搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多跳噪声量子纠缠信道特性及最佳中继协议

杨光 廉保旺 聂敏

引用本文:
Citation:

多跳噪声量子纠缠信道特性及最佳中继协议

杨光, 廉保旺, 聂敏

Characteristics of multi-hop noisy quantum entanglement channel and optimal relay protocol

Yang Guang, Lian Bao-Wang, Nie Min
PDF
导出引用
  • 在量子通信网络中, 最佳中继路径的计算与选择策略是影响网络性能的关键因素. 针对噪声背景下量子隐形传态网络中的中继路径选择问题, 本文首先研究了相位阻尼信道及振幅阻尼信道上的纠缠交换过程, 通过理论推导给出了两种多跳纠缠交换信道上的纠缠保真度与路径等效阻尼系数. 在此基础上提出以路径等效阻尼系数为准则的隐形传态网络最佳中继协议, 并给出了邻居发现、量子链路噪声参数测量、量子链路状态信息传递、中继路径计算与纠缠资源预留等工作的具体过程. 理论分析与性能仿真结果表明, 相比于现有的量子网络路径选择策略, 本文方法能获得更小的路径平均等效阻尼系数及更高的隐形传态保真度. 此外, 通过分析链路纠缠资源数量对协议性能的影响, 说明在进行量子通信网设计时, 可以根据网络的规模及用户的需求合理配置链路纠缠资源.
    The optimal relay path calculation and selection are important factors to affect the performance of quantum communication network. Current researches seldom consider the quantum path selection in real noisy environments. One of the difficult problems is how to analyze the influence of the noise on the quantum communication in multi-hop channels. This paper aims to solve the path selection problem of the quantum teleportation network in noisy environments. The process of entanglement swapping in the phase damping channel is first studied with an example of two-hop quantum channel, whose damping factors are p1 and p2. The entanglement states |φ> 12+ and |φ> 34+ are distributed separately in each hop. After the entanglement swapping, the density matrix of the entanglement state of photon 1 and photon 4 is obtained by performing a partial trace over the environment. Then, the Bures fidelity of this entanglement is calculated. After that, we define the path equivalent damping factor to describe the characteristic of the two-hop noisy quantum relay path. With an equivalent calculation method, the results above can be generalized to multi-hop channel. The path equivalent damping factor of the multi-hop amplitude damping channel is also obtained. According to these results, we propose an optimal relay protocol for the quantum teleportation network with the criterion of path equivalent damping factor, which means that a relay path with the minimum path equivalent damping factor can obtain the highest teleportation fidelity. The types and parameters of the messages used in the protocol are given. The processes of the relay protocol are described specifically, including neighbor finding, quantum link noise measurement, and quantum link status transmission. An improved Dijkstra algorithm is used in the optimal path calculation. Furthermore, because the entanglement resources maintained in the quantum nodes are limited and may be exhausted in superior quantum links, we propose a resource reservation method to avoid the failure of the relay path setup. Theoretical analysis and simulation show that our method can obtain a lower average equivalent damping factor and higher teleportation fidelity. It can also be seen that increasing the number of the entanglement resources will raise the performance of the quantum network, however, it brings higher cost and complexity. Therefore, the entanglement resources maintained in the quantum nodes must be configured reasonably according to the network scale, the cost, the time delay and the need of the users.
      通信作者: 杨光, sharon.yg@163.com
    • 基金项目: 国家自然科学基金(批准号: 61172071, 61201194)和陕西省国际科技合作与交流计划(批准号: 2015KW-013, 2014KW02-02)资助的课题.
      Corresponding author: Yang Guang, sharon.yg@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172071, 61201194) and the International Scientific and Technological Cooperation and Exchange Program of Shaanxi Province, China (Grant Nos. 2015KW-013, 2014KW02-02).
    [1]

    Sergienko A V 2006 Quantum Communications and Cryptography (Florida: Taylor & Francis Group CRC Press) pp83-102

    [2]

    Poppe A, Peev M, Maurhart O 2008 Int. J. Quantum Inf. 6 209

    [3]

    Xu F X, Chen W, Wang S, Yin Z Q, Zhang Y, Liu Y, Zhou Z, Zhao Y B, Li H W, Liu D, Han Z F, Guo G C 2009 Chin. Sci. Bull. 54 2991

    [4]

    Xu H X 2014 J. CAEIT 9 259 (in Chinese) [许华醒 2014 中国电子科学研究院学报 9 259]

    [5]

    Hughes R J, Buttler W T, Kwiat P G, Lamoreuax S K, Morgan G L, Nordholt J E, Peterson C G 2000 Aerospace Conference Proceedings, 2000 IEEE Big Sky MT, USA, March 18-25, 2000 p191

    [6]

    Ursin R, Jennewein T, Kofler J, Perdigues J M, Cacciapuoti L, Zeilinger A 2009 Europhys. News 40 26

