搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于级联四波混频过程产生四模簇态

董安琪 张凯 荆杰泰 刘伍明

引用本文:
Citation:

基于级联四波混频过程产生四模簇态

董安琪, 张凯, 荆杰泰, 刘伍明

Generation of four-mode cluster states based on cascade four-wave mixing process

Dong An-Qi, Zhang Kai, Jing Jie-Tai, Liu Wu-Ming
PDF
HTML
导出引用
  • 簇态是量子计算和量子信息处理的重要资源, 因其具有独特的纠缠性质和丰富的结构而受到广泛的关注 . 本文从理论上提出一种基于级联四波混频过程产生四模纠缠态的方案, 利用部分转置正定判据和本征模分解研究其内部纠缠特性 . 此外, 通过调控平衡零拍探测的相对相位和后处理噪声信号, 将输出的纠缠态重构优化, 最终生成三种不同结构的四模簇态 . 该方法可以有效地减少在有限的压缩条件下产生簇态而引入的额外噪声 . 本文理论结果为基于原子系综四波混频过程产生可扩展的连续变量簇态提供可靠方案 .
    As a crucial quantum resource for quantum computing and quantum information processing, cluster state has attracted extensive attention due to its unique entanglement properties and rich structures. In this work, we theoretically propose a scheme for generating four-mode entangled states based on cascaded four-wave mixing (FWM) process. The internal entanglement characteristics are studied by using the positivity under partial transposition criterion and eigenmode decomposition. In addition, the output entangled states are reconstructed and optimized by adjusting the relative phase of balanced homodyne detection and postprocessing the signal noise, and finally three four-mode cluster states with different structures are generated. Such a method can effectively reduce the excess noise induced by finite squeezing. Our theoretical results provide a reliable way of generating scalable continuous variable cluster states based on FWM process in atomic ensemble.
      通信作者: 张凯, kzhang@lps.ecnu.edu.cn ; 荆杰泰, jtjing@phy.ecnu.edu.cn ; 刘伍明, wliu@iphy.ac.cn
    • 基金项目: 上海市教委创新计划(批准号: 2021-01-07-00-08-E00100)、国家自然科学基金(批准号: 11874155, 91436211, 11374104, 12174110)、上海市教委基础研究项目(批准号: 20JC1416100)、上海市自然科学基金(批准号: 17ZR1442900)、闵行领军人才(批准号: 201971)、上海市科技创新行动计划(批准号: 17JC1400401)、上海青年科技英才扬帆计划(批准号: 21YF1410800)、国家重点基础研究发展计划(批准号: 2016YFA0302103)、上海市市级科技重大专项(批准号: 2019SHZDZX01)、高等学校学科创新引智计划(批准号: B12024)和中国博士后科学基金(批准号: 2020M681224)资助的课题.
      Corresponding author: Zhang Kai, kzhang@lps.ecnu.edu.cn ; Jing Jie-Tai, jtjing@phy.ecnu.edu.cn ; Liu Wu-Ming, wliu@iphy.ac.cn
    • Funds: Project supported by the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 2021-01-07-00-08-E00100), the National Natural Science Foundation of China (Grant Nos. 11874155, 91436211, 11374104, 12174110), the Basic Research Project of Shanghai Science and Technology Commission, China (Grant No. 20JC1416100), the Natural Science Foundation of Shanghai, China (Grant No. 17ZR1442900), the Minhang Leading Talents, China (Grant No. 201971), the Program of Science and Technology Innovation of Shanghai, China (Grant No. 17JC1400401), the Shanghai Young Science and Technology Sailing Program, China (Grant No. 21YF1410800), the National Basic Research Program of China (Grant No. 2016YFA0302103), the Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01), the 111 Project (Grant No. B12024), and the China Postdoctoral Science Foundation (Grant No. 2020M681224).
    [1]

    Fabre C, Treps N 2020 Rev. Mod. Phys. 92 035005Google Scholar

    [2]

