-
量子信息的传输过程中, 由于拥塞、链路故障等原因, 导致数据分组在路由器排队, 产生时延、丢包. 为了保证量子VoIP系统的性能, 本文提出了基于最少中继节点约束的路由优化策略. 采用基于纠缠交换的中继技术, 通过优先选择最少中继节点的量子信道, 实现多用户量子VoIP通信. 理论分析和仿真结果表明, 当链路出现故障和拥塞时, 基于M/M/m型排队系统, 采用本策略, 当设定量子比特的误码率为0.2, 共用信道数目从4增加到8时, 量子网络的呼损率由0.25 下降到0.024, 量子网络的最大吞吐量由64 kbps增加到132 kbps. 当设定共用信道数目为4, 控制量子比特的误码率从0.3到0.1时, 可使量子网络最大吞吐量从41 kbps增加到140 kbps. 由此可见, 本策略能够极大地提高量子VoIP网络的性能.Quantum communication is the interdisciplinary science of quantum mechanics and telecommunication theory. It has advantages of perfect information security and high efficiency in transmission. In recent years, the theoretical and experimental results show that quantum communication systems have the superiority over the traditional communication systems. Quantum communication systems are hopeful for solving the information security problems that everyone is facing today, therefore, they possess broad application prospects and are forming a research hotspot of the telecommunications field currently. On the other hand, Voice over Internet Protocol (VoIP) is the method to transmit the digitized packet voice in Internet around the world. The advantages of VoIP are that it can carry voice, data, video, telephone conference, electronic commerce, and electronic mail economically. VoIP can realize the information storage and retransmission easily and flexibly. However, VoIP also encounters the problem of information security. We are trying to combine the quantum communications network and the VoIP system together and build a brand new network named quantum VoIP network which combines the advantages of both quantum communications and VoIP. The data packets may be delayed and lost in a queue up with a router due to the congestion and link failure during the transmission of quantum information. In order to ensure the performance of quantum VoIP system, the routing optimization strategies are proposed in the paper. The relay technology based on entanglement swapping is adopted. The multiuse quantum communications are realized by giving priority to the quantum channels with the least relay nodes. Theoretical analysis and simulation results show that when the data transmission links are fail to work properly and routers are in congestion, adopting the routing optimization strategies in M/M/m queuing system with the bit error rate (BER) of quantum bit setting to be 0.2 and the number of common channels increasing from 4 to 8,, the percentage of call failure in quantum communication network decreases from 0.25 to 0.024, and the maximum throughput of quantum networks increases from 64 kbps to 132 kbps. In comparison, when the number of common channels is set to be 4 andthe BER of the quantum bit is from 0.3 to 0.1, the maximum throughput of quantum networks increases from 41 kbps to 140 kbps. Thus it can be concluded that the routing optimization strategies proposed in this paper can improve the performance of quantum VoIP system significantly.
-
Keywords:
- quantum communication /
- entanglement swapping /
- least relay node /
- quantum VoIP
[1] Nielasen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p3
[2] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575
[3] Zhao Z, Yang T, Chen Y A, Zhang A N, Żkowski M, Pan J W 2003 Phys. Rev. Lett. 91 180401
[4] Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photon. 4 339
[5] Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185
[6] Inagaki T, Matsuda N, Tadanaga O, Asobe M, Takesue H 2013 Opt. Express 21 23241
[7] Chou C W, Laurat J, Deng H, Choi K S, de Riedmatten H, Felinto D, Kimble H J 2007 Science 316 1316
