.61.050201
    [18] 董继扬, 张军英, 陈 忠. 自动波竞争神经网络及其在单源最短路问题中的应用. 物理学报, 2007, 56(9): 5013-5020. doi: 10.7498/aps.56.5013
    [19] 李 旲, 山秀明, 任 勇. 具有幂率度分布的因特网平均最短路径长度估计. 物理学报, 2004, 53(11): 3695-3700. doi: 10.7498/aps.53.3695
    [20] 彭桓武. 寿命关联实验的重要性. 物理学报, 1962, 18(3): 165-166. doi: 10.7498/aps.18.165
计量
  • 文章访问数:  10719
  • PDF下载量:  569
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-15
  • 修回日期:  2016-11-23
  • 刊出日期:  2017-03-05

/

返回文章
返回