搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双维引力场模型: 个体潜能与地理位置对节点性能的量化评估

梁宗文 廖俊卓 薛崇琛 敖永才

引用本文:
Citation:

双维引力场模型: 个体潜能与地理位置对节点性能的量化评估

梁宗文, 廖俊卓, 薛崇琛, 敖永才

Bi-dimensional gravity-influence model: Quantitative assessment of node performance based on individual potential and geographic location

LIANG ZongWen, LIAO JunZhuo, XUE ChongChen, AO YongCai
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在复杂网络研究中, 客观且综合地评价节点性能是一个关键问题. 现有方法多基于引力模型, 通过结合节点的局部或全局属性评估其影响力, 在实际网络中, 关键节点不仅在局部结构中发挥重要作用, 还具有跨社区的信息桥梁作用及显著的全局传播潜力. 因此单纯依赖局部或全局属性的评价方法存在局限性. 为更准确地描述网络中的引力场效应, 本文提出了一种熵权重引力模型BGIM与BGIM+, 通过引入节点信息熵替代传统度量指标, 更全面地反映节点的不确定性与信息丰富性. 此外, 本文设计了引力修正因子, 平衡节点的全局影响力和局部结构特性; 同时, 引入非对称吸引因子, 量化核心与外围节点间的引力差异, 并通过全局归一化调整机制缓解异质性网络中节点重要性分布的不均衡问题. 实验在多个真实网络和合成网络上进行验证, 结果表明, BGIM与BGIM+在关键节点识别和传播性能评估方面表现显著, 为复杂网络研究中的关键节点识别提供了新的理论视角和技术工具.
    In complex networks, the accurate assessing of node importance is essential for understanding critical structures and optimizing dynamic processes. Traditional gravity-based methods often rely on local attributes or global shortest paths, which exhibit limitations in heterogeneous networks due to insufficient differentiation of node roles and their influences in different topologies. To address these challenges, we propose the bi-dimensional gravity influence model (BGIM) and its enhanced version (BGIM+). These models introduce a novel entropy-weighted gravity framework that integrates node information entropy, gravity correction factors, and asymmetric attraction factors. By replacing degree centrality with information entropy, BGIM captures nodes’ uncertainty and information richness, offering a more comprehensive view of their potential influence.The gravity correction factor (NGCF) combines eigenvector centrality with network constraint coefficients to balance global feature and local feature, while the asymmetric attraction factor (AAF) consider gravitational asymmetry between core and peripheral nodes. This bi-dimensional method can evaluate the node importance in more detail and solve the problem of imbalanced influence distribution in different network structures. A normalization mechanism further enhances adaptability, thus ensuring robust performance in both sparse and dense networks.Extensive experiments on real-world (e.g., Jazz, USAir, Email, Router) and synthetic (LFR-generated) networks validate the proposed models. The results demonstrate that BGIM and BGIM+ consistently outperform classical methods (such as Degree, Closeness, and Betweenness centralities) in identifying critical nodes and predicting their roles in propagation dynamics. In particular, BGIM+ exhibits superior performance in networks with complex topology, achieving high correlation with SIR (Susceptible-Infected-Recovered) model simulations under different propagation rates. Moreover, BGIM+ effectively balances the influences of local hubs and global bridges, thus it is particularly suitable for heterogeneous networks.This study highlights the significance of incorporating multidimensional features into gravity models for accurate and robust node evaluation. The proposed model advances the development of complex network analysis by providing a universal tool for identifying influential nodes indifferent applications, including epidemic control, information dissemination, and infrastructure resilience. The applicability of BGIM in temporal and dynamic network contexts will be explored in future, so as to further expand its application scope.
  • 图 1  网络示例图

    Fig. 1.  Example Network Illustration.

    图 2  十种不同评价方法与SIR模型所得节点排名的相关性

    Fig. 2.  The Correlation between Node Rankings from Ten Different Evaluation Methods and the SIR.

    图 3  动态传播率下的不同评价方法与SIR模型的相关性 (a) Jazz; (b) USAir; (c) EEC; (d) Email; (e) PB; (f) Router; (g) Facebook; (h) Power

    Fig. 3.  Correlation Between Evaluation Methods and SIR Model Under Dynamic Transmission Rates.

    图 4  相同时间点内网络感染节点总数 (a) Jazz; (b) USAir; (c) EEC; (d) Email; (e) PB; (f) Router; (g) Facebook; (h) Power

    Fig. 4.  Total Number of Infected Nodes in the Network at a Given Time Point.

    图 5  LFR人工合成网络上各评估方法的Kendall系数展示 (a) $ < k > = 5 $; (b)$ < k > = 10 $; (c) $ < k > = 20 $;

    Fig. 5.  Total Number of Infected Nodes in the Network at a Given Time Point.

