搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反物质研究进展

马余刚

引用本文:
Citation:

反物质研究进展

马余刚

Advances in Antimatter Research

Ma Yu-Gang
PDF
导出引用
  • 宇宙正反物质的不对称性起源是当今科学的重要未解之谜。本文简要评述反物质研究历程和近期国际上的相关研究热点。重点阐述了近些年来,在相对论重离子碰撞实验中的取得的反物质研究进展,包括发现首个反物质超核(反超氚)、反物质氦 4、反超氢 4、反质子相互作用的首次测量、正反超氚核的质量和结合能的精确测量等。在此基础上,我们讨论了(反)轻核产生的不同物理机制。同时,也介绍了反氢原子实验、太空探测反物质等方面取得的最新成果,并讨论这些进展对认识物质结构的启示。
    The asymmetric origin of matter and antimatter in the universe is an important unsolved mystery in science today. In this paper, we briefly review the history of antimatter research and the recent international hotspots of related research. It focuses on the advances in antimatter research made in recent years at the large-scale international RHIC-STAR experiment at the Relativistic Heavy Ion Collider, including the discovery of the first antimatter hypernucleus (anti-hypertriton), antimatter helium 4 and antihyperhydrogen 4, the first measurements of antiproton interactions, and the precise measurements of the masses and binding energies of the hypertriton and anti-hypertriton. The antimatter hypertriton nucleus, composed of an antiproton, an antineutron, and an anti-Λ hyperon, is the first anti-hypernucleu to be discovered, extending the three-dimensional nuclide map from the anti-strange quark degree of freedom. Antimatter Helium 4 is the heaviest stable antimatter nucleus yet discovered. Anti-hyperhydrogen 4, just discovered in 2024, is composed of an antiproton, two antineutrons, and an anti-Λ hyperon, and is the heaviest antimatter hypernucleus to date. Equivalence to the proton-proton interaction was established by measurements of the antiproton-antiproton interaction. At the same time, precise measurements of the masses of the hypertriton and anti-hypertriton nuclei confirmed the equivalence of matter and antimatter. And these also fully demonstrate that the CPT symmetry is also valid for antimatter nuclei. Measurements of the binding energy of the hypertriton nucleus indicate that the interaction between Λ and the nucleus of the hypertriton (the deuterium nucleus) is strong, which differs from the earlier common belief that the hypertriton nucleus is a weakly bound system. Furthermore, we discuss different physical mechanisms for the production of (anti) light nuclei, mainly including thermal, coalescence and relativistic kinetic models. Finally, we also present recent results from antihydrogen atom experiments at CERN, antimatter space probes, etc., and discuss the implications of these advances for understanding the structure of matter. In general, current studies of antimatter nuclei and atoms do not yet provide clear evidence for the asymmetric origin of matter and antimatter in the Universe, which pushes to further improve the precision of various types of measurements in the study of antimatter. Of course, other efforts in this direction in nuclear and particle physics are well expected.
  • [1]

    Abelev B, et al. 2010 Sci. 328 58

    [2]

    Agakishiev H, et al. 2011 Nat. 473 353

    [3]

    Adamczyk L, et al. 2015 Nat. 527 345

    [4]

    Adam J, et al. 2020 Nat. Phys. 16 409

    [5]

    Abdulhamid M I, et al. 2024 Nat. 632 1026

    [6]

    Chen J, Keane D, Ma Y G, Tang A, Xu Z 2018 Phys. Rep. 760 1

    [7]

    Arkhipkin D, Lauret J 2017 Jour. of Phys.:Conf. Series 898 032023

    [8]

    Adamczyk L, Adkins J K, Agakishiev G, et al. 2017 Nat. 548 62

    [9]

    Abdallah M S, Aboona B E, et al. 2023 Nat. 614 244

    [10]

    Wang X N 2023 Nucl. Sci. Tech. 34 15

    [11]

    Adams J, et al. 2021 Phys. Rev. Lett. 127 052302

    [12]

    Yang S, Tang Z B, Yang C, Zha W M 2023 Acta Phys. Sin. 72 211201.(杨帅,唐泽波,杨驰,查王妹2023 物理学报72 211201)

    [13]

