搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于层间相似性的时序网络节点重要性研究

杨剑楠 刘建国 郭强

引用本文:
Citation:

基于层间相似性的时序网络节点重要性研究

杨剑楠, 刘建国, 郭强

Node importance idenfication for temporal network based on inter-layer similarity

Yang Jian-Nan, Liu Jian-Guo, Guo Qiang
PDF
导出引用
  • 时序网络可以更加准确地描述节点之间的交互顺序和交互关系.结合多层耦合网络分析法,本文提出了基于节点层间相似性的超邻接矩阵时序网络节点重要性识别方法,与经典的认为所有层间关系为常数不同,层间关系用节点的邻居拓扑重叠系数进行度量.Workspace和Enrons数据集上的结果显示:相比经典的方法,使用该方法得到的Kendall's 值在各时间层上的平均提高,最高为17.72%和12.44%,结果表明层间相似性的度量对于时序网络的节点重要性度量具有十分重要的意义.
    Measuring node centrality is important for a wealth of applications, such as influential people identification, information promotion and traffic congestion prevention. Although there are many researches of node centrality proved, most of them have assumed that networks are static. However, many networks in our real life are dynamic, and the edges will appear or disappear over time. Temporal network could describe the interaction order and relationship among network nodes more accurately. It is of more important theoretical and more practical significance to construct proper temporal network model and identify vital nodes. In this paper, by taking into account the coupling strength between different network layers, we present a method, namely similarity-based supra-adjacency matrix (SSAM) method, to represent temporal network and further measure node importance. For a temporal network with N nodes and T layers, the SSAM is a matrix of size NTNT with a collection of both intra-layer relationship and inter-layer relationship. We restrict our attention to inter-layer coupling. Regarding the traditional method of measuring the node similarity of nearest-neighbor layers as one constant value, the neighbor topological overlap information is used to measure the node similarity for the nearest-neighbor layers, which ensures that the couplings of different nodes of inter-layer relationship are different. We then compute the node importance for temporal network based on eigenvector centrality, the dominant eigenvector of similarity-based supra-adjacency matrix, which indicates not only the node i's importance in layer t but also the changing trajectory of the node i's importance across the time. To evaluate the ranking effect of node importance obtained by eigenvector-based centrality, we also study the network robustness and calculate the difference of temporal global efficiency with node deletion approach in this work. In order to compare with the traditional method, we measure the node ranking effect of different time layers by the Kendall rank correlation coefficient of eigenvector centrality and the difference of temporal global efficiency. According to the empirical results on the workspace and Enrons datasets for both SSAM method and tradition method, the SSAM method with neighbor topological overlap information, which takes into account the inter-layer similarity, can effectively avoid overestimating or underestimating the importance of nodes compared with traditional method with one constant value. Furthermore, the experiments for the two datasets show that the average Kendall's could be improved by 17.72% and 12.44% for each layer network, which indicates that the node similarity for different layers is significant to construct temporal network and measure the node importance in temporal network.
      通信作者: 刘建国, liujg004@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61773248,71771152)资助的课题.
      Corresponding author: Liu Jian-Guo, liujg004@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61773248, 71771152).
    [1]

    Holme P, Saramki J 2013 Temporal Networks (Heidelberg:Springer) pp1-2

    [2]

    Holme P, Saramki J 2012 Phys. Rep. 519 97

    [3]

    Holme P 2015 Eur. Phys. J. B 88 234

    [4]

    Liu J G, Ren Z M, Guo Q 2013 Physica A 392 4154

    [5]

    Ren Z M, Zeng A, Chen D B, Liao H, Liu J G 2014 EPL 106 48005

    [6]

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901 (in Chinese)[刘建国, 任卓明, 郭强, 汪秉宏 2013 物理学报 62 178901]

    [7]

    L L Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1

    [8]

    Ren Z M, Shao F, Liu J G, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 128901 (in Chinese)[任卓明, 邵凤, 刘建国, 郭强, 汪秉宏 2013 物理学报 62 128901]

    [9]

    Liu J G, Lin J H, Guo Q, Zhou T 2016 Sci. Rep. 6 21380

    [10]

    Zhang Y Q, Cui J, Zhang S M, Zhang Q, Li X 2016 Eur. Phys. J. B 89 26

    [11]

    Tang J, Musolesi M, Mascolo C, Latora V 2009 Proceedings of the 2nd ACM Workshop on Online Social Networks Barcelona, Spain, August 17-17, 2009 p31

    [12]

    Tang J, Scellato S, Musolesi M, Mascolo C, Latora V 2010 Phys. Rev. E 81 055101

    [13]

    Deng D M, Zhu J, Chen D B, Gao H 2013 Comput. Sci. 40 26 (in Chinese)[邓冬梅, 朱建, 陈端兵, 高辉 2013 计算机科学 40 26]