[8] Wang T J, Song S Y, Long G L 2012 Phys. Rev. Lett. 85 062311
[9] Daniel G, Thomas J, Sarah C 2011 Phys. Rev. Lett. 109 070503
[10] Pemberton-Ross P J, Alastair P J 2011 Phys. Rev. Lett. 106 34
[11] Zhong W G, Xing K F, Shu M W 2015 Tien Tzu Hsueh PaoActa Electron. Sin. 43 171
[12] Yu X T, Xu J, Zhang Z C 2012 Acta Phys. Sin. 61 220303 (in Chinese) [余旭涛, 徐进, 张在琛 2012 物理学报 61 220303]
[13] Pei C X, Yan Y, Liu D, Han B S, Zhao N 2008 Acta Photon. Sin. 37 2422 (in Chinese) [裴昌幸, 阎毅, 刘丹, 韩宝彬, 赵楠 2008 光子学报 37 2422]
[14] Liu X H, Nie M, Pei C X 2013 Acta Phys. Sin. 62 200304 (in Chinese) [刘晓慧, 聂敏, 裴昌幸 2013 物理学报 62 200304]
[15] Lian T, Nie M 2012 Acta Photon. Sin. 41 1251 (in Chinese) [连涛, 聂敏 2012 光子学报 41 1251]
[16] Xue L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 170305 (in Chinese) [薛乐, 聂敏, 刘晓慧 2013 物理学报 62 170305]
[17] Sengar H, Dantu R, Wiljesekera D 2006 IEEE Workshop on Voip Management Security 10 1
[18] Goode B 2002 Proc. IEEE 90 1495
[19] Chan H C B, Leung V C M 2000 Conference on Electrical and Computer Engineering Halifax, Canada, Mar. 7-10, 2000 p459
[20] Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing: Military Science Press) p269 (in Chinese) [尹浩, 马怀新 2006 军事量子通信概论 (北京: 军事科学出版社) 第269页]
[21] Li J D, Sheng M 2004 Communication Networks Fundamentials (Beijing: Highter Education Press) pp88-91 (in Chinese) [李建东, 盛敏 2004 通信网络基础 (北京: 高等教育出版社) 第88-91页]
[22] Liu W C 2011 Mobile Communication (Beijing: Peking University Press) pp112-114 (in Chinese) [刘维超 2011 移动通信 (北京: 北京大学出版社) 第112-114页]
-
[1] Nielasen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p3
[2] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575
[3] Zhao Z, Yang T, Chen Y A, Zhang A N, Żkowski M, Pan J W 2003 Phys. Rev. Lett. 91 180401
[4] Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photon. 4 339
[5] Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185
[6] Inagaki T, Matsuda N, Tadanaga O, Asobe M, Takesue H 2013 Opt. Express 21 23241
[7] Chou C W, Laurat J, Deng H, Choi K S, de Riedmatten H, Felinto D, Kimble H J 2007 Science 316 1316
[8] Wang T J, Song S Y, Long G L 2012 Phys. Rev. Lett. 85 062311
[9] Daniel G, Thomas J, Sarah C 2011 Phys. Rev. Lett. 109 070503
[10] Pemberton-Ross P J, Alastair P J 2011 Phys. Rev. Lett. 106 34
[11] Zhong W G, Xing K F, Shu M W 2015 Tien Tzu Hsueh PaoActa Electron. Sin. 43 171
[12] Yu X T, Xu J, Zhang Z C 2012 Acta Phys. Sin. 61 220303 (in Chinese) [余旭涛, 徐进, 张在琛 2012 物理学报 61 220303]
[13] Pei C X, Yan Y, Liu D, Han B S, Zhao N 2008 Acta Photon. Sin. 37 2422 (in Chinese) [裴昌幸, 阎毅, 刘丹, 韩宝彬, 赵楠 2008 光子学报 37 2422]
[14] Liu X H, Nie M, Pei C X 2013 Acta Phys. Sin. 62 200304 (in Chinese) [刘晓慧, 聂敏, 裴昌幸 2013 物理学报 62 200304]
[15] Lian T, Nie M 2012 Acta Photon. Sin. 41 1251 (in Chinese) [连涛, 聂敏 2012 光子学报 41 1251]
[16] Xue L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 170305 (in Chinese) [薛乐, 聂敏, 刘晓慧 2013 物理学报 62 170305]
[17] Sengar H, Dantu R, Wiljesekera D 2006 IEEE Workshop on Voip Management Security 10 1
[18] Goode B 2002 Proc. IEEE 90 1495
[19] Chan H C B, Leung V C M 2000 Conference on Electrical and Computer Engineering Halifax, Canada, Mar. 7-10, 2000 p459
[20] Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing: Military Science Press) p269 (in Chinese) [尹浩, 马怀新 2006 军事量子通信概论 (北京: 军事科学出版社) 第269页]
[21] Li J D, Sheng M 2004 Communication Networks Fundamentials (Beijing: Highter Education Press) pp88-91 (in Chinese) [李建东, 盛敏 2004 通信网络基础 (北京: 高等教育出版社) 第88-91页]
[22] Liu W C 2011 Mobile Communication (Beijing: Peking University Press) pp112-114 (in Chinese) [刘维超 2011 移动通信 (北京: 北京大学出版社) 第112-114页]
计量
- 文章访问数: 5886
- PDF下载量: 185
- 被引次数: 0