    Briegel H J, Browne D E, Dür W, Raussendorf R, Van den Nest M 2009 Nat. Phys. 5 19Google Scholar

    [3]

    Menicucci N C, Loock P V, Gu M, Weedbrook C, Ralph T C, Nielsen M A 2006 Phys. Rev. Lett. 97 110501Google Scholar

    [4]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nat. Commun. 4 2828Google Scholar

    [5]

    Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D, Peng K C 2012 Opt. Lett. 37 5178Google Scholar

    [6]

    Armstrong S, Morizur J F, Janousek J, Hage B, Treps N, Lam P K, Bachor H A 2012 Nat. Commun. 3 1026Google Scholar

    [7]

    Asavanant W, Shiozawa Y, Yokoyama S, et al. 2019 Science 366 373Google Scholar

    [8]

    Larsen M V, Guo X S, Breum C R, Neergaard-Nielsen J S, Andersen U L 2019 Science 366 369Google Scholar

    [9]

    Larsen M V, Guo X S, Breum C R, Neergaard-Nielsen J S, Andersen U L 2021 Nat. Phys. 17 1018Google Scholar

    [10]

    Cai Y, Roslund J, Ferrini G, Arzani F, Xu X, Fabre C, Treps N 2017 Nat. Commun. 8 15645Google Scholar

    [11]

    Barbosa F A S, Coelho A S, Muñoz-Martínez L F, Ortiz-Gutiérrez L, Villar A S, Nussenzveig P, Martinelli M 2018 Phys. Rev. Lett. 121 073601Google Scholar

    [12]

    Marino A M, Pooser R C, Boyer V, Lett P D 2009 Nature 457 859Google Scholar

    [13]

    Lawrie B, Evans P, Pooser R 2013 Phys. Rev. Lett. 110 156802Google Scholar

    [14]

    Qin Z Z, Cao L M, Wang H L, Marion A M, Zhang W P, Jing J T 2014 Phys. Rev. Lett. 113 023602Google Scholar

    [15]

    Liu S S, Lou Y B, Jing J T 2019 Phys. Rev. Lett. 123 113602Google Scholar

    [16]

    Pooser R C, Savino N, Batson E, Beckey J L, Garcia J, Lawrie B J 2020 Phys. Rev. Lett. 124 230504Google Scholar

    [17]

    McCormick C F, Boyer V, Arimondo E, Lett P D 2007 Opt. Lett. 32 178Google Scholar

    [18]

    Boyer V, Marino A M, Pooser P C, Lett P D 2008 Science 321 5888

    [19]

    Cao L M, Du J J, Feng J L, Qin Z Z, Marino A M, Kolobov M I, Jing J T 2017 Opt. Lett. 42 7

    [20]

    Pan X Z, Yu S, Zhou Y F, Zhang K, Zhang K, Lv S C, Li S J, Wang W, Jing J T 2019 Phys. Rev. Lett. 123 070506Google Scholar

    [21]

    Li S J, Pan X Z, Ren Y, Liu H Z, Yu S, Jing J T 2020 Phys. Rev. Lett. 124 083605Google Scholar

    [22]

    Wang W, Zhang K, Jing J T 2020 Phys. Rev. Lett. 125 140501Google Scholar

    [23]

    Liu S S, Lou Y B, Jing J T 2020 Nat. Commun. 11 3875Google Scholar

    [24]

    Marino A M, Pooser R C, Boyer V, Lett P D 2009 Nature 457 859

    [25]

    Chen Y X, Liu S S, Lou Y B, Jing J T 2021 Phys. Rev. Lett. 127 093601Google Scholar

    [26]

    Liu S S, Lou Y B, Chen Y X 2021 Phys. Rev. Lett. 126 060503Google Scholar

    [27]

    Medeiros de Araújo R, Roslund J, Cai Y, Ferrini G, Fabre C, Treps N 2014 Phys. Rev. A 89 053828Google Scholar

    [28]

    Roslund J, Medeiros de Araújo R, Jing S F, Fabre C, Treps N 2014 Nat. Photonics 8 109Google Scholar