    [14]

    Deng D M 2014 M. S. Dissertation (Chengdu:University of Electronic Science and Technology of China) (in Chinese)[邓冬梅 2014 硕士学位论文 (成都:电子科技大学)]

    [15]

    Kim H, Anderson R 2012 Phys. Rev. E 85 026107

    [16]

    Huang D W, Yu Z G 2017 Sci. Rep. 7 41454

    [17]

    Taylor D, Myers S A, Clauset A, Porter M A 2017 Multiscale Model. Simul. 15 537

    [18]

    Zhu Y X, Zhang F L, Qin Z G 2014 J. Comput. Appl. 34 3184 (in Chinese)[朱义鑫, 张凤荔, 秦志光 2014 计算机应用 34 3184]

    [19]

    Gnois M, Vestergaard C L, Fournet J, Panisson A 2015 Network Sci. 3 326

    [20]

    Klimt B, Yang Y 2004 Machine Learning:ECML 2004 217

    [21]

    Zhang Z K, Liu C, Zhan X X, Lu X, Zhang C X, Zhang Y C 2016 Phys. Rep. 651 1-34

    [22]

    Liu C, Zhan X X, Zhang Z K, Sun G Q, Hui P M 2015 New J. Phys. 17 113045

    [23]

    Liu C, Zhang Z K 2014 Commun. Nonlinear Sci. Numerical Simulat. 19 896

    [24]

    Kendall M G 1938 Biometrika 30 81

    [25]

    Agresti A 2010 Analysis of Ordinal Categorical Data (2nd Ed.) (New York:John Wiley Sons John Wiley Sons) pp188-191

  • [1]

    Holme P, Saramki J 2013 Temporal Networks (Heidelberg:Springer) pp1-2

    [2]

    Holme P, Saramki J 2012 Phys. Rep. 519 97

    [3]

    Holme P 2015 Eur. Phys. J. B 88 234

    [4]

    Liu J G, Ren Z M, Guo Q 2013 Physica A 392 4154

    [5]

    Ren Z M, Zeng A, Chen D B, Liao H, Liu J G 2014 EPL 106 48005

    [6]

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901 (in Chinese)[刘建国, 任卓明, 郭强, 汪秉宏 2013 物理学报 62 178901]

    [7]

    L L Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1

    [8]

    Ren Z M, Shao F, Liu J G, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 128901 (in Chinese)[任卓明, 邵凤, 刘建国, 郭强, 汪秉宏 2013 物理学报 62 128901]

    [9]

    Liu J G, Lin J H, Guo Q, Zhou T 2016 Sci. Rep. 6 21380

    [10]

    Zhang Y Q, Cui J, Zhang S M, Zhang Q, Li X 2016 Eur. Phys. J. B 89 26

    [11]

    Tang J, Musolesi M, Mascolo C, Latora V 2009 Proceedings of the 2nd ACM Workshop on Online Social Networks Barcelona, Spain, August 17-17, 2009 p31

    [12]

    Tang J, Scellato S, Musolesi M, Mascolo C, Latora V 2010 Phys. Rev. E 81 055101

    [13]

    Deng D M, Zhu J, Chen D B, Gao H 2013 Comput. Sci. 40 26 (in Chinese)[邓冬梅, 朱建, 陈端兵, 高辉 2013 计算机科学 40 26]

    [14]

    Deng D M 2014 M. S. Dissertation (Chengdu:University of Electronic Science and Technology of China) (in Chinese)[邓冬梅 2014 硕士学位论文 (成都:电子科技大学)]

    [15]

    Kim H, Anderson R 2012 Phys. Rev. E 85 026107

    [16]

    Huang D W, Yu Z G 2017 Sci. Rep. 7 41454

    [17]

    Taylor D, Myers S A, Clauset A, Porter M A 2017 Multiscale Model. Simul. 15 537

    [18]

    Zhu Y X, Zhang F L, Qin Z G 2014 J. Comput. Appl. 34 3184 (in Chinese)[朱义鑫, 张凤荔, 秦志光 2014 计算机应用 34 3184]

    [19]

    Gnois M, Vestergaard C L, Fournet J, Panisson A 2015 Network Sci. 3 326

    [20]

    Klimt B, Yang Y 2004 Machine Learning:ECML 2004 217

    [21]

    Zhang Z K, Liu C, Zhan X X, Lu X, Zhang C X, Zhang Y C 2016 Phys. Rep. 651 1-34

    [22]

    Liu C, Zhan X X, Zhang Z K, Sun G Q, Hui P M 2015 New J. Phys. 17 113045

    [23]

    Liu C, Zhang Z K 2014 Commun. Nonlinear Sci. Numerical Simulat. 19 896

    [24]

    Kendall M G 1938 Biometrika 30 81

    [25]