    [7]

    Toyoshima M, Takayama Y, Takahashi T, Suzuki K, Kimura S 2008 IEEE Aerosp. Electron. Syst. Mag. 23 10

    [8]

    Yin J, Cao Y, Liu S B, Pan G S, Wang J H, Yang T, Pan J W 2013 Opt. Express 21 20032

    [9]

    Heilmann R, Gräfe M, Nolte S, Szameit A 2015 Sci. Bull. 60 96

    [10]

    Su X L, Jia X J, Xie C D, Peng K C 2014 Sci. China: Phys. Mech. Astron. 57 1210

    [11]

    Wang W Y, Wang C, Zhang G Y 2009 Chin. Sci. Bull. 54 158

    [12]

    Wang C Z, Guo H, Ren J G, CaoY, Peng C Z, Liu W Y 2014 Sci. China: Phys. Mech. Astron. 57 1233

    [13]

    Long G L, Li Y S, Zhang W L, Niu L 1999 Phys. Lett. A 262 27

    [14]

    Botsinis P, Ng S X, Hanzo L 2013 Access. IEEE 1 94

    [15]

    Wang J, Chen H Q, Zhang Q, Tang C J 2007 Acta Phys. Sin. 56 673 (in Chinese) [王剑, 陈皇卿, 张权, 唐朝京 2007 物理学报 56 673]

    [16]

    Wang T Y, Qin S J, Wen Q Y, Zhu F C 2008 Acta Phys. Sin. 57 7452 (in Chinese) [王天银, 秦素娟, 温巧燕, 朱甫臣 2008 物理学报 57 7452]

    [17]

    Zou X F, Qiu D W 2014 Sci. China: Phys. Mech. Astron. 57 1696

    [18]

    Ma H Y, Qin G Q, Fan X K, Chu P C 2015 Acta Phys. Sin. 64 160306 (in Chinese) [马鸿洋, 秦国卿, 范兴奎, 初鹏程 2015 物理学报 64 160306]

    [19]

    Nie M, Lu G Y 2008 J. Northwest Univ. (Nat. Sci. Ed.) 38 905 (in Chinese) [聂敏, 卢光跃 2008 西北大学学报自然科学版 38 905]

    [20]

    Liu X H, Pei C X, Nie M 2014 J. Jilin Univ. (Technol. Ed.) 44 1177 (in Chinese) [刘晓慧, 裴昌幸, 聂敏 2014 吉林大学学报工学版 44 1177]

    [21]

    Cheng S T, Wang C Y, Tao M H 2005 IEEE J. Sel. Areas Commun. 23 1424

    [22]

    Yu X T, Zhang Z C, Xu J 2014 Chin. Phys. B 23 010303

    [23]

    Ma H Y, Guo Z W, Fan X K, Wang S M 2015 Acta Electron. Sin. 43 171 (in Chinese) [马鸿洋, 郭忠文, 范兴奎, 王淑梅 2015 电子学报 43 171]

    [24]

    Yin H, Han Y 2012 Quantum Communication Theory and Technology (Beijing: Publishing House of Electronics Industry) pp202-211 (in Chinese) [尹浩, 韩阳 2013 量子通信原理与技术(北京:电子工业出版社)第202–211页]

    [25]

    Zhang Y D 2012 Principles of Quantum Information Physics (Beijing: Science Press) pp147-253 (in Chinese) [张永德 2012 量子信息物理原理(北京: 科学出版社) 第147–172页]

    [26]

    Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A, Wootters W K 1996 Phys. Rev. Lett. 76 722

    [27]

    Nicolas S, Christoph S, Hugues D R, Nicolas G 2011 Rev. Mod. Phys. 83 33

    [28]

    Fujiwara A 2004 Phys. Rev. A 70 012317

    [29]

    Sarovar M, Milburn G J 2006 J. Phys. A: Math. Gen. 39 8487

  • [1]

    Sergienko A V 2006 Quantum Communications and Cryptography (Florida: Taylor & Francis Group CRC Press) pp83-102

    [2]

    Poppe A, Peev M, Maurhart O 2008 Int. J. Quantum Inf. 6 209

    [3]

    Xu F X, Chen W, Wang S, Yin Z Q, Zhang Y, Liu Y, Zhou Z, Zhao Y B, Li H W, Liu D, Han Z F, Guo G C 2009 Chin. Sci. Bull. 54 2991

    [4]

    Xu H X 2014 J. CAEIT 9 259 (in Chinese) [许华醒 2014 中国电子科学研究院学报 9 259]

    [5]

    Hughes R J, Buttler W T, Kwiat P G, Lamoreuax S K, Morgan G L, Nordholt J E, Peterson C G 2000 Aerospace Conference Proceedings, 2000 IEEE Big Sky MT, USA, March 18-25, 2000 p191