    [29]

    Ferrini G, Gazeau J P, Coudreau T, Fabre C, Treps N 2013 New J. Phys. 15 093015Google Scholar

    [30]

    Zhang K, Wang W, Liu S S, Pan X Z, Du J J, Lou Y B, Yu S, Lü S C, Treps N, Fabre C 2020 Phys. Rev. Lett. 124 090501Google Scholar

    [31]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [32]

    Werner R F, Wolf M M 2001 Phys. Rev. Lett. 86 3658Google Scholar

    [33]

    Braunstein S L 2005 Phys. Rev. A 71 055801Google Scholar

    [34]

    Hensen B, Bernien H 2005 Nature 526 682

    [35]

    Lloyd S, Braunstein S L 1999 Phys. Rev. Lett. 82 1784Google Scholar

    [36]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513Google Scholar

    [37]

    Weedbrook C, Pirandola S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [38]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [39]

    Guo X, Breum C R 2020 Nat. Phys. 16 281Google Scholar

    [40]

    Ferrini G, Roslund J, Arzani F, Fabre C, Treps N 2016 Phys. Rev. A 94 062332Google Scholar

    [41]

    Ferrini G, Roslund J, Arzani F, Cai Y, Fabre C, Treps N 2015 Phys. Rev. A 91 032314Google Scholar

    [42]

    Gu M, Weedbrook C, Menicucci N C, Ralph T C, Look P V 2009 Phys. Rev. A 79 062318Google Scholar

    [43]

    Menicucci N C, Flammia S T, Look P V 2011 Phys. Rev. A 83 042335Google Scholar

    [44]

    郝树宏 2016 博士学位论文 (山西: 山西大学)

    Hao S H 2016 Ph. D. Dissertation (Shanxi: Shanxi University) (in Chinese)

    [45]

    van Loock P, Weedbrook C, Gu M 2007 Phys. Rev. A 76 032321Google Scholar

    [46]

    Cai Y, Feng J L, Wang H L, Ferrini G, Xu X Y, Jing J T, Treps N 2015 Phys. Rev. A 91 013843Google Scholar

    [47]

    van Loock P, Furusawa A 2003 Phys. Rev. A 67 052315Google Scholar

  • 图 1  通过非对称结构级联三个四波混频过程产生四模纠缠态的示意图. $ {\widehat{a}}_{\mathrm{P}\mathrm{r}1} $, $ {\widehat{a}}_{\mathrm{P}\mathrm{r}2} $$ {\widehat{a}}_{\mathrm{P}\mathrm{r}3} $是四波混频过程FWM1, FWM2和FWM3的信号光; $ {\widehat{a}}_{\mathrm{v}1} $, $ {\widehat{a}}_{\mathrm{v}2} $$ {\widehat{a}}_{\mathrm{v}3} $是真空输入模式; $ {\widehat{a}}_{\mathrm{C}1} $, $ {\widehat{a}}_{\mathrm{C}2} $, $ {\widehat{a}}_{\mathrm{C}3} $$ {\widehat{a}}_{\mathrm{P}\mathrm{r}4} $是最终输出的四个模式; Pump1, Pump2和Pump3表示三个四波混频过程的泵浦光; LO表示用于平衡零拍探测(HD)的本振光场

    Fig. 1.  Schematic diagram of four-mode entangled states generated by cascading three four-wave mixing processes with asymmetric structure. $ {\widehat{a}}_{\mathrm{P}\mathrm{r}1} $, $ {\widehat{a}}_{\mathrm{P}\mathrm{r}2} $ and $ {\widehat{a}}_{\mathrm{P}\mathrm{r}3} $ are seed beams of FWM1, FWM2 and FWM3, respectively. $ {\widehat{a}}_{\mathrm{v}1} $, $ {\widehat{a}}_{\mathrm{v}2} $ and $ {\widehat{a}}_{\mathrm{v}3} $ are vacuum input modes. $ {\widehat{a}}_{\mathrm{C}1} $, $ {\widehat{a}}_{\mathrm{C}2} $, $ {\widehat{a}}_{\mathrm{C}3} $ and $ {\widehat{a}}_{\mathrm{P}\mathrm{r}4} $ are the final four output modes. Pump1, pump2 and pump3 denote the pump light of three four-wave mixing processes. LO denotes the local oscillator for balanced homodyne detection (HD).