    Agresti A 2010 Analysis of Ordinal Categorical Data (2nd Ed.) (New York:John Wiley Sons John Wiley Sons) pp188-191

  • [1] 陈浩宇, 徐涛, 刘闯, 张子柯, 詹秀秀. 基于高阶信息的网络相似性比较方法. 物理学报, 2024, 73(3): 038901. doi: 10.7498/aps.73.20231096
    [2] 胡钢, 许丽鹏, 徐翔. 基于时序网络层间同构率动态演化的重要节点辨识. 物理学报, 2021, 70(10): 108901. doi: 10.7498/aps.70.20201804
    [3] 谷牧, 任栖锋, 周金梅, 廖胜. 基于地基观测的时序卫星红外光谱建模与分析. 物理学报, 2019, 68(5): 059501. doi: 10.7498/aps.68.20181933
    [4] 王凯莉, 邬春学, 艾均, 苏湛. 基于多阶邻居壳数的向量中心性度量方法. 物理学报, 2019, 68(19): 196402. doi: 10.7498/aps.68.20190662
    [5] 苏臻, 高超, 李向华. 节点中心性对复杂网络传播模式的影响分析. 物理学报, 2017, 66(12): 120201. doi: 10.7498/aps.66.120201
    [6] 张露, 严璐瑶, 鲍洄含, 柴晓茜, 马丹丹, 吴倩楠, 夏凌晨, 姚丹, 钱静. 实现粒子布居高效转移的两种激光脉冲时序方案的理论研究. 物理学报, 2017, 66(21): 213301. doi: 10.7498/aps.66.213301
    [7] 宋玉萍, 倪静. 网络集聚性对节点中心性指标的准确性影响. 物理学报, 2016, 65(2): 028901. doi: 10.7498/aps.65.028901
    [8] 张轶, 达新宇. 基于差分平稳时序的Ka波段雨衰预测. 物理学报, 2014, 63(6): 060203. doi: 10.7498/aps.63.060203
    [9] 付洋洋, 罗海云, 邹晓兵, 刘凯, 王新新. 缩比间隙中辉光放电相似性的初步研究. 物理学报, 2013, 62(20): 205209. doi: 10.7498/aps.62.205209
    [10] 苑卫国, 刘云, 程军军, 熊菲. 微博双向关注网络节点中心性及传播 影响力的分析. 物理学报, 2013, 62(3): 038901. doi: 10.7498/aps.62.038901
    [11] 周漩, 张凤鸣, 周卫平, 邹伟, 杨帆. 利用节点效率评估复杂网络功能鲁棒性. 物理学报, 2012, 61(19): 190201. doi: 10.7498/aps.61.190201
    [12] 李泽荃, 张瑞新, 杨曌, 赵红泽, 于健浩. 复杂网络中心性对灾害蔓延的影响. 物理学报, 2012, 61(23): 238902. doi: 10.7498/aps.61.238902
    [13] 岳平, 张强, 牛生杰, 王润元, 孙旭映, 王胜. 草原下垫面湍流动量和感热相似性函数及总体输送系数的特征. 物理学报, 2012, 61(21): 219201. doi: 10.7498/aps.61.219201
    [14] 魏雅娜, 杨世平. 以两种方法研究强激光场中的非时序双电离现象. 物理学报, 2010, 59(11): 7788-7795. doi: 10.7498/aps.59.7788
    [15] 魏雅娜, 杨世平. 分子核间距对非时序双电离的影响. 物理学报, 2010, 59(10): 7298-7305. doi: 10.7498/aps.59.7298
    [16] 郑雨军, 张兆玉, 张西忠. 单分子体系动力学的高阶累积量相似性. 物理学报, 2009, 58(12): 8194-8198. doi: 10.7498/aps.58.8194
    [17] 龚志强, 封国林. 基于非线性分析方法的多种代用资料的相似性研究. 物理学报, 2007, 56(6): 3619-3629. doi: 10.7498/aps.56.3619
    [18] 童永在, 王西安, 余本海, 胡雪惠. 电光效应的自相似性. 物理学报, 2006, 55(12): 6667-6672. doi: 10.7498/aps.55.6667
    [19] 肖方红, 阎桂荣, 韩宇航. 混沌时序相空间重构参数确定的信息论方法. 物理学报, 2005, 54(2): 550-556. doi: 10.7498/aps.54.550
    [20] 程愿应, 王又青, 胡 进, 李家熔. 一种新颖的用于光腔模式及光束传输模拟的特征向量法. 物理学报, 2004, 53(8): 2576-2582. doi: 10.7498/aps.53.2576
计量
  • 文章访问数:  9426
  • PDF下载量:  462
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-18
  • 修回日期:  2017-11-29
  • 刊出日期:  2019-02-20

/

返回文章
返回