    [6]

    Ursin R, Jennewein T, Kofler J, Perdigues J M, Cacciapuoti L, Zeilinger A 2009 Europhys. News 40 26

    [7]

    Toyoshima M, Takayama Y, Takahashi T, Suzuki K, Kimura S 2008 IEEE Aerosp. Electron. Syst. Mag. 23 10

    [8]

    Yin J, Cao Y, Liu S B, Pan G S, Wang J H, Yang T, Pan J W 2013 Opt. Express 21 20032

    [9]

    Heilmann R, Gräfe M, Nolte S, Szameit A 2015 Sci. Bull. 60 96

    [10]

    Su X L, Jia X J, Xie C D, Peng K C 2014 Sci. China: Phys. Mech. Astron. 57 1210

    [11]

    Wang W Y, Wang C, Zhang G Y 2009 Chin. Sci. Bull. 54 158

    [12]

    Wang C Z, Guo H, Ren J G, CaoY, Peng C Z, Liu W Y 2014 Sci. China: Phys. Mech. Astron. 57 1233

    [13]

    Long G L, Li Y S, Zhang W L, Niu L 1999 Phys. Lett. A 262 27

    [14]

    Botsinis P, Ng S X, Hanzo L 2013 Access. IEEE 1 94

    [15]

    Wang J, Chen H Q, Zhang Q, Tang C J 2007 Acta Phys. Sin. 56 673 (in Chinese) [王剑, 陈皇卿, 张权, 唐朝京 2007 物理学报 56 673]

    [16]

    Wang T Y, Qin S J, Wen Q Y, Zhu F C 2008 Acta Phys. Sin. 57 7452 (in Chinese) [王天银, 秦素娟, 温巧燕, 朱甫臣 2008 物理学报 57 7452]

    [17]

    Zou X F, Qiu D W 2014 Sci. China: Phys. Mech. Astron. 57 1696

    [18]

    Ma H Y, Qin G Q, Fan X K, Chu P C 2015 Acta Phys. Sin. 64 160306 (in Chinese) [马鸿洋, 秦国卿, 范兴奎, 初鹏程 2015 物理学报 64 160306]

    [19]

    Nie M, Lu G Y 2008 J. Northwest Univ. (Nat. Sci. Ed.) 38 905 (in Chinese) [聂敏, 卢光跃 2008 西北大学学报自然科学版 38 905]

    [20]

    Liu X H, Pei C X, Nie M 2014 J. Jilin Univ. (Technol. Ed.) 44 1177 (in Chinese) [刘晓慧, 裴昌幸, 聂敏 2014 吉林大学学报工学版 44 1177]

    [21]

    Cheng S T, Wang C Y, Tao M H 2005 IEEE J. Sel. Areas Commun. 23 1424

    [22]

    Yu X T, Zhang Z C, Xu J 2014 Chin. Phys. B 23 010303

    [23]

    Ma H Y, Guo Z W, Fan X K, Wang S M 2015 Acta Electron. Sin. 43 171 (in Chinese) [马鸿洋, 郭忠文, 范兴奎, 王淑梅 2015 电子学报 43 171]

    [24]

    Yin H, Han Y 2012 Quantum Communication Theory and Technology (Beijing: Publishing House of Electronics Industry) pp202-211 (in Chinese) [尹浩, 韩阳 2013 量子通信原理与技术(北京:电子工业出版社)第202–211页]

    [25]

    Zhang Y D 2012 Principles of Quantum Information Physics (Beijing: Science Press) pp147-253 (in Chinese) [张永德 2012 量子信息物理原理(北京: 科学出版社) 第147–172页]

    [26]

    Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A, Wootters W K 1996 Phys. Rev. Lett. 76 722

    [27]

    Nicolas S, Christoph S, Hugues D R, Nicolas G 2011 Rev. Mod. Phys. 83 33

    [28]

    Fujiwara A 2004 Phys. Rev. A 70 012317

    [29]

