搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于复杂网络理论的多元混合空管技术保障系统网络特征分析

武喜萍 杨红雨 韩松臣

引用本文:
Citation:

基于复杂网络理论的多元混合空管技术保障系统网络特征分析

武喜萍, 杨红雨, 韩松臣

Analysis on network properties of multivariate mixed air traffic management technical support system based on complex network theory

Wu Xi-Ping, Yang Hong-Yu, Han Song-Chen
PDF
导出引用
  • 为提高空管技术保障系统应对突发事件的能力, 本文以空管技术保障系统导航、通信、监视设备覆盖的航路结构为基础, 构建系统对应的空间网络模型. 提出从灵活性、鲁棒性、高效性三个方面度量空管技术保障系统网络特性, 对北京、上海、广州、昆明、沈阳、兰州飞行情报区的空管技术保障系统网络的平均度、度分布、度-度相关性、聚集系数、平均路径长度、直径等进行分析. 分析结果显示, 各飞行情报区空管技术保障系统的平均聚集系数在0.25-0.39之间, 网络聚集程度偏低; 网络平均路径长度为3.4, 表现出小世界网络特征; 度值3时服从幂律分布, 度-度分布不表现出正相关或负相关. 对网络进行基于度优先的和随机的抗毁性测度, 空管技术保障系统网络抗毁性较差, 网络的可靠性由少数核心节点决定, 应对核心节点进行目标免疫, 提高网络的抗毁性. 这些规律为空管技术保障系统能力提升、新建扩建提供理论依据, 对降低突发事件对空管系统保障能力的影响, 保障空中交通持续安全具有现实意义.
    Air traffic management technical support system provides communication, navigation and surveillance service for air traffic management system and air traffic controller. The failures of some facilities may lead to large delay, even affect air transportation safety. In order to improve the ability of air traffic management technical support system to respond to emergencies, a network model of air traffic management technical support system is presented. The network model of air traffic management technical support system is established according to the effective coverage of communication, navigation and surveillance facilities, the position of air traffic management technical support system and air route network. Flexibility, robustness and efficiency are used to measure the network. The measure index of air traffic management technical support system network includes degree, degree distribution, strength, clustering coefficient, network performance, betweenness centrality, average shortest path and diameter. For Beijing, Shanghai, Guangzhou, Kunming, Shenyang and Lanzhou flight information regions, the air traffic management technical support networks are built by using the data of air traffic support facilities, air route, air traffic flow, etc. The average degrees, degree distributions, degree-degree correlations, clustering coefficients, average shortest paths and diameters of these netwoks are comparatively analyzed. The results show that the degrees of most nodes are between two and four. The network has a power law distribution, which is the same as that of air transportation network. The degree-degree correlation of air traffic management technical support system network is not assortative nor disassortative mixing, which has random network characteristics. The clustering coefficients of several air traffic management technical support system networks are between 0.25 and 0.39. The clustering value is lower than that of air transportation network. The shortest paths of air traffic management technical support system networks are between 3.16 and 5.05. The average shortest paths of these networks are all 3.4, which exhibits small world characteristics. Network attack based on degrees of priority and random is conducted to several flight information regions of air traffic management technical support network, showing the network is vulnerable. The network performance decreases quickly after degree priority attack. Some key nodes play an important role in the network. The network survivability can be improved after targeted immunized key nodes. The network performance can be improved by using more satellites based air traffic management technical support system. These rules provide theoretical support for improving and expanding air traffic management technical support system, and have practical significance for reducing the influence of emergency on air traffic management system support ability and ensuring the continuous safety of air traffic.
      通信作者: 韩松臣, hansongchen@nuaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号:71573184)资助的课题.
      Corresponding author: Han Song-Chen, hansongchen@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 71573184).
    [1]

    Wang J J, Yu X H, McGrath B, Zhong J X 2015 Proceedings, IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society Dallas, TX, United states October 30-November 1, 2014 p3543

    [2]

    Shimizu Y, Yamazaki F, Yasuda S, Towhata I, Suzuki T, Isoyama R, Ishida E, Suetomi I, Koganemaru K, Nakayama W 2006 J. Geotech. Geoenviron. Eng. 132 237

