搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于提升有限口径辐射功率的紧耦合相控阵天线的设计

童三强 王秉中 王任

引用本文:
Citation:

用于提升有限口径辐射功率的紧耦合相控阵天线的设计

童三强, 王秉中, 王任

A tightly coupled dipole array used for radiation power improvement on finite radiation aperture

Tong San-Qiang, Wang Bing-Zhong, Wang Ren
PDF
HTML
导出引用
  • 电磁波的辐射功率对其传输距离起着决定性作用. 传统上, 可以通过增大辐射口径或增加天线单元输入功率来提升电磁波的辐射功率. 但辐射口径由于受装配空间限制而无法持续增大, 天线单元输入功率的增大也因信号源功率提升困难而难以实现. 因此, 在有限口径下, 如何提升电磁波的辐射功率成了迫切需要解决的问题. 通过在有限口径下布置更多单元进行功率合成、改善单元的阻抗匹配和减小损耗以增加天线阵的辐射效率均可提升有限口径辐射功率. 基于此, 本文设计了一个可用于提升有限口径辐射功率的紧耦合相控阵天线, 一方面采用高介电常数的介质基板使阵列小型化, 同时使用紧凑型巴伦进行馈电, 从而天线单元具有很小的尺寸, 最终天线单元周期为0.144λhigh × 0.144λhigh (λhigh为自由空间中最高工作频率对应的波长); 另一方面通过改善巴伦和天线阵的阻抗匹配, 使用频率选择表面匹配层改善天线阵和自由空间的阻抗匹配, 以及使用低损耗的介质基板, 从而提升天线阵的效率. 仿真和测试结果表明, 在1.7—5.4 GHz内天线阵具有宽角扫描性能并且保持高辐射效率. 经过对比分析, 本文设计的天线阵能够提高有限口径的辐射功率.
    Radiation power of an electromagnetic wave plays a decisive role in its transmission distance. Traditionally, the radiation power can be improved by expanding the radiation aperture size of the antenna array or increasing input power of the unit cell. However, the radiation aperture size is always restricted by assembly space. The input power improvement of the unit cell is always limited by the signal source. It is difficult to improve radiation power on a finite radiation aperture. However, the radiation power on a finite radiation aperture is related closely to the number of antenna elements and the radiation efficiency of the antenna array. It is useful to arrange more elements and improve radiation efficiency of the antenna array to improve the radiation power on a finite radiation aperture. Wideband wide-angle scanning phased array is able to make full use of a finite radiation aperture. The wide-angle scanning properties make it possible for the radiated power to cover a wide area. In this paper, a compact wideband wide-angle scanning tightly coupled dipole array (TCDA) is proposed. A high permittivity substrate and compact wideband balun are used for miniaturizing the antenna array. The period of the unit cell is only 0.144λhigh × 0.144λhigh (λhigh is the wavelength at the highest operation frequency in free space). Parameters of the balun are optimized to improve impedance matching between the balun and the antenna array. Two bilateral frequency selective surfaces (FSSs) are used to replace traditional dielectric superstrate to improve the impedance matching between the antenna array and free space. A low-loss dielectric substrate is used to reduce dielectric loss of the antenna array. In these ways, the radiation efficiency is greatly improved. The simulation results show that the proposed antenna array operates at 1.7–5.4 GHz (3.2:1) while scanning up to 65° in the E plane, 45° in the H plane and 60° in the D plane with following a rigorous impedance matching criterion (active VSWR < 2). A 16 × 16 prototype array is fabricated and measured. Good agreement is achieved between the simulation results and the measurement results. Compared with the designs in the literature, the proposed antenna array has an excellent performance in radiation power on a finite radiation aperture.
      通信作者: 王秉中, bzwang@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61731005, 61901086)、博士后创新人才支持计划(批准号: BX20180057)、四川省应用基础研究项目(批准号: 2021YJ0100)和中央高校基本科研业务费(批准号: ZYGX2019J101)资助的课题
      Corresponding author: Wang Bing-Zhong, bzwang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61731005, 61901086), the Postdoctoral Innovation Talents Support Program, China (Grant No. BX20180057), the Applied Foundational Research Project of Sichuan Province, China (Grant No. 2021YJ0100), and the Fundamental Research Fund for the Central Universities, China (Grant No. ZYGX2019J101)
    [1]