    图 2  $ {G}_{1}={G}_{2}={G}_{3}=1.2 $时四模态系统的协方差矩阵 (a) 正交振幅的协方差矩阵$\langle{{\widehat{X}}_{i}{\widehat{X}}_{j}}\rangle$; (b) 正交相位的协方差矩阵$\langle{{\widehat{Y}}_{i}{\widehat{Y}}_{j}}\rangle$

    Fig. 2.  The covariance matrix of the four-mode state in the case of $ {G}_{1}={G}_{2}={G}_{3}=1.2 $: (a) The covariance of amplitude quadratures $\langle{{\widehat{X}}_{i}{\widehat{X}}_{j}}\rangle$; (b) the covariance of phase quadratures $\langle{{\widehat{Y}}_{i}{\widehat{Y}}_{j}}\rangle$.

    图 3  不同强度增益情况下, 四模态的最小辛本征值. 不同颜色的条形图分别表示强度增益为1.2, 1.5和1.8时的最小辛本征值

    Fig. 3.  The smallest symplectic eigenvalues of four-mode state for different gains. Bar chart with different colors represent the smallest symplectic eigenvalues at gains of 1.2, 1.5 and 1.8, respectively.

    图 4  对于不同强度增益$ G $, 基于级联四波混频过程生成的四模纠缠态的本征模及其相应的压缩值. 每幅图中的条形柱分别表示模$ {\widehat{a}}_{\mathrm{C}1}, {\widehat{a}}_{\mathrm{C}2}, {\widehat{a}}_{\mathrm{C}3} $$ {\widehat{a}}_{\mathrm{P}\mathrm{r}4} $的相对权重, 图上面的数字代表压缩值. 图(a)—(d), 图(e)—(h)和图(i)—(l)分别对应强度增益$ G $为1.2, 1.5和8时的本征模分解情况

    Fig. 4.  The supermodes of the four-mode entangled state generated based on the cascade four-wave mixing process and their corresponding squeezing levels for different gain values G. The bars represent the relative weight of the modes $ {\widehat{a}}_{\mathrm{C}1}, {\widehat{a}}_{\mathrm{C}2}, {\widehat{a}}_{\mathrm{C}3} $ and $ {\widehat{a}}_{\mathrm{P}\mathrm{r}4} $, respectively. The number above the figure represents the squeezing levels. Figures (a)–(d), Figures (e)–(h) and Figures (i)–(l) correspond to the eigenmode decomposition when the gain values G are 1.2, 1.5 and 8, respectively.

    图 5  四模线型、T-型和方型簇态的结构图和对应的邻接矩阵

    Fig. 5.  The structure diagram and corresponding adjacency matrix of four-mode linear, T-type, and square cluster states.

    表 1  对于不同的强度增益, 四模线型簇态Nullifier的归一化方差

    Table 1.  Normalized variances of the four-mode linear cluster state nullifiers for different intensity gains.

    强度增益Nullifier 1Nullifier 2Nullifier 3Nullifier 4
    $ {G}_{1}={G}_{2}={G}_{3}=1.2 $0.590.620.590.69
    $ {G}_{1}={G}_{2}={G}_{3}=1.5 $0.680.560.480.49
    $ {G}_{1}={G}_{2}={G}_{3}=1.8 $0.510.520.470.34
    $ {G}_{1}={G}_{2}={G}_{3}=3 $0.592.140.685.6
    下载: 导出CSV

    表 2  对于不同的强度增益, 四模T-型簇态Nullifier的归一化方差

    Table 2.  Normalized variances of the four-mode T-type cluster state nullifiers for different intensity gains.

