搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿雁群阵列量子空中通信组网构建策略

姚明辉 聂敏 杨光 张美玲 孙爱晶 裴昌幸

引用本文:
Citation:

仿雁群阵列量子空中通信组网构建策略

姚明辉, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸

Construction strategy of quantum air communication network of imitation goose swarm array

Yao Ming-Hui, Nie Min, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing
PDF
HTML
导出引用
  • 量子卫星通信是量子通信领域的研究热点和前沿, 具有覆盖面广、通信效率高和安全性强的特点. 量子通信组网的构建策略是量子通信的重要组成部分, 然而, 有关量子空中通信组网构建策略的研究, 迄今尚未展开. 本文采用仿生学原理, 根据雁群空中飞行阵列的特点, 提出了一种仿雁群Λ型量子空中通信组网拓扑结构, 该结构可分为单头节点Λ型和多头节点Λ型. 基于Greenberger-Horne-Zeilinger (GHZ)态的可认证QSDC网间通信系统和GHZ-EPR (Einstein-Podolsky-Rosen)量子卫星组网隐形传态通信系统, 对该Λ型量子空中通信组网结构的误码率、能耗、吞吐率等参数进行了研究. 理论分析和仿真结果表明, 仿雁群单头节点Λ型组网结构, 在噪声平均功率谱密度为2 dB/m的环境中, 当网中头节点与子节点的通信距离小于400 m时, 误码率小于0.094; 若头节点与子节点的通信距离由400 m增大到1000 m时, 误码率增长较快, 达到0.585; 当单侧子节点数由2增加到7时, 吞吐率由110.6 kb/s下降到46.45 kb/s. 以总节点数21为例, 单头节点Λ型组网结构可节省32.6%的能量, 吞吐率下降到23.9 kb/s. 相比之下, 总节点数为21的多头节点Λ型组网结构, 可节省29.3%的能量, 吞吐率达到163.4 kb/s. 由此可见, 采用仿雁群阵列结构的量子空中组网, 具有很好的网络可扩展性、优良的信息安全性和灵活的网络结构.
    Quantum satellite communication is a research hotspot in the field of quantum communication, which has the characteristics of wide coverage, high communication efficiency and strong security. The construction strategy of the quantum communication network is an essential part of quantum communication. However, the construction strategy of quantum air communication network has not been studied yet so far. In this paper, according to the characteristics of flying goose array and principle of bionics, a simulated wild goose group Λ quantum air communication network topology is proposed, which can be divided into single-head node Λ type and multi-head node Λ type. Based on Greenberger-Horne-Zeilinger (GHZ) state particles, a certifiable QSDC inter-network communication system and a GHZ-EPR quantum teleportation communication system are established. The bit error rate, energy consumption, throughput, and other parameters are studied. After theoretical analysis and experimental measurement, for the single-head node Λ network structure in the environment where the average power spectral density of noise is 2 dB/m, when the communication distance between the head node and the child node is less than 400 m, the bit error rate is less than 0.094; if the communication distance increases from 400 m to 1000 m, the bit error rate increases rapidly, reaching 0.585; when the number of child nodes on one side increases from 2 to 7, the throughput decreases from 110.6 kb/s to 46.45 kb/s. For example, when the total number of nodes is 21, the single-head node Λ network structure saves 32.6% energy but reduces the throughput to 23.9 kb/s. By comparison, the multi-head node Λ network structure with 21 nodes saves 29.3% energy and achieves throughput of 163.4 kb/s. The above studies show that the quantum air network with the structure of imitation goose group array has good network scalability, excellent information security and flexible network structure.
      通信作者: 姚明辉, 2533639692@qq.com
    • 基金项目: 国家自然科学基金 (批准号: 61971348, 61201194)、陕西省国际科技合作与交流计划 (批准号: 2015KW-013) 和陕西省自然科学基础研究计划 (批准号: 2021JM-464) 资助的课题.
      Corresponding author: Yao Ming-Hui, 2533639692@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971348, 61201194), the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China (Grant No. 2015 KW-013), and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2021JM-464).
    [1]

    安子烨, 王旭杰, 苑震生, 包小辉, 潘建伟 2018 物理学报 67 224203Google Scholar

    An Z Y, Wang X J, Yuan Z S, Bao X H, Pan J W 2018 Acta Phys. Sin. 67 224203Google Scholar

