搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子多模下的非局域量子纠缠制备研究进展

李涛 王雪琦 解志浩

引用本文:
Citation:

量子多模下的非局域量子纠缠制备研究进展

李涛, 王雪琦, 解志浩

Research progress of nonlocal entanglement generation based on quantum multiplexing

LI Tao, WANG Xueqi, XIE Zhihao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 非局域量子纠缠是未来量子网络的一种核心资源. 局域产生的量子纠缠在通过量子信道传输时呈现指数衰减的分发效率, 大幅降低了量子网络节点之间生成非局域量子纠缠的效率. 该问题在涉及多对非局域量子纠缠的实际量子技术中将进一步加剧. 空间多模、时间多模以及频率多模等经典多模技术在一定程度上加快了非局域量子纠缠的生成速率, 但并未提升单次信道传输效率. 量子多模技术基于单光子的高维编码, 能够在一次量子信道传输中, 在量子网络节点间同时生成多对非局域量子纠缠. 因此, 量子多模有望提升涉及多对非局域量子纠缠的实际量子技术的性能. 本综述将介绍基于量子多模的非局域量子纠缠生成机制, 讨论基于高维单光子传输和高维双光子纠缠分发的量子多模技术在实现非局域量子纠缠中的特点, 分析量子多模在加速非局域量子逻辑纠缠生成中的应用, 并展望其在构建大规模量子网络中的潜在优势.
    Nonlocal quantum entanglement is a fundamental resource for future quantum networks. However, the efficiency of generating nonlocal entanglement between distant nodes is severely limited by the exponential loss incurred when locally generated entangled states are distributed through lossy quantum channels. This limitation becomes more pronounced in practical scenarios requiring the simultaneous distribution of multiple entangled pairs. While classical multiplexing approaches, such as spatial, temporal, and frequency multiplexing, can increase the nonlocal entanglement generation rate, they do not improve the single-shot transmission efficiency. In contrast, quantum multiplexing, enabled by high-dimensional encoding of single photons, allows the parallel generation of multiple nonlocal entangled pairs in a single transmission round, thereby enhancing the overall efficiency of nonlocal entanglement generation. Quantum multiplexing thus offers a promising route toward scalable quantum networks. This review introduces the mechanisms for generating nonlocal entanglement using quantum multiplexing. It focuses on two main approaches using high-dimensional single-photon encoding and high-dimensional biphoton entanglement distribution, respectively. It then examines how quantum multiplexing can accelerate the generation of nonlocal quantum logical entanglement. Finally, it briefly explores the potential of quantum multiplexing for building large-scale quantum networks.
  • 图 1  (a) 受控极化翻转单元示意图. (b) SiV色心的相关能级图和光学跃迁[73]

    Fig. 1.  (a) Schematic of a controlled-polarization-flip unit. (b) Relevant energy levels and optical transitions of a SiV color center[73].

    图 2  两对非局域量子纠缠制备方案[64]

    Fig. 2.  Schematic for nonlocally entangling two pairs of stationary qubits[64].

    图 3  基于高维单光子编码的N对非局域静态量子比特纠缠制备[65]

    Fig. 3.  Nonlocal entanglement generation for N pairs of stationary qubits based on high-dimensional encoding of a single photon[65].

    图 4  基于高维单光子编码的MN量子比特非局域GHZ态制备[66]

    Fig. 4.  Nonlocal GHZ-state generation for M pairs of N stationary qubits based on high-dimensional encoding of a single photon[66].

    图 5  基于高维双光子纠缠分发的3对非局域静态量子比特纠缠制备[69]

    Fig. 5.  Nonlocal entanglement generation for 3 pairs of stationary qubits based on two-photon high-dimensional entanglement distribution[69].

    图 6  非局域逻辑量子比特纠缠制备[73]

    Fig. 6.  Nonlocal logical-qubit entanglement generation[73].

