搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超过30GeV的强激光锁相直接电子加速

朱翰辰 周楚亮 李晓锋 田野 李儒新

引用本文:
Citation:

超过30GeV的强激光锁相直接电子加速

朱翰辰, 周楚亮, 李晓锋, 田野, 李儒新

Research on Laser Locking Direct Electron Acceleration over 30 GeV

Han-Chen Zhu, Chu-Liang Zhou, Xiao-Feng Li, Ye Tian, and Ru-Xin Li
PDF
导出引用
  • 当超强激光斜入射辐照固体时,预脉冲会先将固体表面等离子体化,随后主脉冲将与等离子体相互作用并最终被等离子体反射。同时,等离子体中的部分电子将锁定在激光场的加速位相,随后在激光场中获得有效加速,该过程被称为锁相电子加速。由于目前超强激光的电场强度已接近TV/m量级,因此如果电子在激光场加速位相中停留足够长的时间,便有可能获得百GeV甚至TeV量级的能量。本文针对现有的超强激光参数,通过单电子动力学模型,对锁相机制中电子在激光场的加速过程展开系统研究。研究结果表明,峰值功率为10PW量级的强激光可将电子直接加速至30GeV左右。另外,本研究给出了锁相加速机制中锁相电子的远场能量角分布以及最终能量等与激光场强度的定标关系。考虑到激光强度的不断提高并且激光锁相电子加速机制也适用于正电子加速,因此本研究将有望应用与小型化正负电子对撞机及高能伽马射线源等领域。
    When an intense laser obliquely irradiates a solid, a pre-pulse will first ionize the solid surface, followed by the main pulse interacting with the plasma and ultimately being reflected by it. Simultaneously, certain electrons within the plasma will become trapped in the accelerating phase of the laser field, subsequently gaining effective acceleration within the field, a phenomenon known as phase-locked electron acceleration. Given the current intense lasers' electric field intensity nearing the TV/m range, electrons have the potential to acquire energy levels on the order of hundreds of GeV or even TeV if they remain in the laser field's accelerating phase for a sufficient duration. Here, we initially use PIC(Particle-in-Cell) simulations to simulate the interaction process between laser pulses and plasma, thereby obtaining the properties of phase-locked electrons. In order to reduce computational demands, we turn to use a three-dimensional (3D) test particle model to calculate the subsequent interactions of these electrons with the reflected laser field. By this model, we obtain the data of the locked-phase electrons after interacting with the reflected laser (Figure a). Furthermore, we use this model to calculate the dynamical behavior of electrons with different initial conditions (Figure b). Under the laser intensity of a0=350(a0 is the normalized laser vector potential), the energy of the electrons directly accelerated by the laser was enhanced to 32 GeV. In contrast, under the same laser intensity, the energy of the electrons accelerated by ponderomotive was only 0.35 GeV. The research findings indicate that strong lasers with peak powers around 10PW can directly accelerate electrons to approximately 30 GeV. Additionally, this study outlines the optimal initial conditions for electron injection into the laser field and the final electron energy within the phase-locked acceleration mechanism, establishing a calibration relationship with the laser field intensity. Given the continual enhancement of laser intensity and the potential application of the laser phase-locked electron acceleration mechanism to positron acceleration, this research holds promise for implementation in fields such as miniaturized positron-electron colliders and high-energy gamma-ray sources.
  • [1]

    . Dutta B, Ghosh S, Gurrola A, Julson D, Kamon T, Kumar J 2023 J. High Energ. Phys. 2023 164

    [2]

    . Bostedt C, Boutet S, Fritz D M, Huang Z R, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, Williams G J 2016 Rev. Mod. Phys. 88 015007

    [3]

    . Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267

    [4]

    . Strickland D, Mourou G. 1985 Opt. Commun. 56 219

    [5]

    . Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Tóth C, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801

    [6]

    . Zeng Y S, Yu X Q, Tian Y 2023 Chin. J. Lasers 50 1714008 (曾雨珊,余谢秋,田野 2023.中国激光 50 1714008)

    [7]

    . Yu X Q, Zeng Y S, Song L W, Kong D Y, Hao S B, Gui J Y, Yang X J, Xu Y, Wu X J, Leng Y X, Tian Y, Li R X 2023 Nat. Photonics 17 957

    [8]

    . Lawson J D 1979 IEEE Trans. Nucl. Sci.26 4217

    [9]

    . Hartemann F V, Fochs S N, Le Sage G P, Luhmann N C Jr, Woodworth J G, Perry M D, Chen Y J, Kerman A K 1995 Phys. Rev. E 51 4833

    [10]

    . Esarey E, Sprangle P, Krall J 1995 Phys. Rev. E 52 5443

    [11]

    . He F, Yu W, Lu P X, Xu H, Qian L J, Shen B F, Yuan X, Li R X, Xu Z Z 2003 Phys. Rev. E. 68 046407

    [12]

    . Stupakov G V, Zolotorev M S 2001 Phys. Rev. Lett. 86 5274

    [13]

    . Dodin I Y, Fisch N J 2003 Phys. Rev. E 68 056402

    [14]

    . Salamin Y I, Keitel C H 2002 Phys. Rev. Lett. 88 095005

    [15]

    . Pang J, Ho Y K, Yuan X Q, Cao N, Kong Q, Wang P X, Shao L, Esarey E H, Sessler A M. 2002 Phys. Rev. E 66 066501

    [16]

    . Maltsev A, Ditmire T 2003 Phys. Rev. Lett. 90 053002

    [17]

