搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进投票模型识别复杂网络上的多影响力节点

李尚杰 雷洪涛 张萌萌 朱承 阮逸润

引用本文:
Citation:

基于改进投票模型识别复杂网络上的多影响力节点

李尚杰, 雷洪涛, 张萌萌, 朱承, 阮逸润

IMVoteRank: Identifying multiple influential nodes in complex networks based on an improved voting model

LI Shangjie, LEI Hongtao, ZHANG MengMeng, ZHU Cheng, RUAN Yirun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 在复杂网络中高效识别一组关键传播节点对信息扩散与谣言控制至关重要。对于多传播源节点选取问题,一种有效的方法不仅要考虑种子节点自身的影响力,还要考虑其分散性。传统投票模型算法VoteRank假设一个节点对其每个邻居的投票都是一样的,忽视了拓扑相似性对投票倾向的影响;其次,采用邻域均质化投票衰减策略,难以有效抑制种子节点的传播范围重叠。本文提出一种改进的基于VoteRank的复杂网络多影响力节点识别算法IMVoteRank,通过双重创新提高算法效果:首先,设计基于结构相似性的投票贡献机制,模拟真实世界中选民更倾向于投票给自己关系相近的人,算法认为节点之间拓扑结构越相似邻居节点越有可能将票投给对方,因此将邻居节点的投票贡献拆分为直接连接贡献与拓扑相似性贡献,通过动态权重平衡二者的贡献从而优化投票精准度;其次,引入动态群组隔离策略,在迭代过程中以种子节点为核心检测紧密连接群组,通过抑制群组内节点投票能力并断开其连接,保证种子节点的空间分散性从而有效克服了传播范围重叠问题。在多个真实数据集上基于易感-感染-恢复( Susceptible-Infected-Recovered) SIR模型的传播实验证明,所提方法能更有效识别网络中多影响力节点。
    Efficiently identifying multiple influential nodes is crucial for maximizing information diffusion and minimizing rumor spread in complex networks. Selecting multiple influential seed nodes requires consideration of both their individual influence potential and their spatial dispersion within the network topology to avoid overlapping propagation ranges ("rich-club effect"). Traditional VoteRank method suffer from two key limitations: (1) they assume uniform voting contributions from a node to all its neighbors, neglecting the impact of topological similarity (structural homophily) on voting preferences observed in real-world scenarios, and (2) they employ a homogeneous voting attenuation strategy which inadequately suppresses the propagation range overlap among selected seed nodes. To address these shortcomings, this paper proposes IMVoteRank, an improved VoteRank algorithm featuring dual innovations. First, we introduce a Structural Similarity-Driven Voting Contribution Mechanism. Recognizing that voters (nodes) are more likely to support candidates (neighbors) with whom they share stronger topological ties, we decompose a neighbor's voting contribution into two components: a Direct Connection Contribution and a Structural Similarity Contribution (quantified using common neighbors). A dynamic weight parameter θ, adjusted based on the candidate node's degree, balances these components, significantly refining vote allocation accuracy. Second, we devise a Dynamic Group Isolation Strategy. During each iteration, after selecting the highest-scoring seed node vmax, we identify and isolate a tightly-knit group (OG) centered around it. This involves: (i) forming an initial group based on shared neighbor density with vmax, (ii) expanding it by incorporating nodes with more connections inside the group than outside, and (iii) isolating this group by setting the voting capacity (Va) of all its members to zero and virtually removing their connections from the adjacency matrix. Neighbors of vmax not in OG have their Va halved. This strategy proactively enforces spatial dispersion among seeds. Extensive simulations using the Susceptible-Infected-Recovered (SIR) propagation model on nine diverse real-world networks (ECON-WM3, Facebook-SZ, USAir, Celegans, ASOIAF, Dnc-corecipient, ERIS1176, DNC-emails, Facebook-combined) demonstrate the superior performance of IMVoteRank. Compared to seven benchmark methods (Degree, K-shell, VoteRank, NCVoteRank, VoteRank++, AIGCrank, EWV), IMVoteRank consistently achieves significantly larger final propagation coverage (infected scale) for a given number of seed nodes and transmission probability (β=0.1). Furthermore, seeds selected by IMVoteRank exhibit a consistently larger average shortest path length (Ls) among themselves across most networks, confirming their effective topological dispersion. This combination of high individual influence potential (optimized voting) and low redundancy (group isolation) directly translates to more efficient global information spread, as evidenced by the SIR results. Tests on LFR benchmark networks further validate these advantages, particularly at transmission rates above the epidemic threshold. IMVoteRank effectively overcomes the limitations of traditional voting models by integrating structural similarity into the voting process and employing dynamic group isolation to ensure seed dispersion. It provides a highly effective and physically well-grounded approach for identifying multiple influential nodes in complex networks, optimizing the trade-off between influence strength and spatial coverage. Future work will focus on enhancing computational efficiency for large-scale networks and exploring the impact of meso-scale community structures.
  • [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabasi A L, Albert R 1999 Science 286 509