    [2]

    Pan J W, Chen Y A, Xu F H, Li Z D, Zhang R, Yin X F, Liu L Z, Hu Y, Fang Y Q, Fei Y Y, Jiang X, Zhang J, Li L, Liu N L 2019 Nat. Photonics 13 644Google Scholar

    [3]

    Zhang C R, Hu M J, Xiang G Y, Zhang Y S, Li C F, Guo G C 2020 Chin. Phys. Lett. 37 080301Google Scholar

    [4]

    Wang B C, Lin T, Li H O, Gu S S, Chen M B, Guo G C, Jiang H W, Hu X D, Cao G, Guo G P 2021 Sci. Bull. 66 332Google Scholar

    [5]

    Long G L, Liu X S 2000 arXiv: quant-ph/0012056

    [6]

    Zhou L, Sheng Y B, Long G L 2020 Sci. Bull. 65 12Google Scholar

    [7]

    Long G L, Zhang H R 2021 Sci. Bull. 66 1267Google Scholar

    [8]

    Pan L D, Laurita N J, Ross K A, Gaulin B D, Armitage N P 2016 Nature Phys. 12 361Google Scholar

    [9]

    Pan W, Reno J L, Reyes A P 2020 Sci. Rep. 10 7659Google Scholar

    [10]

    Pelucchi E, Fagas G, Aharonovich I, Englund D, Figueroa E, Gong Q H, Hannes H, Liu J, Lu C Y, Matsuda N, Pan J W, Schreck F, Sciarrino F, Silberhorn C, Wang J W, Jöns K D 2021 Nat. Rev. Phys. 4 194

    [11]

    Henke J W, Raja A S, Feist A, Huang G H, Arend G, Yang Y J, Kappert F J, Wang R N, Möller M, Pan J H, Liu J Q, Kfir O, Claus R, Kippenberg T J 2021 Nature 600 653Google Scholar

    [12]

    高博 2016-08-16 (001) “墨子号”量子科学实验卫星发射升空 (科技日报)

    Gao B 2016-08-16 (001) Quantum Science Experiment Satellite “Mozi” Launched (Science and Technology Daily) (in Chinese)

    [13]

    “墨子号”最新成果 2017 光通信技术 41 8

    Latest Achievements of Quantum Science Experiment Satellite “Mozi” 2017 Optical Commun. Technol. 41 8 (in Chinese)

    [14]

    世界首条量子保密通信干线———“京沪干线”开通 2017 天津经济 10 57

    World’s First Secure Quantum Communication Line in China —Beijing-Shanghai trunk line 2017 Tianjin Economy 10 57 (in Chinese)

    [15]

    我国成功组建天地一体化量子通信网络 2021 计量与测试技术 48 104

    Realization of the Integrated Space-to-ground Quantum Communication Network in China 2021 Metrology & Measurement Technlque 48 104 (in Chinese)

    [16]

    熊欣 2021 电子技术 50 32

    Xiong X 2021 Electron. Tech. 50 32

    [17]

    钟剑峰, 王红军 2020 电讯技术 60 1290Google Scholar

    Zhong J F, Wang H J 2020 Telecommun. Eng. 60 1290Google Scholar

    [18]

    李海滨, 唐晓刚, 周尚辉, 吴署光, 王梦阳 2022 网络安全技术与应用 1 3Google Scholar

    Li H B, Tang X G, Zhou S H, Wu S G, Wang M Y 2022 Net. Secur. Technol. Appl. 1 3Google Scholar

    [19]

    许志强 2020 全球定位系统 45 76Google Scholar

    Xu Z Q 2020 GNSS World of China 45 76Google Scholar

    [20]

    赵蓓英, 姬伟峰, 翁江, 孙岩, 李映岐, 吴玄 2021 计算机科学与探索 15 2304Google Scholar

    Zhao B Y, Ji W F, Weng J, Sun Y, Li Y Q, Wu X 2021 J. Frontiers Comput. Sci. Technol. 15 2304Google Scholar

    [21]

    尹曌 2022 博士学位论文 (北京: 北京科技大学)

    Yin Z 2022 Ph. D. Dissertation (Beijing: University of Science & Technology Beijing) (in Chinese)

    [22]

    周良, 王茂森, 戴劲松 2019 兵工自动化 38 88Google Scholar

    Zhou L, Wang M S, Dai J S 2019 Ordnance Industry Automation 38 88Google Scholar

    [23]

