搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最少中继节点约束的量子VoIP路由优化策略

聂敏 刘广腾 杨光 裴昌幸

引用本文:
Citation:

基于最少中继节点约束的量子VoIP路由优化策略

聂敏, 刘广腾, 杨光, 裴昌幸

Voice over quantum IP routing based on least relay node constrained optimization strategy

Nie Min, Liu Guang-Teng, Yang Guang, Pei Chang-Xing
PDF
导出引用
  • 量子信息的传输过程中, 由于拥塞、链路故障等原因, 导致数据分组在路由器排队, 产生时延、丢包. 为了保证量子VoIP系统的性能, 本文提出了基于最少中继节点约束的路由优化策略. 采用基于纠缠交换的中继技术, 通过优先选择最少中继节点的量子信道, 实现多用户量子VoIP通信. 理论分析和仿真结果表明, 当链路出现故障和拥塞时, 基于M/M/m型排队系统, 采用本策略, 当设定量子比特的误码率为0.2, 共用信道数目从4增加到8时, 量子网络的呼损率由0.25 下降到0.024, 量子网络的最大吞吐量由64 kbps增加到132 kbps. 当设定共用信道数目为4, 控制量子比特的误码率从0.3到0.1时, 可使量子网络最大吞吐量从41 kbps增加到140 kbps. 由此可见, 本策略能够极大地提高量子VoIP网络的性能.
    Quantum communication is the interdisciplinary science of quantum mechanics and telecommunication theory. It has advantages of perfect information security and high efficiency in transmission. In recent years, the theoretical and experimental results show that quantum communication systems have the superiority over the traditional communication systems. Quantum communication systems are hopeful for solving the information security problems that everyone is facing today, therefore, they possess broad application prospects and are forming a research hotspot of the telecommunications field currently. On the other hand, Voice over Internet Protocol (VoIP) is the method to transmit the digitized packet voice in Internet around the world. The advantages of VoIP are that it can carry voice, data, video, telephone conference, electronic commerce, and electronic mail economically. VoIP can realize the information storage and retransmission easily and flexibly. However, VoIP also encounters the problem of information security. We are trying to combine the quantum communications network and the VoIP system together and build a brand new network named quantum VoIP network which combines the advantages of both quantum communications and VoIP. The data packets may be delayed and lost in a queue up with a router due to the congestion and link failure during the transmission of quantum information. In order to ensure the performance of quantum VoIP system, the routing optimization strategies are proposed in the paper. The relay technology based on entanglement swapping is adopted. The multiuse quantum communications are realized by giving priority to the quantum channels with the least relay nodes. Theoretical analysis and simulation results show that when the data transmission links are fail to work properly and routers are in congestion, adopting the routing optimization strategies in M/M/m queuing system with the bit error rate (BER) of quantum bit setting to be 0.2 and the number of common channels increasing from 4 to 8,, the percentage of call failure in quantum communication network decreases from 0.25 to 0.024, and the maximum throughput of quantum networks increases from 64 kbps to 132 kbps. In comparison, when the number of common channels is set to be 4 andthe BER of the quantum bit is from 0.3 to 0.1, the maximum throughput of quantum networks increases from 41 kbps to 140 kbps. Thus it can be concluded that the routing optimization strategies proposed in this paper can improve the performance of quantum VoIP system significantly.
      通信作者: 刘广腾, liugt526@163.com
    • 基金项目: 国家自然科学基金(批准号: 61172071, 61201194)、陕西省自然科学基础研究计划(批准号: 2014JQ8318)和陕西省国际科技合作与交流计划项目(批准号: 2015KW-013)资助的课题.
      Corresponding author: Liu Guang-Teng, liugt526@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172071, 61201194), the Natural Science Research Foundation of Shaanxi Province, China (Grant No. 2014JQ8318), and the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China (Grant No. 2015KW-013).
    [1]

    Nielasen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p3

    [2]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [3]

    Zhao Z, Yang T, Chen Y A, Zhang A N, Żkowski M, Pan J W 2003 Phys. Rev. Lett. 91 180401

    [4]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photon. 4 339

    [5]

    Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185

    [6]

    Inagaki T, Matsuda N, Tadanaga O, Asobe M, Takesue H 2013 Opt. Express 21 23241

    [7]