  • [1]

    Ruf M, Wan N H, Choi H, Englund D, Hanson R 2021 J. Appl. Phys. 130 070901Google Scholar

    [2]

    Wehner S, Elkouss D, Hanson R 2018 Science 362 eaam9288Google Scholar

    [3]

    Reiserer A 2022 Rev. Mod. Phys. 94 041003Google Scholar

    [4]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [5]

    Pan D, Liu Y C, Niu P, Zhang H, Zhang F, Wang M, Song X T, Chen X, Zheng C, Long G L 2025 Sci. Adv. 11 eadt4627Google Scholar

    [6]

    Ying J W, Sheng Y B, Zhou L, Kwek L C 2025 Front. Phys. 20 33401Google Scholar

    [7]

    Sheng Y B, Zhou L, Long G L 2022 Sci. Bull. 67 367Google Scholar

    [8]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501Google Scholar

    [9]

    Massa F, Moqanaki A, Baumeler A, Del Santo F, Kettlewell J A, Dakić B, Walther P 2019 Adv. Quantum Technol. 2 1900050Google Scholar

    [10]

    Zhao P, Zhong W, Du M M, Li X Y, Zhou L, Sheng Y B 2024 Front. Phys. 19 51201Google Scholar

    [11]

    Qi Z, Li Y, Huang Y, Feng J, Zheng Y, Chen X 2021 Light Sci. Appl. 10 183Google Scholar

    [12]

    Ying J W, Wang J Y, Xiao Y X, Gu S P, Wang X F, Zhong W, Du M M, Li X Y, Shen S T, Zhang A L, Zhou L, Sheng Y B 2025 Sci. China Phys. Mech. Astron. 68 240312Google Scholar

    [13]

    Liu C, Zhang C, Gu S P, Wang X F, Zhou L, Sheng Y B 2025 Sci. China Phys. Mech. Astron. 68 250311Google Scholar

    [14]

    Cao Z, Wang Y, Chai G, Chen X, Lu Y 2025 Chin. Phys. B 34 020308Google Scholar

    [15]

    Cirac J I, Ekert A K, Huelga S F, Macchiavello C 1999 Phys. Rev. A 59 4249Google Scholar

    [16]

    Jiang L, Taylor J M, Sørensen A S, Lukin M D 2007 Phys. Rev. A 76 062323Google Scholar

    [17]

    Qin W, Wang X, Miranowicz A, Zhong Z, Nori F 2017 Phys. Rev. A 96 012315Google Scholar

    [18]

    吴宇恺, 段路明 2023 物理学报 72 230302Google Scholar

    Wu Y K, Duan L M 2023 Acta Phys. Sin. 72 230302Google Scholar

    [19]

    Su W, Qin W, Miranowicz A, Li T, Nori F 2024 Phys. Rev. A 110 052612Google Scholar

    [20]

    Hu Z G, Xu K, Zhang Y X, Li B B 2024 Chin. Phys. Lett. 41 014203Google Scholar

    [21]

    Qiu J, Liu Y, Hu L, Wu Y, Niu J, Zhang L, Huang W, Chen Y, Li J, Liu S, Zhong Y, Duan L, Yu D 2025 Sci. Bull. 70 351Google Scholar

    [22]

    Kómár P, Kessler E M, Bishof M, Jiang L, Sørensen A S, Ye J, Lukin M D 2014 Nat. Phys. 10 582Google Scholar

    [23]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002Google Scholar

    [24]

    Hosseiny S M, Seyed-Yazdi J, Norouzi M 2025 Front. Phys. 20 24201Google Scholar

    [25]

    郭弘, 吴腾, 罗斌, 刘院省 2024 物理 53 384Google Scholar

    Guo H, Wu T, Luo B, Liu Y X Quantum sensing (II): technologies and typical examples 2024 Physics 53 384Google Scholar

    [26]

    Jiao Y F, Wang J, Zhang Q, Lin H Z, Jing H 2025 Funda. Res. doi: 10.1016/j.fmre.2024.12.018 (in pressGoogle Scholar

    [27]

    DeMille D, Hutzler N R, Rey A M, Zelevinsky T 2024 Nat. Phys. 20 741Google Scholar

    [28]

    Munro W J, Azuma K, Tamaki K, Nemoto K 2015 IEEE J. Sel. Top. Quantum Electron. 21 78Google Scholar