    [3]

    Zhou X, Yang F, Zhang F M, Zhou W P, Zou W 2013 Acta Phys. Sin. 62 150201 (in Chinese) [周漩, 杨帆, 张凤鸣, 周卫平, 邹伟 2013 物理学报 62 150201]

    [4]

    Zheng X, Chen J P, Shao J L, Bie L D 2012 Acta Phys. Sin. 61 190510 (in Chinese) [郑啸, 陈建平, 邵佳丽, 别立东 2012 物理学报 61 190510]

    [5]

    Cheung D P, Gunes M H 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining Istanbul, Turkey August 26-29, 2012 p699

    [6]

    Mehta V, Patel F, Glina Y, Schmidt M, Miller B, Bliss N 2012 Conference on Intelligent Data Understanding Boulder, CO, United States October 24-26, 2012 p124

    [7]

    Xu Z W, Harriss R 2008 Geo. Journal 73 87

    [8]

    Bagler G 2008 Physica A 387 2972

    [9]

    Guida M, Maria F 2007 Chaos, Solitons Fractals 31 527

    [10]

    Pien K C, Han K, Shang W L, Majumdar A, Ochieng W 2015 Transportmetrica A: Transport Sci. 11 772

    [11]

    Zhang J, Cao X B, Du W B, Cai K Q 2010 Physica A 389 3922

    [12]

    Cai K Q, Zhang J, Du W B, Cao X B 2012 Chin. Phys. B 21 028903

    [13]

    Wang H Y, Wen R Y 2012 24th Chinese Control and Decision Conference Taiyuan, China, May 23-25, 2012 p2400

    [14]

    Wang H Y, Wen R Y, Zhao Y F 2015 Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 229 2497

    [15]

    Zeng X Z, Tang X X, Jiang K S 2011 Journal of Transportation Systems Engineering and Information Technology 11 175 (in Chinese) [曾小舟, 唐笑笑, 江可申 2011 交通运输系统工程与信息 11 175]

    [16]

    Zeng X Z, Tang X X, Jiang K S 2012 System Simulation Technology 8 111 (in Chinese) [曾小舟, 唐笑笑, 江可申 2012 系统仿真技术 8 111]

    [17]

    Zeng X Z, Jiang K S, Cheng K 2010 Systems Engineering 28 39 (in Chinese) [曾小舟, 江可申, 程凯 2010 系统工程 28 39]

    [18]

    Wang J E, Mo H H, Jin F J 2009 Acta Geographica Sinica 64 899 (in Chinese) [王姣娥, 莫辉辉, 金凤君 2009 地理学报 64 899]

    [19]

    Paleari S, Redondi R, Malighetti P 2009 Transportation Research Part E: Logistics and Transportation Review 46 198

    [20]

    Suo D, Wen F 2009 2nd International Symposium on Information Science and Engineering Shanghai, China December 26-28, 2009 p114

    [21]

    Shang L Y, Tan Q M 2014 Proceedings of the IEEE International Conference on Software Engineering and Service Sciences Beijing, China June 27-29, 2014 p897

  • [1]

    Wang J J, Yu X H, McGrath B, Zhong J X 2015 Proceedings, IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society Dallas, TX, United states October 30-November 1, 2014 p3543

    [2]

    Shimizu Y, Yamazaki F, Yasuda S, Towhata I, Suzuki T, Isoyama R, Ishida E, Suetomi I, Koganemaru K, Nakayama W 2006 J. Geotech. Geoenviron. Eng. 132 237

    [3]

    Zhou X, Yang F, Zhang F M, Zhou W P, Zou W 2013 Acta Phys. Sin. 62 150201 (in Chinese) [周漩, 杨帆, 张凤鸣, 周卫平, 邹伟 2013 物理学报 62 150201]

    [4]

    Zheng X, Chen J P, Shao J L, Bie L D 2012 Acta Phys. Sin. 61 190510 (in Chinese) [郑啸, 陈建平, 邵佳丽, 别立东 2012 物理学报 61 190510]

    [5]

    Cheung D P, Gunes M H 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining Istanbul, Turkey August 26-29, 2012 p699

    [6]