    强度增益Nullifier 1Nullifier 2Nullifier 3Nullifier 4
    $ {G}_{1}={G}_{2}={G}_{3}=1.2 $0.470.370.510.47
    $ {G}_{1}={G}_{2}={G}_{3}=1.5 $0.360.260.40.4
    $ {G}_{1}={G}_{2}={G}_{3}=1.8 $0.340.210.340.38
    $ {G}_{1}={G}_{2}={G}_{3}=3 $2.630.560.563.79
    下载: 导出CSV

    表 3  对于不同的强度增益, 四模方型簇态Nullifier的归一化方差

    Table 3.  Normalized variances of the four-mode square cluster state nullifiers for different intensity gains.

    强度增益Nullifier 1Nullifier 2Nullifier 3Nullifier 4
    $ {G}_{1}={G}_{2}={G}_{3}=1.2 $0.360.540.360.34
    $ {G}_{1}={G}_{2}={G}_{3}=1.5 $0.240.310.240.38
    $ {G}_{1}={G}_{2}={G}_{3}=1.8 $0.580.200.380.64
    $ {G}_{1}={G}_{2}={G}_{3}=3 $0.870.514.674.38
    下载: 导出CSV
  • [1]

    Fabre C, Treps N 2020 Rev. Mod. Phys. 92 035005Google Scholar

    [2]

    Briegel H J, Browne D E, Dür W, Raussendorf R, Van den Nest M 2009 Nat. Phys. 5 19Google Scholar

    [3]

    Menicucci N C, Loock P V, Gu M, Weedbrook C, Ralph T C, Nielsen M A 2006 Phys. Rev. Lett. 97 110501Google Scholar

    [4]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nat. Commun. 4 2828Google Scholar

    [5]

    Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D, Peng K C 2012 Opt. Lett. 37 5178Google Scholar

    [6]

    Armstrong S, Morizur J F, Janousek J, Hage B, Treps N, Lam P K, Bachor H A 2012 Nat. Commun. 3 1026Google Scholar

    [7]

    Asavanant W, Shiozawa Y, Yokoyama S, et al. 2019 Science 366 373Google Scholar

    [8]

    Larsen M V, Guo X S, Breum C R, Neergaard-Nielsen J S, Andersen U L 2019 Science 366 369Google Scholar

    [9]

    Larsen M V, Guo X S, Breum C R, Neergaard-Nielsen J S, Andersen U L 2021 Nat. Phys. 17 1018Google Scholar

    [10]

    Cai Y, Roslund J, Ferrini G, Arzani F, Xu X, Fabre C, Treps N 2017 Nat. Commun. 8 15645Google Scholar

    [11]

    Barbosa F A S, Coelho A S, Muñoz-Martínez L F, Ortiz-Gutiérrez L, Villar A S, Nussenzveig P, Martinelli M 2018 Phys. Rev. Lett. 121 073601Google Scholar

    [12]

    Marino A M, Pooser R C, Boyer V, Lett P D 2009 Nature 457 859Google Scholar

    [13]

    Lawrie B, Evans P, Pooser R 2013 Phys. Rev. Lett. 110 156802Google Scholar

    [14]

    Qin Z Z, Cao L M, Wang H L, Marion A M, Zhang W P, Jing J T 2014 Phys. Rev. Lett. 113 023602Google Scholar

    [15]

    Liu S S, Lou Y B, Jing J T 2019 Phys. Rev. Lett. 123 113602Google Scholar

    [16]

    Pooser R C, Savino N, Batson E, Beckey J L, Garcia J, Lawrie B J 2020 Phys. Rev. Lett. 124 230504Google Scholar

    [17]

    McCormick C F, Boyer V, Arimondo E, Lett P D 2007 Opt. Lett. 32 178Google Scholar

    [18]

    Boyer V, Marino A M, Pooser P C, Lett P D 2008 Science 321 5888

    [19]