    Gold S H, Nusinovich G S 1997 Rev. Sci. Instrum. 68 3945Google Scholar

    [2]

    Chen Y, Zhang Y P 2005 IEEE Antennas Wirel. Propag. Lett. 53 3089Google Scholar

    [3]

    Choe H, Lim S 2014 IEEE Trans. Antennas Propag. 62 5497Google Scholar

    [4]

    Li J F, Chu Q X, Huang T W 2012 IEEE Trans. Antennas Propag. 60 482Google Scholar

    [5]

    陈昭福, 黄华, 常安碧, 许州, 何琥, 雷禄容, 胡进光, 袁欢, 刘振帮 2014 物理学报 63 238402Google Scholar

    Chen Z F, Huang H, Chang A B, Xu Z, He H, Lei L R, Hu J J, Yuan H, Liu Z B 2014 Acta Phys. Sin. 63 238402Google Scholar

    [6]

    Munk B A 2003 Finite Antenna Arrays and FSS (USA: Wiley-IEEE Press) pp181−213

    [7]

    Yetisir E, Ghalichechian N, Volakis J L 2016 IEEE Trans. Antennas Propag. 64 4256Google Scholar

    [8]

    Hu C H, Wang B Z, Gao G F, Wang R, Xiao S Q, Ding X 2020 IEEE Antennas Wirel. Propag. Lett. 20 63

    [9]

    Zhang Y H, Yang S W, Xiao S W, Chen Y K, Qu S W, Hu J 2019 IEEE Antennas Wirel. Propag. Lett. 18 378Google Scholar

    [10]

    Lim T B, Zhu L 2008 Proceedings of the IEEE MTT-S International Microwave Workshop Series on Art Miniaturizing RF Microwave and Passive Components Chengdu, China, December 14−15, 2008 p153

    [11]

    Zhu L, Bu H, Wu K 2000 IEEE MTT-S International Microwave Symposium Digest Boston, USA, June 11−16, 2000 p315

    [12]

    Magill E G, Wheeler H A 1966 IEEE Trans. Antennas Propag. 14 49Google Scholar

    [13]

    Smith D R, Schultz S 2002 Phys. Rev. B 65 195104Google Scholar

    [14]

    Hood A Z, Karacolak T, Topsakal E 2008 IEEE Antennas Wirel. Propag. Lett. 7 656Google Scholar

    [15]

    Cavallo D, Syed W H, Neto A 2017 IEEE Trans. Antennas Propag. 65 1788Google Scholar

    [16]

    Hu C H, Wang B Z, Wang R, Xiao S Q, Ding X 2020 IEEE Trans. Antennas Propag. 68 2788Google Scholar

    [17]

    Moulder W F, Sertel K, Volakis J L 2013 IEEE Trans. Antennas Propag. 61 5802Google Scholar

    [18]

    Bah A O, Qin P Y, Ziolkowski RW, Guo Y J, Bird T S 2019 IEEE Trans. Antennas Propag. 67 2332Google Scholar

    [19]

    Jiang Z G, Xiao S Q, Yao Z X, Wang B Z 2020 IEEE Trans. Antennas Propag. 68 7348Google Scholar

    [20]

    Syed W H, Cavallo D, Shivamurthy H T, Neto A 2015 IEEE Trans. Antennas Propag. 64 543

    [21]

    Xia R L, Qu S W, Yang S W, Chen Y K 2018 IEEE Trans. Antennas Propag. 66 1767Google Scholar

  • 图 1  天线单元结构 (a) 前视图 (红色馈线下方的地板被移除); (b) 后视图

    Fig. 1.  Unit Cell of the TCDA: (a) Front view of the unit cell (the ground of the red parts is etched); (b) back view of the unit cell.

