搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子远程传态的无线自组织量子通信网络路由协议

余旭涛 徐进 张在琛

引用本文:
Citation:

基于量子远程传态的无线自组织量子通信网络路由协议

余旭涛, 徐进, 张在琛

Routing protocol for wireless ad hoc quantum communication network based on quantum teleportation

Yu Xu-Tao, Xu Jin, Zhang Zai-Chen
PDF
导出引用
  • 针对复杂结构的无线量子通信网络, 提出了无线自组织量子通信网络概念并设计其路由协议.该路由协议为按需路由协议, 路由度量基于相邻节点间的纠缠粒子对数目.需要发送携带信息的量子态的节点发起路由请求和建立过程, 由目的节点根据路由度量选择路径.目的节点选择路径后, 沿所选路径发送路由应答信息至源节点并通知路径中其他节点.信息传输过程中, 若所选路径中相邻节点间无线信道或者量子信道中断, 将重新发起一个路由发现过程, 建立新路由. 路径中节点收到路由应答信息后, 利用纠缠交换和两端逼近方法, 从路径两端向中间节点方向进行纠缠交换, 建立量子信道后, 通过量子远程传态传输携带信息的量子态, 从而实现无线自组织量子通信网络中任意两节点间信息的传递.
    A concept of wireless ad hoc quantum communication network is proposed and a routing protocol is designed for wireless quantum communicaiton network with complex structure. The routing protocol is on-demand and the routing metric is based on the number of entangled particle pairs. The node that wants to send information carried by quantum state can initiate a route request and establishment procedure. The destination node chooses path by the routing metric and sends route reply message along the selected path. During the information transmission, if the quantum channel or the wirless channel between any neighbors in the selected path is broken, a route discovery process is reinitiated to set up a new route. Nodes in the selected path use a both-end approximation algorithm to establish a quantum channel. After the quantum channel is established, the quantum state is transferred by quantum teleportation and the information transfer between any two nodes in wireless ad hoc quantum communication network is finished.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 60902010)和东南大学移动通信国家重点实验室自主研究基金(批准号: 2012A03)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 60902010), and the State Key Laboratory of Mobile Communications, Southeast University, China (Grant No. 2012A03).
    [1]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (1st Ed.) (Cambridge: Cambridge University Press) p3

    [2]

    Mattle K, Weinfurter H, Kwiat P G, Zeilinger A 1996 Phys. Rev. Lett. 76 4656

    [3]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Modern Phys. 74 145

    [4]

    Klauck H, Nayak A, Ta-Shma A, Zuckerman D 2007 IEEE Trans. Info. Theory 53 1970

    [5]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wooters W K 1993 Phys. Rev. Lett. 70 1895

    [6]

    Bartlett S D, Rudolph T, Spekkens R W 2003 Phys. Rev. Lett. 91 027901

    [7]

    Zukowski M 1993 Phys. Lett. A 177 290

    [8]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [9]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891

    [10]

    Briegel H J, Duer W, Cirac J 1998Phys. Rev. Lett. 81 5932

    [11]

    Yang C P, Guo G C 2000 Chin. Phys. Lett. 17 162

    [12]

    Zhao Z, Yang T, Chen Y A, Zhang A N, Zukowski M, Pan J W 2003 Phys. Rev. Lett. 91 180401

    [13]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Chen K, Peng C Z, Pan J W 2010 Nat. Photonics 4 376

    [14]

    Dupuis F, Hayden P, Li K 2010 IEEE Trans. Info. Theory 56 2946

    [15]

    Hsieh M H, Wilde M M 2010 IEEE Trans. Info. Theory 56 4682

    [16]

    Zhou N R, Zeng G H, Gong L H, Liu S Q 2007 Acta Phys. Sin. 56 5066 (in Chinese) [周南润, 曾贵华,龚黎华,刘三秋 2007 物理学报 56 5066]

    [17]

    Zhou N R, Zeng B Y, Wang L J, Gong L H 2010 Acta Phys. Sin. 59 2193 ( in Chinese) [周南润,曾宾阳,王立军,龚黎华 2010 物理学报 59 2193]

    [18]

    Zhou X Q, Wu Y W, Zhao H 2011 Acta Phys. Sin. 60 40304 (in Chinese) [周小清,邬云文,赵晗 2011 物理学报 60 40304]

    [19]

    Cheng S T, Wang C Y, Tao M H 2005 IEEE J. Sel. Area. Comm 23 1424

    [20]