    Chou C W, Laurat J, Deng H, Choi K S, de Riedmatten H, Felinto D, Kimble H J 2007 Science 316 1316

    [8]

    Wang T J, Song S Y, Long G L 2012 Phys. Rev. Lett. 85 062311

    [9]

    Daniel G, Thomas J, Sarah C 2011 Phys. Rev. Lett. 109 070503

    [10]

    Pemberton-Ross P J, Alastair P J 2011 Phys. Rev. Lett. 106 34

    [11]

    Zhong W G, Xing K F, Shu M W 2015 Tien Tzu Hsueh PaoActa Electron. Sin. 43 171

    [12]

    Yu X T, Xu J, Zhang Z C 2012 Acta Phys. Sin. 61 220303 (in Chinese) [余旭涛, 徐进, 张在琛 2012 物理学报 61 220303]

    [13]

    Pei C X, Yan Y, Liu D, Han B S, Zhao N 2008 Acta Photon. Sin. 37 2422 (in Chinese) [裴昌幸, 阎毅, 刘丹, 韩宝彬, 赵楠 2008 光子学报 37 2422]

    [14]

    Liu X H, Nie M, Pei C X 2013 Acta Phys. Sin. 62 200304 (in Chinese) [刘晓慧, 聂敏, 裴昌幸 2013 物理学报 62 200304]

    [15]

    Lian T, Nie M 2012 Acta Photon. Sin. 41 1251 (in Chinese) [连涛, 聂敏 2012 光子学报 41 1251]

    [16]

    Xue L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 170305 (in Chinese) [薛乐, 聂敏, 刘晓慧 2013 物理学报 62 170305]

    [17]

    Sengar H, Dantu R, Wiljesekera D 2006 IEEE Workshop on Voip Management Security 10 1

    [18]

    Goode B 2002 Proc. IEEE 90 1495

    [19]

    Chan H C B, Leung V C M 2000 Conference on Electrical and Computer Engineering Halifax, Canada, Mar. 7-10, 2000 p459

    [20]

    Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing: Military Science Press) p269 (in Chinese) [尹浩, 马怀新 2006 军事量子通信概论 (北京: 军事科学出版社) 第269页]

    [21]

    Li J D, Sheng M 2004 Communication Networks Fundamentials (Beijing: Highter Education Press) pp88-91 (in Chinese) [李建东, 盛敏 2004 通信网络基础 (北京: 高等教育出版社) 第88-91页]

    [22]

    Liu W C 2011 Mobile Communication (Beijing: Peking University Press) pp112-114 (in Chinese) [刘维超 2011 移动通信 (北京: 北京大学出版社) 第112-114页]

  • [1]

    Nielasen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p3

    [2]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [3]

    Zhao Z, Yang T, Chen Y A, Zhang A N, Żkowski M, Pan J W 2003 Phys. Rev. Lett. 91 180401

    [4]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photon. 4 339

    [5]

    Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185

    [6]

    Inagaki T, Matsuda N, Tadanaga O, Asobe M, Takesue H 2013 Opt. Express 21 23241

    [7]

    Chou C W, Laurat J, Deng H, Choi K S, de Riedmatten H, Felinto D, Kimble H J 2007 Science 316 1316

    [8]

    Wang T J, Song S Y, Long G L 2012 Phys. Rev. Lett. 85 062311

    [9]

    Daniel G, Thomas J, Sarah C 2011 Phys. Rev. Lett. 109 070503

    [10]

    Pemberton-Ross P J, Alastair P J 2011 Phys. Rev. Lett. 106 34

    [11]

    Zhong W G, Xing K F, Shu M W 2015 Tien Tzu Hsueh PaoActa Electron. Sin. 43 171

    [12]

    Yu X T, Xu J, Zhang Z C 2012 Acta Phys. Sin. 61 220303 (in Chinese) [余旭涛, 徐进, 张在琛 2012 物理学报 61 220303]

    [13]

    Pei C X, Yan Y, Liu D, Han B S, Zhao N 2008 Acta Photon. Sin. 37 2422 (in Chinese) [裴昌幸, 阎毅, 刘丹, 韩宝彬, 赵楠 2008 光子学报 37 2422]

    [14]

    Liu X H, Nie M, Pei C X 2013 Acta Phys. Sin. 62 200304 (in Chinese) [刘晓慧, 聂敏, 裴昌幸 2013 物理学报 62 200304]