    尹曌, 贺威, 邹尧, 穆新星, 孙长银 2021 自动化学报 47 1355Google Scholar

    Yin Z, He W, Zou Y, Mu X X, Sun C Y 2021 Acta Automatica Sin. 47 1355Google Scholar

    [24]

    Peng J S, Fu X J 2021 Control Engineering of China DOI: 10.14107/j.cnki. kzgc.20200927 (in Chinese) [彭建帅, 付兴建 2021 控制工程 DOI: 10.14107/j.cnki. kzgc.20200927]

    [25]

    Speakman J R, Banks D 1998 IBIS 140 280Google Scholar

    [26]

    宋素珍 2014 硕士学位论文 (天津: 中国民航大学)

    Song S Z 2014 M. S. Thesis (Tianjin: Civil Aviation University of China) (in Chinese)

    [27]

    冉淏丹, 李建华, 崔琼, 南明莉 2019 火力与指挥控制 44 55Google Scholar

    Ran H D, Li J H, Cui Q, Nan M L 2019 Fire Control Command Control 44 55Google Scholar

    [28]

    Du Z L, Li X L 2019 Quantum Inf. Process. 18 226Google Scholar

    [29]

    刘乾, 胡占宁 2017 原子与分子物理学报 34 915Google Scholar

    Liu Q, Hu Z N 2017 J. Atom. Mol. Phys. 34 915Google Scholar

    [30]

    Shima H, Monireh H 2015 Quantum Inf. Process. 14 739Google Scholar

    [31]

    Fu H Z, Tian X L, Hu Y 2014 Int. J. Theo. Phys. 53 1840Google Scholar

    [32]

    Chen Y 2014 Int. J. Theo. Phys. 53 1454Google Scholar

    [33]

    Duan Y J, Zha X W, Sun X M, Xia J F 2014 Int. J. Theo. Phys. 53 2697Google Scholar

    [34]

    张晔 2021-09-30(005) 量子安全直接通信传输距离达40公里 (科技日报)

    Zhang Y 2021-09-30(005) Realization of Quantum Secure Direct Communication over 100 km Fiber (Science and Technology Daily) (in Chinese)

    [35]

    余松, 柏明强, 唐茜, 莫智文 2021 量子电子学报 38 57Google Scholar

    Yu S, Bai M Q, Tang Q, Mo Z W 2021 Chin. J. Quant. Elect. 38 57Google Scholar

    [36]

    郑涛, 张仕斌, 孙裕华, 昌燕 2020 计算机应用研究 37 2144Google Scholar

    Zheng T, Zhang S B, Sun Y H, Chang Y 2020 Application Research of Computers 37 2144Google Scholar

    [37]

    张美玲, 刘原华, 聂敏 2018 量子电子学报 35 320Google Scholar

    Zhang M L, Liu Y H, Nie M 2018 Chin. J. Quant. Elect. 35 320Google Scholar

    [38]

    刘志昊, 陈汉武 2017 物理学报 66 130304Google Scholar

    Liu Z H, Chen H W 2017 Acta Phys. Sin. 66 130304Google Scholar

    [39]

    王明宇, 王馨德, 阮东, 龙桂鲁 2021 物理学报 70 190301Google Scholar

    Wang M Y, Wang X D, Ruan D, Long G L 2021 Acta Phys. Sin. 70 190301Google Scholar

    [40]

    周贤韬, 江英华, 郭晨飞, 赵宁, 刘彪 2021 量子电子学报 https://kns.cnki.net/ kcms/detail/34.1163.TN.20210927.2021.002.html

    Zhou X T, Jiang Y H, Guo C F, Zhao N, Liu B 2021 Chin. J. Quant. Elect. https://kns.cnki.net/kcms/detail/34.1163.TN. 20210927.2021.002.html (in Chinese)

    [41]

    权东晓, 裴昌幸, 刘丹, 赵楠 2010 物理学报 59 2493Google Scholar

    Quan D X, Pei C X, Liu D, Zhao N 2010 Acta Phys. Sin. 59 2493Google Scholar

    [42]

    曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业 2016 物理学报 65 230301Google Scholar

    Cao Z W, Zhao G, Zhang S H, Feng X Y, Peng J Y 2016 Acta Phys. Sin. 65 230301Google Scholar