    Zhou N R, Zeng G H, Zhu F C, Liu S Q 2006 J. Shanghai Jiaotong Univ. 40 1885 (in Chinese) [周南润, 曾贵华, 朱甫臣, 刘三秋2006 上海交通大学学报 40 1885]

    [21]

    Li J, Paul S, Jain R 2011 IEEE Comm. Mag. 49 26

    [22]

    Zhao Q, Tong L 2007 IEEE J. Sel. Area. Comm. 25 589

    [23]

    Zhou L D, Haas Z J 1999 IEEE Network 13 24

    [24]

    Bennett C H 1992 Phys. Rev. Letter. 69 2881

    [25]

    Royer E M, Toh C K 1999 IEEE Pers. Comm. 6 46

    [26]

    Kannhavong B, Nakayama H, Nemoto Y, Kato N, Jamalipour A 2007IEEE Wirel. Comm. 14 85

  • [1]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (1st Ed.) (Cambridge: Cambridge University Press) p3

    [2]

    Mattle K, Weinfurter H, Kwiat P G, Zeilinger A 1996 Phys. Rev. Lett. 76 4656

    [3]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Modern Phys. 74 145

    [4]

    Klauck H, Nayak A, Ta-Shma A, Zuckerman D 2007 IEEE Trans. Info. Theory 53 1970

    [5]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wooters W K 1993 Phys. Rev. Lett. 70 1895

    [6]

    Bartlett S D, Rudolph T, Spekkens R W 2003 Phys. Rev. Lett. 91 027901

    [7]

    Zukowski M 1993 Phys. Lett. A 177 290

    [8]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [9]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891

    [10]

    Briegel H J, Duer W, Cirac J 1998Phys. Rev. Lett. 81 5932

    [11]

    Yang C P, Guo G C 2000 Chin. Phys. Lett. 17 162

    [12]

    Zhao Z, Yang T, Chen Y A, Zhang A N, Zukowski M, Pan J W 2003 Phys. Rev. Lett. 91 180401

    [13]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Chen K, Peng C Z, Pan J W 2010 Nat. Photonics 4 376

    [14]

    Dupuis F, Hayden P, Li K 2010 IEEE Trans. Info. Theory 56 2946

    [15]

    Hsieh M H, Wilde M M 2010 IEEE Trans. Info. Theory 56 4682

    [16]

    Zhou N R, Zeng G H, Gong L H, Liu S Q 2007 Acta Phys. Sin. 56 5066 (in Chinese) [周南润, 曾贵华,龚黎华,刘三秋 2007 物理学报 56 5066]

    [17]

    Zhou N R, Zeng B Y, Wang L J, Gong L H 2010 Acta Phys. Sin. 59 2193 ( in Chinese) [周南润,曾宾阳,王立军,龚黎华 2010 物理学报 59 2193]

    [18]

    Zhou X Q, Wu Y W, Zhao H 2011 Acta Phys. Sin. 60 40304 (in Chinese) [周小清,邬云文,赵晗 2011 物理学报 60 40304]

    [19]

    Cheng S T, Wang C Y, Tao M H 2005 IEEE J. Sel. Area. Comm 23 1424

    [20]

    Zhou N R, Zeng G H, Zhu F C, Liu S Q 2006 J. Shanghai Jiaotong Univ. 40 1885 (in Chinese) [周南润, 曾贵华, 朱甫臣, 刘三秋2006 上海交通大学学报 40 1885]

    [21]

    Li J, Paul S, Jain R 2011 IEEE Comm. Mag. 49 26

    [22]

    Zhao Q, Tong L 2007 IEEE J. Sel. Area. Comm. 25 589

    [23]

    Zhou L D, Haas Z J 1999 IEEE Network 13 24

    [24]

    Bennett C H 1992 Phys. Rev. Letter. 69 2881

    [25]

    Royer E M, Toh C K 1999 IEEE Pers. Comm. 6 46

    [26]

    Kannhavong B, Nakayama H, Nemoto Y, Kato N, Jamalipour A 2007IEEE Wirel. Comm. 14 85