    Cao L M, Du J J, Feng J L, Qin Z Z, Marino A M, Kolobov M I, Jing J T 2017 Opt. Lett. 42 7

    [20]

    Pan X Z, Yu S, Zhou Y F, Zhang K, Zhang K, Lv S C, Li S J, Wang W, Jing J T 2019 Phys. Rev. Lett. 123 070506Google Scholar

    [21]

    Li S J, Pan X Z, Ren Y, Liu H Z, Yu S, Jing J T 2020 Phys. Rev. Lett. 124 083605Google Scholar

    [22]

    Wang W, Zhang K, Jing J T 2020 Phys. Rev. Lett. 125 140501Google Scholar

    [23]

    Liu S S, Lou Y B, Jing J T 2020 Nat. Commun. 11 3875Google Scholar

    [24]

    Marino A M, Pooser R C, Boyer V, Lett P D 2009 Nature 457 859

    [25]

    Chen Y X, Liu S S, Lou Y B, Jing J T 2021 Phys. Rev. Lett. 127 093601Google Scholar

    [26]

    Liu S S, Lou Y B, Chen Y X 2021 Phys. Rev. Lett. 126 060503Google Scholar

    [27]

    Medeiros de Araújo R, Roslund J, Cai Y, Ferrini G, Fabre C, Treps N 2014 Phys. Rev. A 89 053828Google Scholar

    [28]

    Roslund J, Medeiros de Araújo R, Jing S F, Fabre C, Treps N 2014 Nat. Photonics 8 109Google Scholar

    [29]

    Ferrini G, Gazeau J P, Coudreau T, Fabre C, Treps N 2013 New J. Phys. 15 093015Google Scholar

    [30]

    Zhang K, Wang W, Liu S S, Pan X Z, Du J J, Lou Y B, Yu S, Lü S C, Treps N, Fabre C 2020 Phys. Rev. Lett. 124 090501Google Scholar

    [31]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [32]

    Werner R F, Wolf M M 2001 Phys. Rev. Lett. 86 3658Google Scholar

    [33]

    Braunstein S L 2005 Phys. Rev. A 71 055801Google Scholar

    [34]

    Hensen B, Bernien H 2005 Nature 526 682

    [35]

    Lloyd S, Braunstein S L 1999 Phys. Rev. Lett. 82 1784Google Scholar

    [36]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513Google Scholar

    [37]

    Weedbrook C, Pirandola S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [38]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [39]

    Guo X, Breum C R 2020 Nat. Phys. 16 281Google Scholar

    [40]

    Ferrini G, Roslund J, Arzani F, Fabre C, Treps N 2016 Phys. Rev. A 94 062332Google Scholar

    [41]

    Ferrini G, Roslund J, Arzani F, Cai Y, Fabre C, Treps N 2015 Phys. Rev. A 91 032314Google Scholar

    [42]

    Gu M, Weedbrook C, Menicucci N C, Ralph T C, Look P V 2009 Phys. Rev. A 79 062318Google Scholar

    [43]

    Menicucci N C, Flammia S T, Look P V 2011 Phys. Rev. A 83 042335Google Scholar

    [44]

    郝树宏 2016 博士学位论文 (山西: 山西大学)

    Hao S H 2016 Ph. D. Dissertation (Shanxi: Shanxi University) (in Chinese)

    [45]

    van Loock P, Weedbrook C, Gu M 2007 Phys. Rev. A 76 032321Google Scholar

    [46]

    Cai Y, Feng J L, Wang H L, Ferrini G, Xu X Y, Jing J T, Treps N 2015 Phys. Rev. A 91 013843Google Scholar