    图 2  红色馈线下方地板未移除和地板移除时巴伦的反射系数

    Fig. 2.  Reflection coefficients of the balun with and without the etched ground of the red feeding parts.

    图 3  无限大阵列有加载和无加载匹配层在H面45°扫描时, 天线单元有源驻波比

    Fig. 3.  Active VSWRs of the unit cell at 45° scanning in the H plane in infinite array simulation with and without frequency selective surfaces.

    图 4  无限大阵列交叉极化水平 (a) 在不同面不同角度扫描时的交叉极化比; (b) 在3 GHz边射时, 天线口径面电场分布

    Fig. 4.  Cross polarization level in infinite array simulation: (a) Cross polarization ratio at different angles scanning in different planes; (b) electric field on radiation aperture at 3 GHz.

    图 5  无限大阵列在边射、E面65°、D面60°和H面45°扫描时, 天线阵的辐射效率

    Fig. 5.  Radiation efficiency of the proposed antenna array at broadside, 65° scanning in the E plane, 45° scanning in the H plane and 60° scanning in the D plane.

    图 6  无限大阵列在边射、E面65°、H面45°和D面60°扫描时, 天线单元有源驻波比

    Fig. 6.  Active VSWRs of the unit cell in infinite array simulation at broadside, 65° scanning in the E plane, 45° scanning in the H plane and 60° scanning in the D plane.

    图 7  天线阵加工和测试 (a) 实际加工的16 × 16阵列; (b) 测试装置和测试环境

    Fig. 7.  Antenna array fabrication and measurement: (a) Fabricated prototype of 16 × 16 antenna array; (b) measurement setup and environment.

    图 8  测试方案 (a) E面; (b) H面; (c) D

    Fig. 8.  Measurement scheme: (a) E plane; (b) H plane; (c) D plane.

    图 9  E面0°, 45°, 65°扫描时的归一化方向图 (a) 3 GHz; (b) 5 GHz

    Fig. 9.  Normalized radiation patterns at 0°, 45° and 65° scanning in the E plane: (a) 3 GHz; (b) 5 GHz.

    图 10  H面0°, 45°扫描时的归一化方向图 (a) 3 GHz; (b) 5 GHz

    Fig. 10.  Normalized radiation patterns at 0° and 45° scanning in the H plane: (a) 3 GHz; (b) 5 GHz.

    图 11  D面0°, 45°, 60°扫描时的归一化方向图 (a) 3 GHz; (b) 5 GHz

    Fig. 11.  Normalized radiation patterns at 0°, 45° and 60° scanning in the D plane: (a) 3 GHz; (b) 5 GHz.

    图 12  天线阵边射时, 测试结果和仿真结果对比

    Fig. 12.  Comparisons between measured and simulated results at broadside radiation.

    表 1  按相同辐射口径换算, 不同文献中天线阵的辐射功率对比

    Table 1.  Comparisons of radiated power of antenna arrays in literatures on the same conversion size radiation aperture.

    参考文献工作频率/GHz单元周期/λhigh × λhigh扫描角度有源驻波比单元个数辐射效率辐射功率/W
    [16]0.75—3.85 GHz
    (5.1∶1)
    0.36 × 0.36E-70°
    H-60°
    < 377195%732
    [17]0.68—5.00 GHz
    (7.35∶1)
    0.45 × 0.45E-45°
    H-45°
    < 349370%345
    [18]0.80—4.38 GHz
    (5.5∶1)
    0.35 × 0.35E-70°
    H-55°
    < 381687%710
    [19]3.13—11.63 GHz
    (3.7∶1)
    0.36 × 0.36E-75°
    H-60°
    < 377184%647
    [20]6.5—14.5 GHz
    (2.23∶1)
    0.45 × 0.45E-50°
    H-50°
    < 249395%468
    [21]7.8—13.5 GHz
    (1.7∶1)
    0.45 × 0.39E-70°
    H-70°
    < 256990%512
    本文设计1.7—5.4 GHz
    (3.2∶1)
    0.144 × 0.144E-65°
    H-45°
    < 2482284%4050
    下载: 导出CSV
  • [1]