    表 1  七个常见网络的基本拓扑特征统计

    Table 1.  The basic topological features of the seven real networks.

    NetworkNE$ \langle d \rangle $c$ \langle k \rangle $$ ks_{{\rm{max}}} $$ \beta_{{\rm{th}}} $$ \beta_{\rm{c}} $
    Jazz19827422.23500.615727.6969290.02660.0547
    USAir33221262.73810.625212.8072260.02310.0487
    EEC986160642.58690.450532.5842340.01340.0191
    Email113354513.60600.22019.6222110.05650.1187
    PB1222167142.73750.360027.3552360.01230.0246
    Router502262586.44880.01162.492270.07860.1266
    Facebook4039882343.69250.605543.69101150.00940.0164
    Power4941659418.98920.08012.669150.34830.6016
    下载: 导出CSV

    表 2  各个引力模型在小规模网络中所得到部分节点的排名信息

    Table 2.  Differentiation Performance of Various Gravity Models Across Seven Networks.

    RankGravityGravity+KSGCCWGBGIMBGIM+SIR
    114223314314
    2221422143146
    333147663
    47762222722
    566767227
    下载: 导出CSV

    表 3  各个引力模型在七个网络中的区分度表现

    Table 3.  Differentiation Performance of Various Gravity Models Across Seven Networks.

    网络名GravityGravity+KSGCCWGBGIMBGIM+
    Jazz0.9992820.9994870.9992820.9996920.9997420.999351
    USAir0.9950920.9950920.9950920.9991990.9996630.996145
    EEC0.9998680.9998680.9998680.9999750.9999930.999841
    Email0.9998910.9998970.9998970.9999970.9999830.999912
    PB0.9992790.9992790.9992790.9999120.9999810.999279
    Router0.9963840.9964470.9964520.9988190.9988190.997221
    Facebook0.9998660.9998860.9998740.9999990.9999980.999915
    Power0.9998840.9998890.9998880.8151900.9999980.978472
    下载: 导出CSV
  • [1]

    jia Li H, Xu W, Song S, Wang W, Perc M 2021 CHAOS SOLITON FRACT. 151 111294Google Scholar

    [2]

    Freeman L C 1978 Soc. Networks. 1 215Google Scholar

    [3]

    Freeman L C 1977 Sociometry. 40 35Google Scholar

    [4]

    Bonacich P, Lloyd P 2001 Soc. Networks. 23 191Google Scholar

    [5]

    Sabidussi G 1966 Psychometrika. 31 581Google Scholar

    [6]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

    [7]

    Bae J, Kim S 2014 Physica A. 395 549Google Scholar

    [8]

    Zeng A, Zhang C J 2013 Phys. Lett. A. 377 1031Google Scholar

    [9]

    Liu Y, Tang M, Zhou T, Do Y 2015 Sci Rep. 5

    [10]

    Ma L L, Ma C, Zhang H F, Wang B H 2016 Physica A. 451 205Google Scholar

    [11]

    Li Z, Huang X 2021 Sci Rep. 11

    [12]

    Liu F, Wang Z, Deng Y 2020 Knowl. Based Syst. 193 105464Google Scholar

    [13]

    Zhao J, Wen T, Jahanshahi H, Cheong K H 2022 Inf. Sci. 609 1706Google Scholar

    [14]

    Yang X, Xiao F 2021 Knowl. Based Syst. 227 107198Google Scholar

    [15]

    Yu Y, Zhou B, Chen L, Gao T, Liu J 2022 Entropy. 24 275Google Scholar

    [16]

    Jaoude A A 2017 SYST.SCI.CONTROL.ENG. 5 380Google Scholar

    [17]

    Hu J, Wang B, Lee D 2010 2010 IEEE/ACM GreenCom & CPSCom. 792

    [18]

    Chiranjeevi M, Dhuli V S, Enduri M K, Cenkeramaddi L R 2023 IEEE Access. 11 126195Google Scholar

    [19]

    Wang J, Li C, yi Xia C 2018 Appl. Math. Comput. 334 388

    [20]

    阮逸润, 老松杨, 汤俊, 白亮, 郭延明 2022 物理学报 71 176401Google Scholar

    Ruan Y R, Lao S Y, Tang J, Bai L, Guo Y M 2022 Acta Phys. Sin. 71 176401Google Scholar

    [21]

    Lü L Y, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168Google Scholar

    [22]

    Burt R S, Kilduff M, Tasselli S 2013 Annu. Rev. Psychol. 64 527Google Scholar

    [23]

    韩忠明, 吴杨, 谭旭升, 段大高, 杨伟杰 2015 物理学报 64 020101Google Scholar

    Han Z M, Wu Y, Tan X S, Duan D G, Yang W J 2015 Acta Phys.Sin. 64 020101Google Scholar

    [24]

    Brin S, Page L 1998 Comput. Netw. ISDN Syst. 30 107Google Scholar

    [25]

    Cao Z, Qin T, Liu T Y, Tsai M F, Hang L 2007 In Proceedings of the 24 th Annual International Conference on Machine Learning (Corvallis), p 129

    [26]

    Liang F C, Lu Y 2021 IEEE Int. Conf. Data Sci. Cyberspace. 602

    [27]

    Rodrigues F A 2018 Math. Model. Nonlin. Dyn. Complex Syst.