    Abdallah M S, et al. 2023 Sci. Adv. 9 eabq3903

    [14]

    Ma Y G 2023 Nucl. Sci. Tech. 34 16

    [15]

    Abdallah M S, et al. 2022 Phys. Rev. C 105 014901

    [16]

    Shou Q Y, Zhao J, Xu H J, Li W, Wang G, Tang A H, Wang F Q 2023 Acta Phys. Sin. 72 112504.(寿齐烨, 赵杰,徐浩洁,李威,王钢,唐爱洪,王福强2023物理学报72 112504)

    [17]

    Zhao X L, Ma G L, Ma Y G 2023 Acta Phys. Sin. 72 112502.(赵新丽,马国亮,马余刚2023物理学报 72 112502)

    [18]

    Liang Z T, Wang X N 2006 Phys. Rev. Lett. 94 102301

    [19]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20

    [20]

    Gao J H, Huang X G, Liang Z T, Wang Q, Wang X N 2023 Acta Phys. Sin. 72 072501.(高建华,黄旭光,梁作堂,王群,王新年2023物理学报72 072501)

    [21]

    Sheng X L, Liang Z T, Wang Q 2023 Acta Phys. Sin. 72 072502.(盛欣力,梁作堂,王群2023物理学报 72 072502)

    [22]

    Ruan L J, Xu Z B, Yang C 2023 Acta Phys. Sin. 72 112401.(阮丽娟,许长补,杨驰2023物理学报72 112401)

    [23]

    Chen J H, Keane D, Ma Y G, Oliva L, Sheng X L, Singha S, Sun X, Tang A H, Wang Q, Zhou C S 2024 Nucl. Phys. News 34 17

    [24]

    Chen J, Liang Z T, Ma Y G, Wang Q 2023 Sci. Bull. 68 874

    [25]

    Lattimer J M, Prakash M 2004 Sci. 304 536

    [26]

    Lea R 2013 Nucl. Phys. A 914 415

    [27]

    Ma Y G, Chen J H 2011 Sci. 63 11.(马余刚,陈金辉2011科学63 11)

    [28]

    Ma Y G, Chen J H 2011 Chin. Bas. Sci. 13 20.(马余刚,陈金辉2011中国基础科学13 20)

    [29]

    Xue L,(for the STAR Collaboration)2011 Jour. of Phys. G:Nucl. and Part. Phys. 38 124072.薛亮,博 士论文"反物质氦4原子核的实验观测及其产生机制研究",上海应用物理研究所, 2012

    [30]

    Ma Y G 2013 Jour. of Phys.:Conf. Ser. 420 012036

    [31]

    Ma Y G 2012 Sci. Dev. Rep.(Science Press), p 108.(马余刚2012科学发展报告(科学出版社) p108)

    [32]

    Abdallah M, et al. 2022 Phys. Lett. B 834 137449

    [33]

    Hanbury Brown R, Twiss R Q 1956 Nat. 178 1046

    [34]

    Ma Y G, Fang D Q, Sun X Y, et al. 2015 Phys. Lett. B 743 306

    [35]

    Zhang Z Q, Ma Y G 2016 Nucl. Sci. Tech. 27 152.张正桥,博士论文"反质子间相互作用的测量",上 海应用物理研究所, 2017

    [36]

    Ma Y G, Zhang Z Q 2016 Sci. 68 10.(马余刚,张正桥2016科学68 10)

    [37]

    Liu P 2019 Nucl. Phys. A 982 811.刘鹏,博士论文"超氚核与反超氚核质量和结合能的精确测量", 上海应用物理研究所, 2020

    [38]

    Adam J, et al. 2015 Nat. Phys. 11 811

    [39]

    Ma Y G 2023 Nucl. Sci. Tech. 34 97

    [40]

    Chen J H, Dong X, Ma Y G, Xu Z 2023 Sci. Bull. 68 3252

    [41]

    Liu D N, Ko C M, Ma Y G, Mazzaschi F, Puccio M, Shou Q Y, Sun K J, Wang Y Z 2024 Phys. Lett. B 855 138855

    [42]

    Acharya S, et al. 2023 Nat. Phys. 19 61

    [43]

    Zhu L L, Wang B, Wang M, Zheng H 2023 Nucl. Sci. Tech. 33 245

    [44]