    Gold S H, Nusinovich G S 1997 Rev. Sci. Instrum. 68 3945Google Scholar

    [2]

    Chen Y, Zhang Y P 2005 IEEE Antennas Wirel. Propag. Lett. 53 3089Google Scholar

    [3]

    Choe H, Lim S 2014 IEEE Trans. Antennas Propag. 62 5497Google Scholar

    [4]

    Li J F, Chu Q X, Huang T W 2012 IEEE Trans. Antennas Propag. 60 482Google Scholar

    [5]

    陈昭福, 黄华, 常安碧, 许州, 何琥, 雷禄容, 胡进光, 袁欢, 刘振帮 2014 物理学报 63 238402Google Scholar

    Chen Z F, Huang H, Chang A B, Xu Z, He H, Lei L R, Hu J J, Yuan H, Liu Z B 2014 Acta Phys. Sin. 63 238402Google Scholar

    [6]

    Munk B A 2003 Finite Antenna Arrays and FSS (USA: Wiley-IEEE Press) pp181−213

    [7]

    Yetisir E, Ghalichechian N, Volakis J L 2016 IEEE Trans. Antennas Propag. 64 4256Google Scholar

    [8]

    Hu C H, Wang B Z, Gao G F, Wang R, Xiao S Q, Ding X 2020 IEEE Antennas Wirel. Propag. Lett. 20 63

    [9]

    Zhang Y H, Yang S W, Xiao S W, Chen Y K, Qu S W, Hu J 2019 IEEE Antennas Wirel. Propag. Lett. 18 378Google Scholar

    [10]

    Lim T B, Zhu L 2008 Proceedings of the IEEE MTT-S International Microwave Workshop Series on Art Miniaturizing RF Microwave and Passive Components Chengdu, China, December 14−15, 2008 p153

    [11]

    Zhu L, Bu H, Wu K 2000 IEEE MTT-S International Microwave Symposium Digest Boston, USA, June 11−16, 2000 p315

    [12]

    Magill E G, Wheeler H A 1966 IEEE Trans. Antennas Propag. 14 49Google Scholar

    [13]

    Smith D R, Schultz S 2002 Phys. Rev. B 65 195104Google Scholar

    [14]

    Hood A Z, Karacolak T, Topsakal E 2008 IEEE Antennas Wirel. Propag. Lett. 7 656Google Scholar

    [15]

    Cavallo D, Syed W H, Neto A 2017 IEEE Trans. Antennas Propag. 65 1788Google Scholar

    [16]

    Hu C H, Wang B Z, Wang R, Xiao S Q, Ding X 2020 IEEE Trans. Antennas Propag. 68 2788Google Scholar

    [17]

    Moulder W F, Sertel K, Volakis J L 2013 IEEE Trans. Antennas Propag. 61 5802Google Scholar

    [18]

    Bah A O, Qin P Y, Ziolkowski RW, Guo Y J, Bird T S 2019 IEEE Trans. Antennas Propag. 67 2332Google Scholar

    [19]

    Jiang Z G, Xiao S Q, Yao Z X, Wang B Z 2020 IEEE Trans. Antennas Propag. 68 7348Google Scholar

    [20]

    Syed W H, Cavallo D, Shivamurthy H T, Neto A 2015 IEEE Trans. Antennas Propag. 64 543

    [21]

    Xia R L, Qu S W, Yang S W, Chen Y K 2018 IEEE Trans. Antennas Propag. 66 1767Google Scholar