    . Tian Y, Liu J S, Wang W T, Wang C, Deng A H, Xia C Q, Li W T, Cao L H, Lu H Y, Zhang H, Xu Y, Leng Y X, Li R X, Xu Z Z 2012 Phys. Rev. Lett. 109 115002

    [18]

    . Thévenet M, Leblanc A, Kahaly S,Vincenti H, Vernier A, Quéré F, Faure J 2016 Nat. Phys. 12 355

    [19]

    . Zhou C L, Bai Y F, Song L W, Zeng Y S, Xu Y; Zhang D D, Lu X M, Leng Y X, Liu J S, Tian Y, Li R X, Xu Z Z 2021 Nat. Photonics 15 216

    [20]

    . Thaury C, Quéré F, Geindre J, Lévy A, Ceccotti T, Monot P, Bougeard M, Réau F, d'Oliveira P, Audebert P, Marjoribanks R S, Martin P A 2007 Nat. Phys. 3 424

    [21]

    . Doumy G, Quéré F, Gobert O, Perdrix M, Martin P, Audebert P, Gauthier J C, Geindre J P, Wittmann T 2004 Phys. Rev. E 69 026402

    [22]

    . Quesnel B, Mora P 1998 Phys. Rev. E 58 3719

    [23]

    . Ritus V I 1985 J. Russ. Laser Res. 6 497

    [24]

    . Landau L D, Lifshitz E M 1971 The Classical Theory of Fields (Oxford: Pergamon Press)

    [25]

    . Stupakov G, Huang Z 2008 Phys. Rev. ST Accel. Beams 11, 014401

    [26]

    . Piazza A D, Müller C, Hatsagortsyan K Z, Keitel C H 2012 Rev. Mod. Phys. 84 1177

  • [1] 李传可, 林南省, 周鲜鲜, 江淼, 李英骏. 双振荡场产生正负电子对的理论研究. 物理学报, doi: 10.7498/aps.73.20230432
    [2] 叶全兴, 何广朝, 王倩. 正负电子对撞中类底夸克偶素的线形. 物理学报, doi: 10.7498/aps.72.20230908
    [3] 罗蕙一, 江淼, 徐妙华, 李英骏. 不同频率的组合振荡场下产生正负电子对. 物理学报, doi: 10.7498/aps.72.20221660
    [4] 牟家连, 吕军光, 孙希磊, 兰小飞, 黄永盛. 环形正负电子对撞机带电粒子鉴别的飞行时间探测器. 物理学报, doi: 10.7498/aps.72.20222271
    [5] 谢柏松, 李烈娟, 麦丽开·麦提斯迪克, 王莉. 频率啁啾对强场下真空正负电子对产生的增强效应. 物理学报, doi: 10.7498/aps.71.20220148
    [6] 孙婷, 王宇, 郭任彤, 卢知为, 栗建兴. 强激光驱动高能极化正负电子束与偏振伽马射线的研究进展. 物理学报, doi: 10.7498/aps.70.20210009
    [7] 江淼, 郑晓冉, 林南省, 李英骏. 正负电子对产生过程中不同外场宽度下的多光子跃迁效应. 物理学报, doi: 10.7498/aps.70.20202101
    [8] 朱兴龙, 王伟民, 余同普, 何峰, 陈民, 翁苏明, 陈黎明, 李玉同, 盛政明, 张杰. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展. 物理学报, doi: 10.7498/aps.70.20202224
    [9] 蒋康男, 冯珂, 柯林佟, 余昌海, 张志钧, 秦志勇, 刘建胜, 王文涛, 李儒新. 高品质激光尾波场电子加速器. 物理学报, doi: 10.7498/aps.70.20201993
    [10] 董旭, 黄永盛, 唐光毅, 陈姗红, 司梅雨, 张建勇. 基于微波-电子康普顿背散射的环形正负电子对撞机束流能量测量方案. 物理学报, doi: 10.7498/aps.70.20202081
    [11] 李昂, 余金清, 陈玉清, 颜学庆. 光子对撞机产生正负电子对的数值方法. 物理学报, doi: 10.7498/aps.69.20190729
    [12] 吴广智, 王强, 周沧涛, 傅立斌. 双势阱产生正负电子对过程中的正电子波干涉与克莱因隧穿现象. 物理学报, doi: 10.7498/aps.66.070301
    [13] 尹传磊, 王伟民, 廖国前, 李梦超, 李玉同, 张杰. 超强圆偏振激光直接加速产生超高能量电子束. 物理学报, doi: 10.7498/aps.64.144102
    [14] 王广辉, 王晓方, 董克攻. 超短超强激光导引及对电子加速的影响. 物理学报, doi: 10.7498/aps.61.165201
    [15] 赵志国, 吕百达. 用拉盖尔-高斯激光对真空中电子直接加速. 物理学报, doi: 10.7498/aps.55.1798
    [16] 何 峰, 余 玮, 徐 涵, 陆培祥. 相对论飞秒激光脉冲在真空中对预加速电子的加速. 物理学报, doi: 10.7498/aps.54.4203
    [17] 常文蔚, 张立夫, 邵福球. 激光等离子体波电子加速器. 物理学报, doi: 10.7498/aps.40.182
    [18] 朱莳通, 沈文达, 邱锡铭, 王之江. 激光加速器中电子能量增益的广义协变推导. 物理学报, doi: 10.7498/aps.38.559
    [19] 庄杰佳. 逆契仑柯夫聚焦激光电子加速器. 物理学报, doi: 10.7498/aps.33.1255
    [20] 罗辽复, 陆埮. 高能正负电子对的湮没与超窄共振ψ粒子的作用. 物理学报, doi: 10.7498/aps.24.145
计量
  • 文章访问数:  64
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-19

/

返回文章
返回