    Lan S W, Shi S S 2023 Nucl. Sci. Tech. 33 21

    [45]

    Sun X, Zhou C S, Chen J H, Chen Z Y, Ma Y G, Tang A H, Xu Q H 2023 Acta Phys. Sin. 72 072401.(孙旭, 周晨升,陈金辉,陈震宇,马余刚,唐爱洪,徐庆华2023物理学报72 072401)

    [46]

    Ko C M 2023 Nucl. Sci. Tech. 34 80

    [47]

    Sun K J, Chen L W, Ko C M, Li F, Xu Z B 2023 Nucl. Tech. 46 040012.(孙开佳,陈列文,柯治明,李峰, 徐骏,许长补2023核技术46 040012)

    [48]

    Andronic A, Braun-Munzinger P, Redlich K, Stachel H 2018 Nat. 561 321

    [49]

    Zhang Y, Zhang D, Luo X 2023 Nucl. Tech. 46 040001.(张宇,张定伟,罗晓峰2023核技术46 040001)

    [50]

    Jiang Y, Liao J F 2023 Nucl. Tech. 46 040011.(姜寅,廖劲峰2023核技术46 040011)

    [51]

    ChenQ,MaGL,ChenJH2023 Nucl. Tech. 46040013.(陈倩,马国亮,陈金辉2023核技术46040013)

    [52]

    Li F P, Pang L G, Wang X N 2023 Nucl. Tech. 46 040014.(李甫鹏,庞龙刚,王新年2023核技术46 040014)

    [53]

    He W B, Ma Y G, Pang L G, Song H C, Zhou K 2023 Nucl. Sci. Tech. 34 88

    [54]

    Ma Y G, Pang L G, Wang R, Zhou K 2023 Chin. Phys. Lett. 40 122101

    [55]

    Zhao J, Chen J H, Huang X G, Ma Y G 2024 Nucl. Sci. Tech. 35 20

    [56]

    Pang L G, Wang X N 2023 Nucl. Sci. Tech. 34 194

    [57]

    Wu W H, Tao J Q, Zheng H, Zhang W C, Liu X Q, Zhu L L, Bonasera A 2023 Nucl. Sci. Tech. 34 151

    [58]

    Andronic A, Braun-Munzinger P, Stachel J, Stocker H 2011 Phys. Lett. B 697 203

    [59]

    Hirenzaki S, Suzuki T, Tanihata I 1993 Phys. Rev. C 48 2403

    [60]

    Cho S, et al. 2017 Prog. Part. Nucl. Phys. 95 279

    [61]

    Shao T, Chen J, Ma Y G, Xu Z 2022 Phys. Rev. C 105 065801

    [62]

    Shah N, Ma Y G, Chen J H, Zhang S 2016 Phys. Lett. B 754 6

    [63]

    Zhang L, Zhang S, Ma Y G 2022 Euro. Phys. J. C 82 416

    [64]

    Wang R, Ma Y G, Chen L W, Ko C M, Sun K J, Zhang Z 2023 Phys. Rev. C 108 L031601

    [65]

    Sun K J, Wang R, Ko C M, Ma Y G, Shen C 2024 Nat. Commun. 15 1074

    [66]

    Danielewicz P, Bertsch G F 1991 Nucl. Phys. A 533 712

    [67]

    Bleicher M 2024 Nucl. Sci. Tech. 35 129

    [68]

    Abdulhamid M, et al. 2023 Phys. Rev. Lett. 130 202301

    [69]

    Andresen G B, et al. 2010 Nat. 468 673

    [70]

    Amoretti M, et al. 2002 Nat. 419 456

    [71]

    Andresen G B, et al. 2011 Nat. Phys. 7 558

    [72]

    Amole C, et al. 2014 Nat. Commun. 5 3955

    [73]

    Ahmadi M, Baquero-Ruiz M, Bertsche W, et al. 2016 Nat. 529 373

    [74]

    Ulmer S, et al. 2015 Nat. Commun. 524 196

    [75]

    Borchert M J, et al. 2021 Nat. 601 53

    [76]

    Ahmadi M, et al. 2020 Nat. 578 375

    [77]

    Ahmadi M, et al. 2017 Nat. 541 506

    [78]