    [43]

    聂敏, 韩凯捷, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 物理学报 70 140303Google Scholar

    Nie M, Han K J, Yang G, Zhang M L, Sun A J, Pei C X 2021 Acta Phys. Sin. 70 140303Google Scholar

    [44]

    朱宇, 石磊, 魏家华, 朱秋立, 杨汝, 赵顾颢 2019 激光与光电子学进展 56 232Google Scholar

    Zhu Y, Shi L, Wei J H, Zhu Q L, Yang R, Zhao G H 2019 Laser Optoelect. Prog. 56 232Google Scholar

    [45]

    聂敏, 卫容宇, 杨光, 张美玲, 孙爱晶, 裴昌幸 2019 物理学报 68 110301Google Scholar

    Nie M, Wei R Y, Yang G, Zhang M L, Sun A J, Pei C X 2019 Acta Phys. Sin. 68 110301Google Scholar

  • 图 1  雁群飞行阵列

    Fig. 1.  Geese flying array.

    图 2  单头节点SWGGΛ-TQAN

    Fig. 2.  Single-head node SWGGΛ-TQAN.

    图 3  单头节点SWGGΛ-TQAN(总节点数目21)

    Fig. 3.  Single-head node SWGGΛ-TQAN (total number of nodes of 21).

    图 4  多头节点SWGGΛ-TQAN

    Fig. 4.  Multi-head node SWGGΛ-TQAN.

    图 5  多头节点SWGGΛ-TQAN(总节点数目21)

    Fig. 5.  Multi-head node SWGGΛ-TQAN (total number of nodes of 21).

    图 6  GHZ-EPR混合隐形传态系统

    Fig. 6.  GHZ-EPR hybrid teleportation system.

    图 7  头节点和子节点间通信距离与误码率的关系

    Fig. 7.  Relationship between bit error rate and communication distance between head node and child node.

    图 8  总能耗随时间变化

    Fig. 8.  Variation of total energy consumption with time.

    图 9  单头节点SWGGΛ-TQAN中吞吐率与单侧子节点数目的关系

    Fig. 9.  Relationship between throughput and the number of single side child nodes in single-head node SWGGΛ-TQAN

    表 1  双向量子隐形传态协议对比

    Table 1.  Comparison of two-way quantum teleportation protocols

    协议传送的量子态效率/%
    文献[31]单量子态50
    文献[32]单量子态40
    文献[33]单量子态28.5
    本方案纯EPR对66.7
    下载: 导出CSV

    表 2  QSDC协议参数比较

    Table 2.  Comparison of QSDC protocol parameters.

    协议名称量子传输
    效率
    量子比特
    效率
    编码容量/
    bits
    Ping-Pong协议0.330.331
    Two-Step QSDC协议112
    单光子的单向QSDC协议[41]0.511
    Bell态和单光子混合QSDC协议[42]111.5
    本方案1.1414
    下载: 导出CSV
  • [1]

    安子烨, 王旭杰, 苑震生, 包小辉, 潘建伟 2018 物理学报 67 224203Google Scholar

    An Z Y, Wang X J, Yuan Z S, Bao X H, Pan J W 2018 Acta Phys. Sin. 67 224203Google Scholar

    [2]

    Pan J W, Chen Y A, Xu F H, Li Z D, Zhang R, Yin X F, Liu L Z, Hu Y, Fang Y Q, Fei Y Y, Jiang X, Zhang J, Li L, Liu N L 2019 Nat. Photonics 13 644Google Scholar

    [3]

    Zhang C R, Hu M J, Xiang G Y, Zhang Y S, Li C F, Guo G C 2020 Chin. Phys. Lett. 37 080301Google Scholar

    [4]

    Wang B C, Lin T, Li H O, Gu S S, Chen M B, Guo G C, Jiang H W, Hu X D, Cao G, Guo G P 2021 Sci. Bull. 66 332Google Scholar

    [5]

    Long G L, Liu X S 2000 arXiv: quant-ph/0012056

    [6]

    Zhou L, Sheng Y B, Long G L 2020 Sci. Bull. 65 12Google Scholar

    [7]

    Long G L, Zhang H R 2021 Sci. Bull. 66 1267Google Scholar

    [8]

    Pan L D, Laurita N J, Ross K A, Gaulin B D, Armitage N P 2016 Nature Phys. 12 361Google Scholar