    Mehta V, Patel F, Glina Y, Schmidt M, Miller B, Bliss N 2012 Conference on Intelligent Data Understanding Boulder, CO, United States October 24-26, 2012 p124

    [7]

    Xu Z W, Harriss R 2008 Geo. Journal 73 87

    [8]

    Bagler G 2008 Physica A 387 2972

    [9]

    Guida M, Maria F 2007 Chaos, Solitons Fractals 31 527

    [10]

    Pien K C, Han K, Shang W L, Majumdar A, Ochieng W 2015 Transportmetrica A: Transport Sci. 11 772

    [11]

    Zhang J, Cao X B, Du W B, Cai K Q 2010 Physica A 389 3922

    [12]

    Cai K Q, Zhang J, Du W B, Cao X B 2012 Chin. Phys. B 21 028903

    [13]

    Wang H Y, Wen R Y 2012 24th Chinese Control and Decision Conference Taiyuan, China, May 23-25, 2012 p2400

    [14]

    Wang H Y, Wen R Y, Zhao Y F 2015 Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 229 2497

    [15]

    Zeng X Z, Tang X X, Jiang K S 2011 Journal of Transportation Systems Engineering and Information Technology 11 175 (in Chinese) [曾小舟, 唐笑笑, 江可申 2011 交通运输系统工程与信息 11 175]

    [16]

    Zeng X Z, Tang X X, Jiang K S 2012 System Simulation Technology 8 111 (in Chinese) [曾小舟, 唐笑笑, 江可申 2012 系统仿真技术 8 111]

    [17]

    Zeng X Z, Jiang K S, Cheng K 2010 Systems Engineering 28 39 (in Chinese) [曾小舟, 江可申, 程凯 2010 系统工程 28 39]

    [18]

    Wang J E, Mo H H, Jin F J 2009 Acta Geographica Sinica 64 899 (in Chinese) [王姣娥, 莫辉辉, 金凤君 2009 地理学报 64 899]

    [19]

    Paleari S, Redondi R, Malighetti P 2009 Transportation Research Part E: Logistics and Transportation Review 46 198

    [20]

    Suo D, Wen F 2009 2nd International Symposium on Information Science and Engineering Shanghai, China December 26-28, 2009 p114

    [21]

    Shang L Y, Tan Q M 2014 Proceedings of the IEEE International Conference on Software Engineering and Service Sciences Beijing, China June 27-29, 2014 p897