  • [1] 任兴, 于宏宇, 张勇. 基于BCPO发光材料近紫外有机发光二极管的电致发光效率与稳定性. 物理学报, 2024, 73(4): 047801. doi: 10.7498/aps.73.20231301
    [2] 杨浩楠, 曹祥玉, 高军, 杨欢欢, 李桐. 基于宽波束磁电偶极子天线的宽角扫描线性相控阵列. 物理学报, 2021, 70(1): 014101. doi: 10.7498/aps.70.20201104
    [3] 王存海, 郑树, 张欣欣. 非规则形状介质内辐射-导热耦合传热的间断有限元求解. 物理学报, 2020, 69(3): 034401. doi: 10.7498/aps.69.20191185
    [4] 钱治文, 商德江, 孙启航, 何元安, 翟京生. 三维浅海下弹性结构声辐射预报的有限元-抛物方程法. 物理学报, 2019, 68(2): 024301. doi: 10.7498/aps.68.20181452
    [5] 赵运进, 田锰, 黄勇刚, 王小云, 杨红, 米贤武. 基于有限元法的光子并矢格林函数重整化及其在自发辐射率和能级移动研究中的应用. 物理学报, 2018, 67(19): 193102. doi: 10.7498/aps.67.20180898
    [6] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究. 物理学报, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [7] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究. 物理学报, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [8] 辛成运, 程晓舫, 张忠政. 基于有限立体角测量的谱色测温法. 物理学报, 2013, 62(3): 030702. doi: 10.7498/aps.62.030702
    [9] 洪清泉, 仲伟博, 余燕忠, 蔡植善, 陈木生, 林顺达. 电偶极子在磁各向异性介质中的辐射功率. 物理学报, 2012, 61(16): 160302. doi: 10.7498/aps.61.160302
    [10] 孟庆苗, 蒋继建, 李传安. 球对称动态黑洞视界附近的瞬时辐射能通量及瞬时辐射功率. 物理学报, 2010, 59(3): 1481-1486. doi: 10.7498/aps.59.1481
    [11] 吴丹, 陶超, 刘晓峻. 有限方位扫描的光声断层成像分辨率研究. 物理学报, 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [12] 孟现柱, 王明红, 任忠民. 基于椭圆超腔的高亮度激光同步辐射分析. 物理学报, 2010, 59(3): 1638-1642. doi: 10.7498/aps.59.1638
    [13] 贺西平. 弯曲振动阶梯圆盘辐射阻抗的计算方法. 物理学报, 2010, 59(5): 3290-3293. doi: 10.7498/aps.59.3290
    [14] 洪清泉, 余燕忠, 蔡植善, 陈木生, 林顺达. 磁偶极和电四极在磁各向异性介质中的辐射功率. 物理学报, 2010, 59(8): 5235-5240. doi: 10.7498/aps.59.5235
    [15] 孟庆苗, 蒋继建, 王帅. 静态球对称黑洞的热质点模型及辐射功率. 物理学报, 2009, 58(11): 7486-7490. doi: 10.7498/aps.58.7486
    [16] 贾婉丽, 施 卫, 屈光辉, 孙小芳. GaAs光电导天线辐射太赫兹波功率的计算. 物理学报, 2008, 57(9): 5425-5428. doi: 10.7498/aps.57.5425
    [17] 袁常青, 赵同军, 王永宏, 展 永. 有限体系能量耗散运动的功率谱分析. 物理学报, 2005, 54(12): 5602-5608. doi: 10.7498/aps.54.5602
    [18] 徐荣昆, 李正宏, 郭 存, 杨建伦, 李林波, 宋凤军, 宁佳敏, 夏广新, 许泽平. 一维时空分辨x射线辐射功率测量系统. 物理学报, 2003, 52(5): 1203-1206. doi: 10.7498/aps.52.1203
    [19] 甘德昌. 热电探测器对辐射功率的响应. 物理学报, 1995, 44(1): 137-141. doi: 10.7498/aps.44.137
    [20] 徐璋本. 能源策动的天线的普遍边界条件和它们对一个有限圆柱形天线的应用. 物理学报, 1956, 12(4): 298-318. doi: 10.7498/aps.12.298
计量
  • 文章访问数:  5924
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-09
  • 修回日期:  2021-04-21
  • 上网日期:  2021-09-28
  • 刊出日期:  2021-10-20

/

返回文章
返回