    [9]

    Pan W, Reno J L, Reyes A P 2020 Sci. Rep. 10 7659Google Scholar

    [10]

    Pelucchi E, Fagas G, Aharonovich I, Englund D, Figueroa E, Gong Q H, Hannes H, Liu J, Lu C Y, Matsuda N, Pan J W, Schreck F, Sciarrino F, Silberhorn C, Wang J W, Jöns K D 2021 Nat. Rev. Phys. 4 194

    [11]

    Henke J W, Raja A S, Feist A, Huang G H, Arend G, Yang Y J, Kappert F J, Wang R N, Möller M, Pan J H, Liu J Q, Kfir O, Claus R, Kippenberg T J 2021 Nature 600 653Google Scholar

    [12]

    高博 2016-08-16 (001) “墨子号”量子科学实验卫星发射升空 (科技日报)

    Gao B 2016-08-16 (001) Quantum Science Experiment Satellite “Mozi” Launched (Science and Technology Daily) (in Chinese)

    [13]

    “墨子号”最新成果 2017 光通信技术 41 8

    Latest Achievements of Quantum Science Experiment Satellite “Mozi” 2017 Optical Commun. Technol. 41 8 (in Chinese)

    [14]

    世界首条量子保密通信干线———“京沪干线”开通 2017 天津经济 10 57

    World’s First Secure Quantum Communication Line in China —Beijing-Shanghai trunk line 2017 Tianjin Economy 10 57 (in Chinese)

    [15]

    我国成功组建天地一体化量子通信网络 2021 计量与测试技术 48 104

    Realization of the Integrated Space-to-ground Quantum Communication Network in China 2021 Metrology & Measurement Technlque 48 104 (in Chinese)

    [16]

    熊欣 2021 电子技术 50 32

    Xiong X 2021 Electron. Tech. 50 32

    [17]

    钟剑峰, 王红军 2020 电讯技术 60 1290Google Scholar

    Zhong J F, Wang H J 2020 Telecommun. Eng. 60 1290Google Scholar

    [18]

    李海滨, 唐晓刚, 周尚辉, 吴署光, 王梦阳 2022 网络安全技术与应用 1 3Google Scholar

    Li H B, Tang X G, Zhou S H, Wu S G, Wang M Y 2022 Net. Secur. Technol. Appl. 1 3Google Scholar

    [19]

    许志强 2020 全球定位系统 45 76Google Scholar

    Xu Z Q 2020 GNSS World of China 45 76Google Scholar

    [20]

    赵蓓英, 姬伟峰, 翁江, 孙岩, 李映岐, 吴玄 2021 计算机科学与探索 15 2304Google Scholar

    Zhao B Y, Ji W F, Weng J, Sun Y, Li Y Q, Wu X 2021 J. Frontiers Comput. Sci. Technol. 15 2304Google Scholar

    [21]

    尹曌 2022 博士学位论文 (北京: 北京科技大学)

    Yin Z 2022 Ph. D. Dissertation (Beijing: University of Science & Technology Beijing) (in Chinese)

    [22]

    周良, 王茂森, 戴劲松 2019 兵工自动化 38 88Google Scholar

    Zhou L, Wang M S, Dai J S 2019 Ordnance Industry Automation 38 88Google Scholar

    [23]

    尹曌, 贺威, 邹尧, 穆新星, 孙长银 2021 自动化学报 47 1355Google Scholar

    Yin Z, He W, Zou Y, Mu X X, Sun C Y 2021 Acta Automatica Sin. 47 1355Google Scholar

    [24]

    Peng J S, Fu X J 2021 Control Engineering of China DOI: 10.14107/j.cnki. kzgc.20200927 (in Chinese) [彭建帅, 付兴建 2021 控制工程 DOI: 10.14107/j.cnki. kzgc.20200927]

    [25]

    Speakman J R, Banks D 1998 IBIS 140 280Google Scholar

    [26]

    宋素珍 2014 硕士学位论文 (天津: 中国民航大学)

    Song S Z 2014 M. S. Thesis (Tianjin: Civil Aviation University of China) (in Chinese)

    [27]

    冉淏丹, 李建华, 崔琼, 南明莉 2019 火力与指挥控制 44 55Google Scholar

    Ran H D, Li J H, Cui Q, Nan M L 2019 Fire Control Command Control 44 55Google Scholar