    [3]

    Liu Y Y, Slotine J J, Barabasi A L 2011 Nature 473 167

    [4]

    Yang Z, Li Y, Liu J 2021 Proceedings of the 15th EAI International Conference on Communications and Networking (ChinaCom 2020) Shanghai, China, November 20-21, 2020 p766

    [5]

    Li Y G, Xiao Z L, Gao A, Wu W N, Pei E R 2025 Knowl.-Based Syst. 317 113434

    [6]

    Lin Y G, Wang X M, Hao F, Jiang Y C, Wu Y L, Min G Y, He D J, Zhu S C, Zhao W 2019 IEEE Trans. Syst., Man, Cybern., Syst. 51 3725

    [7]

    Olasupo T O, Otero C E 2017 IEEE Trans. Syst., Man, Cybern., Syst. 50 256

    [8]

    Laitila P, Virtanen K 2018 IEEE Trans. Syst., Man, Cybern., Syst. 50 1943

    [9]

    Yang J, Yao C, Ma W, Chen G 2010 Physica A 389 859

    [10]

    Morone F, Makse H A 2015 Nature 524 65

    [11]

    Guo C, Li W M, Liu F F, Zhong K X, Wu X, Zhao Y G, Jin Q 2024 Neurocomputing 564 126936

    [12]

    Kempe D, Kleinberg J, Tardos É 2003 Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Washington, DC, USA, August 24–27, 2003 p137

    [13]

    Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N 2007 Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining San Jose, CA, USA, August 12–15, 2007 p420

    [14]

    Ou Z, Wang S 2024 Swarm Evol. Comput. 87 101542

    [15]

    Kumar S, Mallik A, Panda B S 2023 Expert Syst. Appl. 212 118770

    [16]

    Berahmand K, Bouyer A, Samadi N 2019 Computing 101 1711

    [17]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [18]

    Lü L Y, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168

    [19]

    Hage P, Harary F 1995 Soc. Netw. 17 57

    [20]

    Dolev S, Elovici Y, Puzis R 2010 J. ACM 57 1

    [21]

    Freeman L C 2002 Soc. Netw.: Crit. Concepts Sociol. 1 238

    [22]

    Katz L 1953 Psychometrika 18 39

    [23]

    Wang Y, Zheng Y N, Shi X L, Liu Y G 2022 Physica A 588 126535

    [24]

    Zhao Z L, Liu X P, Sun Y, Zhao N N, Hu A H, Wang S L, Tu Y Y 2025 Chaos Soliton. Fract. 193 116078

    [25]

    Chen W, Wang Y J, Yang S Y 2009 Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, Paris, France, June 28- July 1

    [26]

    Berahmand K, Bouyer A, Samadi N 2019 Computing 101 1711

    [27]

    Salavati C, Abdollahpouri A, Manbari Z 2019 Neurocomputing 336 36

    [28]

    Wen T, Deng Y 2020 Inf. Sci. 512 549

    [29]

    Yang P L, Zhao L J, Dong C, Xu G Q, Zhou L X 2023 Chin. Phys. B 32 058901.

    [30]

    Zhang J X, Chen D B, Dong Q, Zhao Z D 2016 Sci. Rep. 6 27823

    [31]

    Li H Y, Wang X, Chen Y, Cheng S Y 2025 Sci. Rep. 15 1693.

    [32]

    Sun H L, Chen D B, He J L,Ch’ng E 2019 Physica A 519 303

    [33]

    Kumar S, Panda B S 2020 Physica A 553 124215

    [34]

    Bae J H, Kim S W 2014 Physica A 395 549

    [35]

    Liu P, Li L, Fang S, Yao Y K 2021 Chaos Soliton. Fract. 152 111309

    [36]

    Wang, G. Alias S B, Sun Z J, Wang F F, Fan A W, Hu H F 2023 Heliyon 9 e16112

    [37]

    Li H Y, Wang X, Chen Y, Chen S Y, Lu D J Sci. Rep. 2025 15 1693

    [38]

    Yang P L, Zhao L J, Dong C, Xu G Q, Zhou L X 2023 Chin. Phys. B 32 058901.