  • [1] 尹宁, 徐桂芝, 周茜. 磁刺激穴位复杂脑功能网络构建与分析. 物理学报, 2013, 62(11): 118704. doi: 10.7498/aps.62.118704
    [2] 刘金良. 具有随机节点结构的复杂网络同步研究. 物理学报, 2013, 62(4): 040503. doi: 10.7498/aps.62.040503
    [3] 李雨珊, 吕翎, 刘烨, 刘硕, 闫兵兵, 常欢, 周佳楠. 复杂网络时空混沌同步的Backstepping设计. 物理学报, 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [4] 蔡君, 余顺争. 一种有效提高无标度网络负载容量的管理策略. 物理学报, 2013, 62(5): 058901. doi: 10.7498/aps.62.058901
    [5] 肖尧, 郑建风. 复杂交通运输网络上的拥挤与效率问题研究. 物理学报, 2013, 62(17): 178902. doi: 10.7498/aps.62.178902
    [6] 丁益民, 杨昌平. 考虑人类流动行为的动态复杂网络研究. 物理学报, 2012, 61(23): 238901. doi: 10.7498/aps.61.238901
    [7] 吕天阳, 谢文艳, 郑纬民, 朴秀峰. 加权复杂网络社团的评价指标及其发现算法分析. 物理学报, 2012, 61(21): 210511. doi: 10.7498/aps.61.210511
    [8] 周漩, 张凤鸣, 周卫平, 邹伟, 杨帆. 利用节点效率评估复杂网络功能鲁棒性. 物理学报, 2012, 61(19): 190201. doi: 10.7498/aps.61.190201
    [9] 郝崇清, 王江, 邓斌, 魏熙乐. 基于稀疏贝叶斯学习的复杂网络拓扑估计. 物理学报, 2012, 61(14): 148901. doi: 10.7498/aps.61.148901
    [10] 刘刚, 李永树. 基于引力约束的复杂网络拥塞问题研究. 物理学报, 2012, 61(10): 108901. doi: 10.7498/aps.61.108901
    [11] 吕翎, 柳爽, 张新, 朱佳博, 沈娜, 商锦玉. 节点结构互异的复杂网络的时空混沌反同步. 物理学报, 2012, 61(9): 090504. doi: 10.7498/aps.61.090504
    [12] 周漩, 张凤鸣, 李克武, 惠晓滨, 吴虎胜. 利用重要度评价矩阵确定复杂网络关键节点. 物理学报, 2012, 61(5): 050201. doi: 10.7498/aps.61.050201
    [13] 崔爱香, 傅彦, 尚明生, 陈端兵, 周涛. 复杂网络局部结构的涌现:共同邻居驱动网络演化. 物理学报, 2011, 60(3): 038901. doi: 10.7498/aps.60.038901
    [14] 李树彬, 吴建军, 高自友, 林勇, 傅白白. 基于复杂网络的交通拥堵与传播动力学分析. 物理学报, 2011, 60(5): 050701. doi: 10.7498/aps.60.050701
    [15] 陈华良, 刘忠信, 陈增强, 袁著祉. 复杂网络的一种加权路由策略研究. 物理学报, 2009, 58(9): 6068-6073. doi: 10.7498/aps.58.6068
    [16] 李涛, 裴文江, 王少平. 无标度复杂网络负载传输优化策略. 物理学报, 2009, 58(9): 5903-5910. doi: 10.7498/aps.58.5903
    [17] 王丹, 于灏, 井元伟, 姜囡, 张嗣瀛. 基于感知流量算法的复杂网络拥塞问题研究. 物理学报, 2009, 58(10): 6802-6808. doi: 10.7498/aps.58.6802
    [18] 吕翎, 张超. 一类节点结构互异的复杂网络的混沌同步. 物理学报, 2009, 58(3): 1462-1466. doi: 10.7498/aps.58.1462
    [19] 许 丹, 李 翔, 汪小帆. 复杂网络病毒传播的局域控制研究. 物理学报, 2007, 56(3): 1313-1317. doi: 10.7498/aps.56.1313
    [20] 李 季, 汪秉宏, 蒋品群, 周 涛, 王文旭. 节点数加速增长的复杂网络生长模型. 物理学报, 2006, 55(8): 4051-4057. doi: 10.7498/aps.55.4051
计量
  • 文章访问数:  3374
  • PDF下载量:  340
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-07
  • 修回日期:  2016-04-21
  • 刊出日期:  2016-07-05

基于复杂网络理论的多元混合空管技术保障系统网络特征分析

  • 1. 四川大学, 视觉合成图形图像技术国防重点学科实验室, 成都 610064
  • 通信作者: 韩松臣, hansongchen@nuaa.edu.cn
    基金项目: 国家自然科学基金(批准号:71573184)资助的课题.

摘要: 为提高空管技术保障系统应对突发事件的能力, 本文以空管技术保障系统导航、通信、监视设备覆盖的航路结构为基础, 构建系统对应的空间网络模型. 提出从灵活性、鲁棒性、高效性三个方面度量空管技术保障系统网络特性, 对北京、上海、广州、昆明、沈阳、兰州飞行情报区的空管技术保障系统网络的平均度、度分布、度-度相关性、聚集系数、平均路径长度、直径等进行分析. 分析结果显示, 各飞行情报区空管技术保障系统的平均聚集系数在0.25-0.39之间, 网络聚集程度偏低; 网络平均路径长度为3.4, 表现出小世界网络特征; 度值3时服从幂律分布, 度-度分布不表现出正相关或负相关. 对网络进行基于度优先的和随机的抗毁性测度, 空管技术保障系统网络抗毁性较差, 网络的可靠性由少数核心节点决定, 应对核心节点进行目标免疫, 提高网络的抗毁性. 这些规律为空管技术保障系统能力提升、新建扩建提供理论依据, 对降低突发事件对空管系统保障能力的影响, 保障空中交通持续安全具有现实意义.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回