    [29]

    Togan E, Chu Y, Trifonov A S, Jiang L, Maze J, Childress L, Dutt M V G, Sørensen A S, Hemmer P R, Zibrov A S, Lukin M D 2010 Nature 466 730Google Scholar

    [30]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [31]

    Jones C, Kim D, Rakher M T, Kwiat P G, Ladd T D 2016 New J. Phys. 18 083015Google Scholar

    [32]

    van Loock P, Alt W, Becher C, Benson O, Boche H, Deppe C, Eschner J, Höfling S, Meschede D, Michler P, Schmidt F, Weinfurter H 2020 Adv. Quantum Technol. 3 1900141Google Scholar

    [33]

    Wang C, Zhang Y, Jin G S 2011 Phys. Rev. A 84 032307Google Scholar

    [34]

    Li T, Miranowicz A, Hu X, Xia K, Nori F 2018 Phys. Rev. A 97 062318Google Scholar

    [35]

    Cabrillo C, Cirac J I, García-Fernández P, Zoller P 1999 Phys. Rev. A 59 1025Google Scholar

    [36]

    Yu C S, Yi X X, Song H S, Mei D 2007 Phys. Rev. A 75 044301Google Scholar

    [37]

    Li T, Deng F G 2016 Phys. Rev. A 94 062310Google Scholar

    [38]

    Hurst D L, Joanesarson K B, Iles-Smith J, Mørk J, Kok P 2019 Phys. Rev. Lett. 123 023603Google Scholar

    [39]

    Zhang J N, Zhang T Y, Duan J C, Gong Y X, Zhu S N 2024 Chin. Phys. B 33 110301Google Scholar

    [40]

    Zhu P, Wang Y, Du Y, Yu M, Zhang K, Wang K, Xu P 2025 Sci. China Phys. Mech. Astron. 68 260311Google Scholar

    [41]

    Lei Y, Asadi F K, Zhong T, Kuzmich A, Simon C, Hosseini M 2023 Optica 10 1511Google Scholar

    [42]

    Li T, Yang G J, Deng F G 2016 Phys. Rev. A 93 012302Google Scholar

    [43]

    Wang G, Long G 2020 Sci. China Phys. Mech. Astron. 63 220311Google Scholar

    [44]

    Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F, Guo G C 2021 Nature 594 41Google Scholar

    [45]

    Lago-Rivera D, Grandi S, Rakonjac J V, Seri A, de Riedmatten H 2021 Nature 594 37Google Scholar

    [46]

    王云飞, 周颖, 王英, 颜辉, 朱诗亮 2023 物理学报 72 206701Google Scholar

    Wang Y F, Zhou Y, Wang Y, Yan H, Zhu S L 2023 Acta Phys. Sin. 72 206701Google Scholar

    [47]

    Moiseev S A, Gerasimov K I, Minnegaliev M M, Moiseev E S, Deev A D, Balega Y Y 2025 Front. Phys. 20 23301Google Scholar

    [48]

    Yan P S, Zhou L, Zhong W, Sheng Y B 2023 Sci. China-Phys. Mech. Astron. 66 250301Google Scholar

    [49]

    Li T, Miranowicz A, Xia K, Nori F 2019 Phys. Rev. A 100 052302Google Scholar

    [50]

    Lu C Y, Yang T, Pan J W 2009 Phys. Rev. Lett. 103 020501Google Scholar

    [51]

    Bhaskar M K, Riedinger R, Machielse B, Levonian D S, Nguyen C T, Knall E N, Park H, Englund D, Lon $ \breve{\mathrm{c}}$ar M, Sukachev D D, Lukin M D 2020 Nature 580 60

    [52]

    Wang T J, Song S Y, Long G L 2012 Phys. Rev. A 85 062311Google Scholar

    [53]

    Sheng Y B, Zhou L, Long G L 2013 Phys. Rev. A 88 022302Google Scholar

    [54]

    Sinclair N, Saglamyurek E, Mallahzadeh H, Slater J A, George M, Ricken R, Hedges M P, Oblak D, Simon C, Sohler W, Tittel W 2014 Phys. Rev. Lett. 113 053603Google Scholar