    [15]

    Lian T, Nie M 2012 Acta Photon. Sin. 41 1251 (in Chinese) [连涛, 聂敏 2012 光子学报 41 1251]

    [16]

    Xue L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 170305 (in Chinese) [薛乐, 聂敏, 刘晓慧 2013 物理学报 62 170305]

    [17]

    Sengar H, Dantu R, Wiljesekera D 2006 IEEE Workshop on Voip Management Security 10 1

    [18]

    Goode B 2002 Proc. IEEE 90 1495

    [19]

    Chan H C B, Leung V C M 2000 Conference on Electrical and Computer Engineering Halifax, Canada, Mar. 7-10, 2000 p459

    [20]

    Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing: Military Science Press) p269 (in Chinese) [尹浩, 马怀新 2006 军事量子通信概论 (北京: 军事科学出版社) 第269页]

    [21]

    Li J D, Sheng M 2004 Communication Networks Fundamentials (Beijing: Highter Education Press) pp88-91 (in Chinese) [李建东, 盛敏 2004 通信网络基础 (北京: 高等教育出版社) 第88-91页]

    [22]

    Liu W C 2011 Mobile Communication (Beijing: Peking University Press) pp112-114 (in Chinese) [刘维超 2011 移动通信 (北京: 北京大学出版社) 第112-114页]

  • [1] 廖骎, 柳海杰, 王铮, 朱凌瑾. 基于不可信纠缠源的高斯调制连续变量量子密钥分发. 物理学报, 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [2] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [3] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信. 物理学报, 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [4] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用. 物理学报, 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [5] 李熙涵. 量子直接通信. 物理学报, 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [6] 聂敏, 王林飞, 杨光, 张美玲, 裴昌幸. 基于分组交换的量子通信网络传输协议及性能分析. 物理学报, 2015, 64(21): 210303. doi: 10.7498/aps.64.210303
    [7] 杨光, 廉保旺, 聂敏. 多跳噪声量子纠缠信道特性及最佳中继协议. 物理学报, 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [8] 聂敏, 张琳, 刘晓慧. 量子纠缠信令网Poisson生存模型及保真度分析. 物理学报, 2013, 62(23): 230303. doi: 10.7498/aps.62.230303
    [9] 薛乐, 聂敏, 刘晓慧. 量子信令中继器模型及性能仿真. 物理学报, 2013, 62(17): 170305. doi: 10.7498/aps.62.170305
    [10] 朱伟, 聂敏. 量子信令交换机模型设计及性能分析. 物理学报, 2013, 62(13): 130304. doi: 10.7498/aps.62.130304
    [11] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [12] 余旭涛, 徐进, 张在琛. 基于量子远程传态的无线自组织量子通信网络路由协议. 物理学报, 2012, 61(22): 220303. doi: 10.7498/aps.61.220303
    [13] 印娟, 钱勇, 李晓强, 包小辉, 彭承志, 杨涛, 潘阁生. 远距离量子通信实验中的高维纠缠源. 物理学报, 2011, 60(6): 060308. doi: 10.7498/aps.60.060308
    [14] 李伟, 范明钰, 王光卫. 基于纠缠交换的仲裁量子签名方案. 物理学报, 2011, 60(8): 080302. doi: 10.7498/aps.60.080302
    [15] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 物理学报, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [16] 赵晗, 周小清, 杨小琳. 基于腔QED的多用户间的多原子量子信道的建立. 物理学报, 2009, 58(9): 5970-5977. doi: 10.7498/aps.58.5970
    [17] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨. 物理学报, 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [18] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议. 物理学报, 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
    [19] 杨宇光, 温巧燕, 朱甫臣. 一种网络多用户量子认证和密钥分配理论方案. 物理学报, 2005, 54(9): 3995-3999. doi: 10.7498/aps.54.3995
    [20] 杨宇光, 温巧燕, 朱甫臣. 基于纠缠交换的多方多级量子密钥分配协议. 物理学报, 2005, 54(12): 5544-5548. doi: 10.7498/aps.54.5544
计量
  • 文章访问数:  5886
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-01
  • 修回日期:  2016-03-23
  • 刊出日期:  2016-06-05

/

返回文章
返回