  • [1] 杨光, 刘琦, 聂敏, 刘原华, 张美玲. 基于极化-空间模超纠缠的量子网络多跳纠缠交换方法研究. 物理学报, 2022, 71(10): 100301. doi: 10.7498/aps.71.20212173
    [2] 周瑶瑶, 刘艳红, 闫智辉, 贾晓军. 多功能量子远程传态网络. 物理学报, 2021, 70(10): 104203. doi: 10.7498/aps.70.20201749
    [3] 聂敏, 刘广腾, 杨光, 裴昌幸. 基于最少中继节点约束的量子VoIP路由优化策略. 物理学报, 2016, 65(12): 120302. doi: 10.7498/aps.65.120302
    [4] 聂敏, 王林飞, 杨光, 张美玲, 裴昌幸. 基于分组交换的量子通信网络传输协议及性能分析. 物理学报, 2015, 64(21): 210303. doi: 10.7498/aps.64.210303
    [5] 杨光, 廉保旺, 聂敏. 多跳噪声量子纠缠信道特性及最佳中继协议. 物理学报, 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [6] 陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛. 基于纠缠态的量子通信网络的量子信道建立速率模型. 物理学报, 2015, 64(4): 040301. doi: 10.7498/aps.64.040301
    [7] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案. 物理学报, 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [8] 朱伟, 聂敏. 量子信令交换机模型设计及性能分析. 物理学报, 2013, 62(13): 130304. doi: 10.7498/aps.62.130304
    [9] 周小清, 邬云文. 量子隐形传态网络的广播与组播. 物理学报, 2012, 61(17): 170303. doi: 10.7498/aps.61.170303
    [10] 周小清, 邬云文, 赵晗. 量子隐形传态网络的互联与路由策略. 物理学报, 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.2
    [11] 李伟, 范明钰, 王光卫. 基于纠缠交换的仲裁量子签名方案. 物理学报, 2011, 60(8): 080302. doi: 10.7498/aps.60.080302
    [12] 刘强, 方锦清, 李永. 多种形式的加权广义Farey组织网络金字塔的复杂性. 物理学报, 2010, 59(6): 3704-3714. doi: 10.7498/aps.59.3704
    [13] 赵晗, 周小清, 杨小琳. 基于腔QED的多用户间的多原子量子信道的建立. 物理学报, 2009, 58(9): 5970-5977. doi: 10.7498/aps.58.5970
    [14] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发. 物理学报, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [15] 李艳玲, 冯 健, 於亚飞. 量子纠缠态的普适远程克隆. 物理学报, 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [16] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨. 物理学报, 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [17] 王菊霞, 杨志勇, 安毓英. 多模光场与二能级原子相互作用的纠缠交换与保持. 物理学报, 2007, 56(11): 6420-6426. doi: 10.7498/aps.56.6420
    [18] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态. 物理学报, 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [19] 杨宇光, 温巧燕, 朱甫臣. 一种网络多用户量子认证和密钥分配理论方案. 物理学报, 2005, 54(9): 3995-3999. doi: 10.7498/aps.54.3995
    [20] 杨宇光, 温巧燕, 朱甫臣. 基于纠缠交换的多方多级量子密钥分配协议. 物理学报, 2005, 54(12): 5544-5548. doi: 10.7498/aps.54.5544
计量
  • 文章访问数:  9328
  • PDF下载量:  1087
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-12
  • 修回日期:  2012-06-07
  • 刊出日期:  2012-11-05

基于量子远程传态的无线自组织量子通信网络路由协议

  • 1. 东南大学, 毫米波国家重点实验室, 南京 210096;
  • 2. 东南大学物理系, 南京 210096;
  • 3. 东南大学, 移动通信国家重点实验室, 南京 210096
    基金项目: 国家自然科学基金青年科学基金(批准号: 60902010)和东南大学移动通信国家重点实验室自主研究基金(批准号: 2012A03)资助的课题.

摘要: 针对复杂结构的无线量子通信网络, 提出了无线自组织量子通信网络概念并设计其路由协议.该路由协议为按需路由协议, 路由度量基于相邻节点间的纠缠粒子对数目.需要发送携带信息的量子态的节点发起路由请求和建立过程, 由目的节点根据路由度量选择路径.目的节点选择路径后, 沿所选路径发送路由应答信息至源节点并通知路径中其他节点.信息传输过程中, 若所选路径中相邻节点间无线信道或者量子信道中断, 将重新发起一个路由发现过程, 建立新路由. 路径中节点收到路由应答信息后, 利用纠缠交换和两端逼近方法, 从路径两端向中间节点方向进行纠缠交换, 建立量子信道后, 通过量子远程传态传输携带信息的量子态, 从而实现无线自组织量子通信网络中任意两节点间信息的传递.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回