    [28]

    Du Z L, Li X L 2019 Quantum Inf. Process. 18 226Google Scholar

    [29]

    刘乾, 胡占宁 2017 原子与分子物理学报 34 915Google Scholar

    Liu Q, Hu Z N 2017 J. Atom. Mol. Phys. 34 915Google Scholar

    [30]

    Shima H, Monireh H 2015 Quantum Inf. Process. 14 739Google Scholar

    [31]

    Fu H Z, Tian X L, Hu Y 2014 Int. J. Theo. Phys. 53 1840Google Scholar

    [32]

    Chen Y 2014 Int. J. Theo. Phys. 53 1454Google Scholar

    [33]

    Duan Y J, Zha X W, Sun X M, Xia J F 2014 Int. J. Theo. Phys. 53 2697Google Scholar

    [34]

    张晔 2021-09-30(005) 量子安全直接通信传输距离达40公里 (科技日报)

    Zhang Y 2021-09-30(005) Realization of Quantum Secure Direct Communication over 100 km Fiber (Science and Technology Daily) (in Chinese)

    [35]

    余松, 柏明强, 唐茜, 莫智文 2021 量子电子学报 38 57Google Scholar

    Yu S, Bai M Q, Tang Q, Mo Z W 2021 Chin. J. Quant. Elect. 38 57Google Scholar

    [36]

    郑涛, 张仕斌, 孙裕华, 昌燕 2020 计算机应用研究 37 2144Google Scholar

    Zheng T, Zhang S B, Sun Y H, Chang Y 2020 Application Research of Computers 37 2144Google Scholar

    [37]

    张美玲, 刘原华, 聂敏 2018 量子电子学报 35 320Google Scholar

    Zhang M L, Liu Y H, Nie M 2018 Chin. J. Quant. Elect. 35 320Google Scholar

    [38]

    刘志昊, 陈汉武 2017 物理学报 66 130304Google Scholar

    Liu Z H, Chen H W 2017 Acta Phys. Sin. 66 130304Google Scholar

    [39]

    王明宇, 王馨德, 阮东, 龙桂鲁 2021 物理学报 70 190301Google Scholar

    Wang M Y, Wang X D, Ruan D, Long G L 2021 Acta Phys. Sin. 70 190301Google Scholar

    [40]

    周贤韬, 江英华, 郭晨飞, 赵宁, 刘彪 2021 量子电子学报 https://kns.cnki.net/ kcms/detail/34.1163.TN.20210927.2021.002.html

    Zhou X T, Jiang Y H, Guo C F, Zhao N, Liu B 2021 Chin. J. Quant. Elect. https://kns.cnki.net/kcms/detail/34.1163.TN. 20210927.2021.002.html (in Chinese)

    [41]

    权东晓, 裴昌幸, 刘丹, 赵楠 2010 物理学报 59 2493Google Scholar

    Quan D X, Pei C X, Liu D, Zhao N 2010 Acta Phys. Sin. 59 2493Google Scholar

    [42]

    曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业 2016 物理学报 65 230301Google Scholar

    Cao Z W, Zhao G, Zhang S H, Feng X Y, Peng J Y 2016 Acta Phys. Sin. 65 230301Google Scholar

    [43]

    聂敏, 韩凯捷, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 物理学报 70 140303Google Scholar

    Nie M, Han K J, Yang G, Zhang M L, Sun A J, Pei C X 2021 Acta Phys. Sin. 70 140303Google Scholar

    [44]

    朱宇, 石磊, 魏家华, 朱秋立, 杨汝, 赵顾颢 2019 激光与光电子学进展 56 232Google Scholar

    Zhu Y, Shi L, Wei J H, Zhu Q L, Yang R, Zhao G H 2019 Laser Optoelect. Prog. 56 232Google Scholar

    [45]

    聂敏, 卫容宇, 杨光, 张美玲, 孙爱晶, 裴昌幸 2019 物理学报 68 110301Google Scholar

    Nie M, Wei R Y, Yang G, Zhang M L, Sun A J, Pei C X 2019 Acta Phys. Sin. 68 110301Google Scholar

计量
  • 文章访问数:  2614
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 修回日期:  2022-03-26
  • 上网日期:  2022-07-19
  • 刊出日期:  2022-08-05

/

返回文章
返回