    [55]

    Chang W, Li C, Wu Y K, Jiang N, Zhang S, Pu Y F, Chang X Y, Duan L M 2019 Phys. Rev. X 9 041033

    [56]

    Zhang S, Shi J, Liang Y, Sun Y, Wu Y, Duan L, Pu Y 2024 Nat. Commun. 15 10306Google Scholar

    [57]

    Wang M, Jiao H, Lu J, Fan W, Li S, Wang H 2025 Optica 12 274Google Scholar

    [58]

    Munro W, Harrison K, Stephens A, Devitt S, Nemoto K 2010 Nature Photon. 4 792Google Scholar

    [59]

    Erhard M, Krenn M, Zeilinger A 2020 Nat. Rev. Phys. 2 365Google Scholar

    [60]

    Jiang G L, Liu W Q, Wei H R 2024 Adv. Quantum Technol. 7 2400033Google Scholar

    [61]

    Jiang G L, Yuan J B, Liu W Q, Wei H R 2024 Phys. Rev. Appl. 21 014001Google Scholar

    [62]

    Xu C, Huang S, Yu Q, Wei D, Chen P, Nie S, Zhang Y, Xiao M 2021 Phys. Rev. A 104 063716Google Scholar

    [63]

    Lo Piparo N, Hanks M, Gravel C, Nemoto K, Munro W J 2020 Phys. Rev. Lett. 124 210503Google Scholar

    [64]

    Lo Piparo N, Munro W J, Nemoto K 2019 Phys. Rev. A 99 022337Google Scholar

    [65]

    Xie Z, Liu Y, Mo X, Li T, Li Z 2021 Phys. Rev. A 104 062409Google Scholar

    [66]

    Zhou H, Li T, Xia K 2023 Phys. Rev. A 107 022428Google Scholar

    [67]

    Zheng Y, Sharma H, Borregaard J 2022 PRX Quantum 3 040319Google Scholar

    [68]

    Du F F, Fan G, Wu Y M, Ren B C 2023 Chin. Phys. B 32 060304Google Scholar

    [69]

    Xie Z, Wang G, Guo Z, Li Z, Li T 2023 Opt. Express 31 37802Google Scholar

    [70]

    Doda M, Huber M, Murta G, Pivoluska M, Plesch M, Vlachou C 2021 Phys. Rev. Appl. 15 034003Google Scholar

    [71]

    Islam N T, Lim C C W, Cahall C, Qi B, Kim J, Gauthier D J 2019 Quantum Sci. Technol. 4 035008Google Scholar

    [72]

    Vagniluca I, Da Lio B, Rusca D, Cozzolino D, Ding Y, Zbinden H, Zavatta A, Oxenløwe L K, Bacco D 2020 Phys. Rev. Appl. 14 014051Google Scholar

    [73]

    Li J, Xie Z, Li Y, Liang Y, Li Z, Li T 2024 Sci. China-Phys. Mech. Astron. 67 220311Google Scholar

    [74]

    Gong B, Tu T, Guo A L, Zhu L T, Li C F 2021 Chin. Phys. Lett. 38 044201Google Scholar

    [75]

    Canteri M, Koong Z X, Bate J, Winkler A, Krutyanskiy V, Lanyon B P 2024 arXiv: 2406.09480 [quant-ph]

    [76]

    Ruskuc A, Wu C J, Green E, Hermans S L N, Pajak W, Choi J, Faraon A 2025 Nature 639 54Google Scholar

    [77]

    Borregaard J, Sørensen A S, Lodahl P 2019 Adv. Quantum Technol. 2 1800091Google Scholar

    [78]

    Chen K C, Bersin E, Englund D 2021 NPJ Quantum Inf. 7 2Google Scholar

    [79]

    Qin W, Miranowicz A, Li P B, Lu X Y, You J Q, Nori F 2018 Phys. Rev. Lett. 120 093601Google Scholar

    [80]

    Uppu R, Midolo L, Zhou X, Carolan J, Lodahl P 2021 Nat. Nanotechnol. 16 1308Google Scholar