    [47]

    van Loock P, Furusawa A 2003 Phys. Rev. A 67 052315Google Scholar

  • [1] 徐笑吟, 刘胜帅, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2022, 71(5): 050301. doi: 10.7498/aps.71.20211324
    [2] 翟淑琴, 康晓兰, 刘奎. 基于级联四波混频过程的量子导引. 物理学报, 2021, 70(16): 160301. doi: 10.7498/aps.70.20201981
    [3] Xiaoyin Xu, shengshuai liu, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211324
    [4] 余胜, 刘焕章, 刘胜帅, 荆杰泰. 基于四波混频过程和线性分束器产生四组份纠缠. 物理学报, 2020, 69(9): 090303. doi: 10.7498/aps.69.20200040
    [5] 万峰, 武保剑, 曹亚敏, 王瑜浩, 文峰, 邱昆. 空频复用光纤中四波混频过程的解析分析方法. 物理学报, 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [6] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控. 物理学报, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [7] 曹亚敏, 武保剑, 万峰, 邱昆. 四波混频光相位运算器原理及其噪声性能研究. 物理学报, 2018, 67(9): 094208. doi: 10.7498/aps.67.20172638
    [8] 李述标, 武保剑, 文峰, 韩瑞. 高非线性光纤中四波混频的磁控机理研究. 物理学报, 2013, 62(2): 024213. doi: 10.7498/aps.62.024213
    [9] 李博, 谭中伟, 张晓兴. 利用交叉相位调制和四波混频制作的时间透镜的仿真分析. 物理学报, 2012, 61(1): 014203. doi: 10.7498/aps.61.014203
    [10] 孙江, 孙娟, 王颖, 苏红新. 双光子共振非简并四波混频测量Ba原子里德伯态的碰撞展宽和频移. 物理学报, 2012, 61(11): 114214. doi: 10.7498/aps.61.114214
    [11] 孙江, 刘鹏, 孙娟, 苏红新, 王颖. 双光子共振非简并四波混频测量钡原子里德伯态碰撞展宽中的伴线研究. 物理学报, 2012, 61(12): 124205. doi: 10.7498/aps.61.124205
    [12] 赖柏辉, 杜刚, 於亚飞, 张智明, 刘颂豪. 利用交叉克尔非线性产生四光子偏振态簇态. 物理学报, 2010, 59(2): 1017-1020. doi: 10.7498/aps.59.1017
    [13] 李培丽, 黄德修, 张新亮. 基于PolSK调制的四波混频型超快全光译码器. 物理学报, 2009, 58(3): 1785-1792. doi: 10.7498/aps.58.1785
    [14] 刘 霞, 牛金艳, 孙 江, 米 辛, 姜 谦, 吴令安, 傅盘铭. 布里渊增强非简并四波混频. 物理学报, 2008, 57(8): 4991-4994. doi: 10.7498/aps.57.4991
    [15] 苗向蕊, 高士明, 高 莹. 基于光纤四波混频效应的新型组播方法. 物理学报, 2008, 57(12): 7699-7704. doi: 10.7498/aps.57.7699
    [16] 杨 磊, 李小英, 王宝善. 利用光纤中自发四波混频产生纠缠光子的实验装置. 物理学报, 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [17] 邓 莉, 孙真荣, 林位株, 文锦辉. 亚10 fs激光脉冲产生中的受激拉曼散射与四波混频效应. 物理学报, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [18] 朱成禹, 吕志伟, 何伟明, 巴德欣, 王雨雷, 高 玮, 董永康. 布里渊增强四波混频时域特性的理论研究. 物理学报, 2007, 56(1): 229-235. doi: 10.7498/aps.56.229
    [19] 孙 江, 左战春, 郭庆林, 王英龙, 怀素芳, 王 颖, 傅盘铭. 应用双光子共振非简并四波混频测量Ba原子里德伯态. 物理学报, 2006, 55(1): 221-225. doi: 10.7498/aps.55.221
    [20] 孙 江, 左战春, 米 辛, 俞祖和, 吴令安, 傅盘铭. 引入量子干涉的双光子共振非简并四波混频. 物理学报, 2005, 54(1): 149-154. doi: 10.7498/aps.54.149
计量
  • 文章访问数:  4771
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-10
  • 修回日期:  2022-04-11
  • 上网日期:  2022-08-13
  • 刊出日期:  2022-08-20

/

返回文章
返回