    Sarovar M, Milburn G J 2006 J. Phys. A: Math. Gen. 39 8487

  • [1] 杨光, 刘琦, 聂敏, 刘原华, 张美玲. 基于极化-空间模超纠缠的量子网络多跳纠缠交换方法研究. 物理学报, 2022, 71(10): 100301. doi: 10.7498/aps.71.20212173
    [2] 范洪义, 吴泽. 介观电路中量子纠缠的经典对应. 物理学报, 2022, 71(1): 010302. doi: 10.7498/aps.71.20210992
    [3] 范洪义, 吴泽. 介观电路中量子纠缠的经典对应. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210992
    [4] 贺振兴, 范兴奎, 初鹏程, 马鸿洋. 基于Cayley图上量子漫步的匿名通信方案. 物理学报, 2020, 69(16): 160301. doi: 10.7498/aps.69.20200333
    [5] 杨天书, 周宗权, 李传锋, 郭光灿. 多模式固态量子存储. 物理学报, 2019, 68(3): 030303. doi: 10.7498/aps.68.20182207
    [6] 关佳, 顾翊晟, 朱成杰, 羊亚平. 利用相干制备的三能级原子介质实现低噪声弱光相位操控. 物理学报, 2017, 66(2): 024205. doi: 10.7498/aps.66.024205
    [7] 聂敏, 刘广腾, 杨光, 裴昌幸. 基于最少中继节点约束的量子VoIP路由优化策略. 物理学报, 2016, 65(12): 120302. doi: 10.7498/aps.65.120302
    [8] 马鸿洋, 秦国卿, 范兴奎, 初鹏程. 噪声情况下的量子网络直接通信. 物理学报, 2015, 64(16): 160306. doi: 10.7498/aps.64.160306
    [9] 邵辉丽, 李栋, 闫雪, 陈丽清, 袁春华. 基于增强拉曼散射的光子-原子双模压缩态的实现. 物理学报, 2014, 63(1): 014202. doi: 10.7498/aps.63.014202
    [10] 黄建衡, 杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨. 硬X射线微分相衬成像的噪声特性分析. 物理学报, 2014, 63(16): 168702. doi: 10.7498/aps.63.168702
    [11] 朱伟, 聂敏. 量子信令交换机模型设计及性能分析. 物理学报, 2013, 62(13): 130304. doi: 10.7498/aps.62.130304
    [12] 余旭涛, 徐进, 张在琛. 基于量子远程传态的无线自组织量子通信网络路由协议. 物理学报, 2012, 61(22): 220303. doi: 10.7498/aps.61.220303
    [13] 李伟, 范明钰, 王光卫. 基于纠缠交换的仲裁量子签名方案. 物理学报, 2011, 60(8): 080302. doi: 10.7498/aps.60.080302
    [14] 付邦, 邓文基. 任意正多边形量子环自旋输运的普遍解. 物理学报, 2010, 59(4): 2739-2745. doi: 10.7498/aps.59.2739
    [15] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解. 物理学报, 2009, 58(4): 2713-2719. doi: 10.7498/aps.58.2713
    [16] 赵晗, 周小清, 杨小琳. 基于腔QED的多用户间的多原子量子信道的建立. 物理学报, 2009, 58(9): 5970-5977. doi: 10.7498/aps.58.5970
    [17] 鲁翠萍, 袁春华, 张卫平. 受激拉曼增益介质中的量子噪声特性研究. 物理学报, 2008, 57(11): 6976-6981. doi: 10.7498/aps.57.6976
    [18] 王菊霞, 杨志勇, 安毓英. 多模光场与二能级原子相互作用的纠缠交换与保持. 物理学报, 2007, 56(11): 6420-6426. doi: 10.7498/aps.56.6420
    [19] 杨宇光, 温巧燕, 朱甫臣. 一种网络多用户量子认证和密钥分配理论方案. 物理学报, 2005, 54(9): 3995-3999. doi: 10.7498/aps.54.3995
    [20] 杨宇光, 温巧燕, 朱甫臣. 基于纠缠交换的多方多级量子密钥分配协议. 物理学报, 2005, 54(12): 5544-5548. doi: 10.7498/aps.54.5544
计量
  • 文章访问数:  2917
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-24
  • 修回日期:  2015-09-06
  • 刊出日期:  2015-12-05

多跳噪声量子纠缠信道特性及最佳中继协议

  • 1. 西北工业大学电子信息学院, 西安 710072
  • 通信作者: 杨光, sharon.yg@163.com
    基金项目: 国家自然科学基金(批准号: 61172071, 61201194)和陕西省国际科技合作与交流计划(批准号: 2015KW-013, 2014KW02-02)资助的课题.

摘要: 在量子通信网络中, 最佳中继路径的计算与选择策略是影响网络性能的关键因素. 针对噪声背景下量子隐形传态网络中的中继路径选择问题, 本文首先研究了相位阻尼信道及振幅阻尼信道上的纠缠交换过程, 通过理论推导给出了两种多跳纠缠交换信道上的纠缠保真度与路径等效阻尼系数. 在此基础上提出以路径等效阻尼系数为准则的隐形传态网络最佳中继协议, 并给出了邻居发现、量子链路噪声参数测量、量子链路状态信息传递、中继路径计算与纠缠资源预留等工作的具体过程. 理论分析与性能仿真结果表明, 相比于现有的量子网络路径选择策略, 本文方法能获得更小的路径平均等效阻尼系数及更高的隐形传态保真度. 此外, 通过分析链路纠缠资源数量对协议性能的影响, 说明在进行量子通信网设计时, 可以根据网络的规模及用户的需求合理配置链路纠缠资源.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回