    [81]

    Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379Google Scholar

    [82]

    Radulaski M, Zhang J L, Tzeng Y K, Lagoudakis K G, Ishiwata H, Dory C, Fischer K A, Kelaita Y A, Sun S, Maurer P C, Alassaad K, Ferro G, Shen Z X, Melosh N A, Chu S, Vučković J 2019 Laser Photon. Rev. 13 1800316Google Scholar

    [83]

    Nguyen C T, Sukachev D D, Bhaskar M K, Machielse B, Levonian D S, Knall E N, Stroganov P, Riedinger R, Park H, Lončar M, Lukin M D 2019 Phys. Rev. Lett. 123 183602Google Scholar

    [84]

    Fu Y, Yin H L, Chen T Y, Chen Z B 2015 Phys. Rev. Lett. 114 090501Google Scholar

    [85]

    Gao Z, Li T, Li Z 2020 Sci. China-Phys. Mech. Astron. 63 120311Google Scholar

    [86]

    Wang X, Fu J, Liu S, Wei Y, Jing J 2022 Optica 9 663Google Scholar

    [87]

    Li C L, Fu Y, Liu W B, Xie Y M, Li B H, Zhou M G, Yin H L, Chen Z B 2023 Phys. Rev. Res. 5 033077Google Scholar

    [88]

    李晓玲, 翟淑琴, 刘奎 2025 物理学报 74 090301Google Scholar

    Li X, Zhai S, Liu K 2025 Acta Phys. Sin. 74 090301Google Scholar

    [89]

    Zhang C, Zhang Q, Zhong W, Du M M, Shen S T, Li X Y, Zhang A L, Zhou L, Sheng Y B 2025 Phys. Rev. A 111 012602Google Scholar

    [90]

    Yang C P, Ni J H, Bin L, Zhang Y, Yu Y, Su Q P 2024 Front. Phys. 19 31201Google Scholar

    [91]

    Ma M, Li Y, Shang J 2024 Funda. Res. doi: 10.1016/j.fmre.2024.03.031 (in pressGoogle Scholar

    [92]

    Liu Y, Zhou Y, Wu L, Qin J, Yan Z, Jia X 2025 Funda. Res. 5 132Google Scholar

    [93]

    Zhang Q, Ying J W, Wang Z J, Zhong W, Du M M, Shen S T, Li X Y, Zhang A L, Gu S P, Wang X F, Zhou L, Sheng Y B 2025 Phys. Rev. A 111 012603Google Scholar

    [94]

    Du F F, Fan Z G, Ren X M, Ma M, Liu W Y 2025 Chin. Phys. B 34 010303Google Scholar

    [95]

    Zhao P, Ying J W, Yang M Y, Zhong W, Du M M, Shen S T, Li Y X, Zhang A L, Zhou L, Sheng Y B 2025 Phys. Rev. Appl. 23 014003Google Scholar

    [96]

    Du F F, Ma M, Bai Z Y, Tan Q L 2025 Phys. Rev. A 111 032604Google Scholar

    [97]

    Sheng Y B, Zhou L 2024 Sci. China Phys. Mech. Astron. 67 220331Google Scholar

    [98]

    Erhard A, Poulsen Nautrup H, Meth M, Postler L, Stricker R, Stadler M, Negnevitsky V, Ringbauer M, Schindler P, Briegel H J, Blatt R, Friis N, Monz T 2021 Nature 589 220Google Scholar

    [99]

    Devitt S J, Munro W J, Nemoto K 2013 Rep. Prog. Phys. 76 076001Google Scholar

    [100]

    Arab A R 2024 Front. Phys. 19 51203Google Scholar

    [101]

    Borregaard J, Pichler H, Schröder T, Lukin M D, Lodahl P, Sørensen A S 2020 Phys. Rev. X 10 021071

    [102]

    Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lon $ \breve{\mathrm{c}}$ar M 2018 Nature 562 101

    [103]

    Chakravarthi S, Yama N S, Abulnaga A, Huang D, Pederson C, Hestroffer K, Hatami F, de Leon N P, Fu K M C 2023 Nano Lett. 23 3708Google Scholar