    [39]

    Jeh G, Widom J 2002 Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Edmonton, Canada, July 23–26, 2002 p538

    [40]

    Chi K, Yin G S, Dong Y X, Dong H B 2019 Knowl.-Based Syst. 181 104792

    [41]

    Rossi R, Ahmed N 2015 Proceedings of the 29th AAAI Conference on Artificial Intelligence Austin, TX, USA, January 25–30, 2015

    [42]

    Batagelj V, Mrvar A 1998 Connections 21 47

    [43]

    Blagus N, Šubelj L, Bajec M 2012 Physica A 391 2794

    [44]

    Jeong H, Tombor B, Albert R, Oltvai Z N, Barabási A L 2000 Nature 407 651

    [45]

    Kunegis J 2013 Proceedings of the 22nd International Conference on World Wide Web Rio de Janeiro, Brazil, May 13-17, 2013 p1343

    [46]

    McAuley J, Leskovec J 2012 Advances in Neural Information Processing Systems(Lake Tahoe, USA: NIPS) p539

    [47]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200

    [48]

    Ruan Y R, Liu S Z, Tang J,Guo Y M, Yu T Y 2025 Expert Syst. Appl. 268 126292

    [49]

    Yu E Y, Wang Y P, Fu Y, Chen D B, Xie M 2020 Knowl-Based Syst. 198 105893 24

    [50]

    Zhang M, Wang X J, Jin L, Song M, Li Z Y 2022 Neurocomputing 497 13

  • [1] 陈奕多, 韵雨婷, 关剑月, 吴枝喜. 具有层级结构集体影响力的多数投票模型. 物理学报, doi: 10.7498/aps.73.20231164
    [2] 阮逸润, 老松杨, 汤俊, 白亮, 郭延明. 基于引力方法的复杂网络节点重要度评估方法. 物理学报, doi: 10.7498/aps.71.20220565
    [3] 孔江涛, 黄健, 龚建兴, 李尔玉. 基于复杂网络动力学模型的无向加权网络节点重要性评估. 物理学报, doi: 10.7498/aps.67.20172295
    [4] 康玲, 项冰冰, 翟素兰, 鲍中奎, 张海峰. 基于区域密度曲线识别网络上的多影响力节点. 物理学报, doi: 10.7498/aps.67.20181000
    [5] 阮逸润, 老松杨, 王竣德, 白亮, 侯绿林. 一种改进的基于信息传播率的复杂网络影响力评估算法. 物理学报, doi: 10.7498/aps.66.208901
    [6] 韩忠明, 陈炎, 李梦琪, 刘雯, 杨伟杰. 一种有效的基于三角结构的复杂网络节点影响力度量模型. 物理学报, doi: 10.7498/aps.65.168901
    [7] 韩忠明, 吴杨, 谭旭升, 段大高, 杨伟杰. 面向结构洞的复杂网络关键节点排序. 物理学报, doi: 10.7498/aps.64.058902
    [8] 胡庆成, 张勇, 许信辉, 邢春晓, 陈池, 陈信欢. 一种新的复杂网络影响力最大化发现方法. 物理学报, doi: 10.7498/aps.64.190101
    [9] 王亚奇, 王静, 杨海滨. 基于复杂网络理论的微博用户关系网络演化模型研究. 物理学报, doi: 10.7498/aps.63.208902
    [10] 刘伟彦, 刘斌. 基于局部路由策略的复杂网络拥塞控制. 物理学报, doi: 10.7498/aps.63.248901
    [11] 刘金良. 具有随机节点结构的复杂网络同步研究. 物理学报, doi: 10.7498/aps.62.040503
    [12] 周漩, 张凤鸣, 周卫平, 邹伟, 杨帆. 利用节点效率评估复杂网络功能鲁棒性. 物理学报, doi: 10.7498/aps.61.190201
    [13] 吕翎, 柳爽, 张新, 朱佳博, 沈娜, 商锦玉. 节点结构互异的复杂网络的时空混沌反同步. 物理学报, doi: 10.7498/aps.61.090504
    [14] 周漩, 张凤鸣, 李克武, 惠晓滨, 吴虎胜. 利用重要度评价矩阵确定复杂网络关键节点. 物理学报, doi: 10.7498/aps.61.050201
    [15] 姜志宏, 王晖, 高超. 一种基于随机行走和策略连接的网络演化模型. 物理学报, doi: 10.7498/aps.60.058903
    [16] 熊菲, 刘云, 司夏萌, 丁飞. 基于Web 2.0的边与节点同时增长网络模型. 物理学报, doi: 10.7498/aps.59.6889
    [17] 吕翎, 张超. 一类节点结构互异的复杂网络的混沌同步. 物理学报, doi: 10.7498/aps.58.1462
    [18] 李涛, 裴文江, 王少平. 无标度复杂网络负载传输优化策略. 物理学报, doi: 10.7498/aps.58.5903
    [19] 陈华良, 刘忠信, 陈增强, 袁著祉. 复杂网络的一种加权路由策略研究. 物理学报, doi: 10.7498/aps.58.6068
    [20] 李 季, 汪秉宏, 蒋品群, 周 涛, 王文旭. 节点数加速增长的复杂网络生长模型. 物理学报, doi: 10.7498/aps.55.4051
计量
  • 文章访问数:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-19

/

返回文章
返回