    [28]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200Google Scholar

    [29]

    Hethcote H W 2000 SIAM Rev. 42 599Google Scholar

    [30]

    Moreno Y, Pastor-Satorras R, Vespignani A 2002 Eur. Phys. J. B. 26 521

    [31]

    Kendall M G 1938 Biometrika. 30 81Google Scholar

  • [1] 汪亭亭, 梁宗文, 张若曦. 基于信息熵与迭代因子的复杂网络节点重要性评价方法. 物理学报, doi: 10.7498/aps.72.20221878
    [2] 阮逸润, 老松杨, 汤俊, 白亮, 郭延明. 基于引力方法的复杂网络节点重要度评估方法. 物理学报, doi: 10.7498/aps.71.20220565
    [3] 马金龙, 张俊峰, 张冬雯, 张红斌. 基于通信序列熵的复杂网络传输容量. 物理学报, doi: 10.7498/aps.70.20201300
    [4] 谭索怡, 祁明泽, 吴俊, 吕欣. 复杂网络链路可预测性: 基于特征谱视角. 物理学报, doi: 10.7498/aps.69.20191817
    [5] 陈单, 石丹丹, 潘贵军. 复杂网络电输运性能与通信序列熵之间的关联. 物理学报, doi: 10.7498/aps.68.20190230
    [6] 孔江涛, 黄健, 龚建兴, 李尔玉. 基于复杂网络动力学模型的无向加权网络节点重要性评估. 物理学报, doi: 10.7498/aps.67.20172295
    [7] 阮逸润, 老松杨, 王竣德, 白亮, 侯绿林. 一种改进的基于信息传播率的复杂网络影响力评估算法. 物理学报, doi: 10.7498/aps.66.208901
    [8] 武喜萍, 杨红雨, 韩松臣. 基于复杂网络理论的多元混合空管技术保障系统网络特征分析. 物理学报, doi: 10.7498/aps.65.140203
    [9] 李勇军, 尹超, 于会, 刘尊. 基于最大熵模型的微博传播网络中的链路预测. 物理学报, doi: 10.7498/aps.65.020501
    [10] 王金龙, 刘方爱, 朱振方. 一种基于用户相对权重的在线社交网络信息传播模型. 物理学报, doi: 10.7498/aps.64.050501
    [11] 王亚奇, 王静, 杨海滨. 基于复杂网络理论的微博用户关系网络演化模型研究. 物理学报, doi: 10.7498/aps.63.208902
    [12] 刘树新, 季新生, 刘彩霞, 郭虹. 一种信息传播促进网络增长的网络演化模型. 物理学报, doi: 10.7498/aps.63.158902
    [13] 黄飞虎, 彭舰, 宁黎苗. 基于信息熵的社交网络观点演化模型. 物理学报, doi: 10.7498/aps.63.160501
    [14] 龚志强, 支蓉, 侯威, 王晓娟, 封国林. 基于复杂网络的北半球遥相关年代际变化特征研究. 物理学报, doi: 10.7498/aps.61.029202
    [15] 刘刚, 李永树. 基于引力场理论的复杂网络路由选择策略研究. 物理学报, doi: 10.7498/aps.61.248901
    [16] 刘刚, 李永树. 基于引力约束的复杂网络拥塞问题研究. 物理学报, doi: 10.7498/aps.61.108901
    [17] 冯爱霞, 龚志强, 黄琰, 王启光. 全球温度场信息熵的时空特征分析. 物理学报, doi: 10.7498/aps.60.099204
    [18] 邢长明, 刘方爱. 基于Sierpinski分形垫的确定性复杂网络演化模型研究. 物理学报, doi: 10.7498/aps.59.1608
    [19] 欧阳敏, 费 奇, 余明晖. 基于复杂网络的灾害蔓延模型评价及改进. 物理学报, doi: 10.7498/aps.57.6763
    [20] 李 季, 汪秉宏, 蒋品群, 周 涛, 王文旭. 节点数加速增长的复杂网络生长模型. 物理学报, doi: 10.7498/aps.55.4051
计量
  • 文章访问数:  196
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-08
  • 修回日期:  2025-01-20
  • 上网日期:  2025-01-24

/

返回文章
返回