    [104]

    Knaut C M, Suleymanzade A, Wei Y C, Assumpcao D R, Stas P J, Huan Y Q, Machielse B, Knall E N, Sutula M, Baranes G, Sinclair N, De-Eknamkul C, Levonian D S, Bhaskar M K, Park H, Lončar M, Lukin M D 2024 Nature 629 573Google Scholar

    [105]

    Nguyen C T, Sukachev D D, Bhaskar M K, Machielse B, Levonian D S, Knall E N, Stroganov P, Chia C, Burek M J, Riedinger R, Park H, Lončar M, Lukin M D 2019 Phys. Rev. B 100 165428Google Scholar

    [106]

    Sukachev D D, Sipahigil A, Nguyen C T, Bhaskar M K, Evans R E, Jelezko F, Lukin M D 2017 Phys. Rev. Lett. 119 223602Google Scholar

    [107]

    Wang G Y, Li T, Ai Q, Alsaedi A, Hayat T, Deng F G 2018 Phys. Rev. Appl. 10 054058Google Scholar

    [108]

    Ren B C, Deng F G 2017 Opt. Express 25 10863Google Scholar

    [109]

    Cao C, Zhang L, Han Y H, Yin P P, Fan L, Duan Y W, Zhang R 2020 Opt. Express 28 2857Google Scholar

    [110]

    Du F F, Ma M, Tan Q L 2024 Adv. Quantum Technol. 7 2400322Google Scholar

    [111]

    Dong L, Zhang X Y, Lv L, Li S Y, Zhao Z L, Yuan Z Q, Ji Y Q, Xiu X M 2025 Opt. Laser Technol. 186 112583Google Scholar

    [112]

    Chi Y, Yu Y, Gong Q, Wang J 2023 Sci. China Inf. Sci. 66 180501Google Scholar

    [113]

    Liu W Q, Wei H R, Kwek L C 2020 Phys. Rev. Appl. 14 054057Google Scholar

    [114]

    Deng F G, Ren B C, Li X H 2017 Sci. Bull. 62 46Google Scholar

    [115]

    Du F F, Ren X M, Ma M, Fan G 2024 Opt. Lett. 49 1229Google Scholar

    [116]

    Zeng H, Du M M, Zhong W, Zhou L, Sheng Y B 2024 Funda. Res. 4 851Google Scholar

    [117]

    刘圆凯, 侯云龙, 杨宜霖, 侯刘敏, 李渊华, 林佳, 陈险峰2025物理学报doi: 10.7498/aps.74.20250458

    Liu Y, Hou Y, Yang Y, Hou L, Li Y, Lin J, Chen X Acta Phys. Sin. 74 (in press

    [118]

    Xu F, Wang M, Qiao C, Li S, Wang H, Su X 2025 Sci. Bull. 70 876Google Scholar

    [119]

    Yang Y G, Liu B X, Xu G B, Jiang D H, Zhou Y H, Shi W M, Shang T 2024 Adv. Quantum Technol. 7 2400016

    [120]

    Lv M Y, Hu X M, Gong N F, Wang T J, Guo Y, Liu B H, Huang Y F, Li C F, Guo G C 2024 Sci. China Phys. Mech. Astron. 67 230311Google Scholar

    [121]

    Tubío V D, Dijksman M C, Borregaard J 2025 arXiv: 2505.16751 [quant-ph]

    [122]

    Sheng Y B, Deng F G, Long G L 2010 Phys. Rev. A 82 032318Google Scholar

    [123]

    Wang T J, Lu Y, Long G L 2012 Phys. Rev. A 86 042337Google Scholar

    [124]

    Ren B C, Du F F, Deng F G 2013 Phys. Rev. A 88 012302Google Scholar

    [125]

    He L Y, Wang T J, Wang C 2016 Opt. Express 24 15429Google Scholar

    [126]

    Wang T J, Yang G Q, Wang C 2020 Phys. Rev. A 101 012323Google Scholar

    [127]