    Ahmadi M, et al. 2018 Nat. 557 71

    [79]

    Baker C J, Bertsche W, Capra A, et al. 2020 Nat. 592 35

    [80]

    Soter A 2023 Nat. 621 699

    [81]

    Anderson E K, Baker C J, Bertsche W, et al. 2023 Nat. 621 716

    [82]

    Smorra C, et al. 2017 Nat. 550 371

    [83]

    Aguilar M, et al. 2021 Phys. Rep. 894 1

    [84]

    Adriani O, et al. 2011 Sci. 332 69

    [85]

    Ajello M, et al. 2022 Sci. 376 521

    [86]

    Abe K, et al. 2012 Phys. Rev. Lett. 108 051102

    [87]

    Sakai K, et al. 2024 Phys. Rev. Lett. 132 131001

    [88]

    Aguilar M, et al. 2019 Phys. Rev. Lett. 122 101101

    [89]

    Aguilar M, et al. 2019 Phys. Rev. Lett. 122 041102

    [90]

    Aguilar M, et al. 2018 Phys. Rev. Lett. 121 051102

    [91]

    Aguilar M, et al. 2023 Phys. Rev. Lett. 130 161001

    [92]

    Aguilar M, et al. 2023 Phys. Rev. Lett. 131 151002

  • [1] 夏金戈, 李伟峰, 方基宇, 牛中明. 原子核β衰变寿命经验公式. 物理学报, doi: 10.7498/aps.73.20231653
    [2] 焦宝宝. 基于原子核密度的核电荷半径新关系. 物理学报, doi: 10.7498/aps.72.20230126
    [3] 李文飞, 徐瑚珊, 张丰收, 李剑锋, 陈列文. 原子核多重碎裂中同位旋相分比的产生机理研究. 物理学报, doi: 10.7498/aps.51.1700
    [4] 孟杰. 转动原子核的对关联变化. 物理学报, doi: 10.7498/aps.42.368
    [5] 任庚未. 轻原子核结构和投影算符方法. 物理学报, doi: 10.7498/aps.24.396
    [6] 黄田森. 关于非轴对称原子核的转动惯量. 物理学报, doi: 10.7498/aps.21.231
    [7] 杨国琛. 关于原子核的gR因子. 物理学报, doi: 10.7498/aps.19.771
    [8] 轻原子核中的超流效应. 物理学报, doi: 10.7498/aps.19.360
    [9] 张历宁, 戴元本. 原子核中μ介子的辐射俘获. 物理学报, doi: 10.7498/aps.17.41
    [10] 沈洪涛, 李扬国, 任庚未. 偶-偶原子核的表面振盪. 物理学报, doi: 10.7498/aps.16.132
    [11] 朱家珍, 周光召, 彭宏安. μ-介子在He3原子核上的俘获. 物理学报, doi: 10.7498/aps.16.61
    [12] 周光召, 戴元本. μ介子与轻原子核散射时的反冲效应. 物理学报, doi: 10.7498/aps.16.76
    [13] 于敏. 关于重原子核的壳结构理论. 物理学报, doi: 10.7498/aps.15.420
    [14] 于敏, 张宗烨, 余友文. 关于原子核独立粒子结构的力学基础. 物理学报, doi: 10.7498/aps.15.397
    [15] 曾谨言, 张庆营, 杨立铭. 原子核的转动惯量和gR因子. 物理学报, doi: 10.7498/aps.15.565
    [16] 何泽慧, 陆祖荫, 孙汉城. 为原子核科学研究用的原子核乳膠核-2,核-3,制备方法的研究. 物理学报, doi: 10.7498/aps.15.131
    [17] 何国柱. 电子和X射线激发原子核. 物理学报, doi: 10.7498/aps.14.289
    [18] 储连元. 原子核内的自旋轨道耦合. 物理学报, doi: 10.7498/aps.14.469
    [19] 于敏, 邓稼先, 周孝谦, 李扬国. 轻原子核的变形. 物理学报, doi: 10.7498/aps.14.449
    [20] 李整武. 轻原子核的质量. 物理学报, doi: 10.7498/aps.13.30
计量
  • 文章访问数:  49
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-12

/

返回文章
返回