    Gong N F, Cai D B, Huang Z G, Qian L, Zhang R Q, Hu X M, Liu B H, Wang T J 2024 Phys. Rev. Appl. 22 054045Google Scholar

    [128]

    Bharos N, Markovich L, Borregaard J 2025 Quantum 9 1711Google Scholar

  • [1] 马俊, 欧阳鹏辉, 柴亚强, 蒋青权, 贺青, 韦联福. 量子网络中基于弹性散射的微波光子传输调控. 物理学报, doi: 10.7498/aps.74.20250404
    [2] 刘圆凯, 侯云龙, 杨宜霖, 侯刘敏, 李渊华, 林佳, 陈险峰. 基于超纠缠的三用户全连接量子网络. 物理学报, doi: 10.7498/aps.74.20250458
    [3] 胡飞飞, 李思莹, 朱顺, 黄昱, 林旭斌, 张思拓, 范云茹, 周强, 刘云. 用于量子纠缠密钥的多波长量子关联光子对的产生. 物理学报, doi: 10.7498/aps.73.20241274
    [4] 陈越, 刘长杰, 郑伊佳, 曹原, 郭明轩, 朱佳莉, 周星宇, 郁小松, 赵永利, 王琴. 多域跨协议量子网络的域间密钥业务按需提供策略. 物理学报, doi: 10.7498/aps.73.20240819
    [5] 赖红, 任黎, 黄钟锐, 万林春. 基于多尺度纠缠重整化假设的量子网络通信资源优化方案. 物理学报, doi: 10.7498/aps.73.20241382
    [6] 刘然, 吴泽, 李宇晨, 陈昱全, 彭新华. 基于量子Fisher信息测量的实验多体纠缠刻画. 物理学报, doi: 10.7498/aps.72.20230356
    [7] 赖红. 基于广义等距张量的压缩多光子纠缠态量子密钥分发. 物理学报, doi: 10.7498/aps.72.20230589
    [8] 杨光, 刘琦, 聂敏, 刘原华, 张美玲. 基于极化-空间模超纠缠的量子网络多跳纠缠交换方法研究. 物理学报, doi: 10.7498/aps.71.20212173
    [9] 贺振兴, 范兴奎, 初鹏程, 马鸿洋. 基于Cayley图上量子漫步的匿名通信方案. 物理学报, doi: 10.7498/aps.69.20200333
    [10] 杨天书, 周宗权, 李传锋, 郭光灿. 多模式固态量子存储. 物理学报, doi: 10.7498/aps.68.20182207
    [11] 康永强, 高鹏, 刘红梅, 张淳民, 石云龙. 单负材料组成一维光子晶体双量子阱结构的共振模. 物理学报, doi: 10.7498/aps.64.064207
    [12] 任宝藏, 邓富国. 光子两自由度超并行量子计算与超纠缠态操控. 物理学报, doi: 10.7498/aps.64.160303
    [13] 杨光, 廉保旺, 聂敏. 多跳噪声量子纠缠信道特性及最佳中继协议. 物理学报, doi: 10.7498/aps.64.240304
    [14] 马鸿洋, 秦国卿, 范兴奎, 初鹏程. 噪声情况下的量子网络直接通信. 物理学报, doi: 10.7498/aps.64.160306
    [15] 王菊霞. 二能级原子与多模光场简并多光子共振相互作用系统中量子保真度的演化特性. 物理学报, doi: 10.7498/aps.63.184203
    [16] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, doi: 10.7498/aps.61.210502
    [17] 印娟, 钱勇, 李晓强, 包小辉, 彭承志, 杨涛, 潘阁生. 远距离量子通信实验中的高维纠缠源. 物理学报, doi: 10.7498/aps.60.060308
    [18] 王海霞, 殷雯, 王芳卫. 耦合量子点中的纠缠测量. 物理学报, doi: 10.7498/aps.59.5241
    [19] 付邦, 邓文基. 任意正多边形量子环自旋输运的普遍解. 物理学报, doi: 10.7498/aps.59.2739
    [20] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解. 物理学报, doi: 10.7498/aps.58.2713
计量
  • 文章访问数:  481
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-04

/

返回文章
返回