-
非局域量子纠缠是未来量子网络的一种核心资源. 局域产生的量子纠缠在通过量子信道传输时呈现指数衰减的分发效率, 大幅降低了量子网络节点之间生成非局域量子纠缠的效率. 该问题在涉及多对非局域量子纠缠的实际量子技术中将进一步加剧. 空间多模、时间多模以及频率多模等经典多模技术在一定程度上加快了非局域量子纠缠的生成速率, 但并未提升单次信道传输效率. 量子多模技术基于单光子的高维编码, 能够在一次量子信道传输中, 在量子网络节点间同时生成多对非局域量子纠缠. 因此, 量子多模有望提升涉及多对非局域量子纠缠的实际量子技术的性能. 本综述将介绍基于量子多模的非局域量子纠缠生成机制, 讨论基于高维单光子传输和高维双光子纠缠分发的量子多模技术在实现非局域量子纠缠中的特点, 分析量子多模在加速非局域量子逻辑纠缠生成中的应用, 并展望其在构建大规模量子网络中的潜在优势.Nonlocal quantum entanglement is a fundamental resource for future quantum networks. However, the efficiency of generating nonlocal entanglement between distant nodes is severely limited by the exponential loss incurred when locally generated entangled states are distributed through lossy quantum channels. This limitation becomes more pronounced in practical scenarios requiring the simultaneous distribution of multiple entangled pairs. While classical multiplexing approaches, such as spatial, temporal, and frequency multiplexing, can increase the nonlocal entanglement generation rate, they do not improve the single-shot transmission efficiency. In contrast, quantum multiplexing, enabled by high-dimensional encoding of single photons, allows the parallel generation of multiple nonlocal entangled pairs in a single transmission round, thereby enhancing the overall efficiency of nonlocal entanglement generation. Quantum multiplexing thus offers a promising route toward scalable quantum networks. This review introduces the mechanisms for generating nonlocal entanglement using quantum multiplexing. It focuses on two main approaches using high-dimensional single-photon encoding and high-dimensional biphoton entanglement distribution, respectively. It then examines how quantum multiplexing can accelerate the generation of nonlocal quantum logical entanglement. Finally, it briefly explores the potential of quantum multiplexing for building large-scale quantum networks.
-
Keywords:
- quantum networks /
- quantum multiplexing /
- high-dimensional photon /
- parallel quantum entanglement
-
-
[1] Ruf M, Wan N H, Choi H, Englund D, Hanson R 2021 J. Appl. Phys. 130 070901
Google Scholar
[2] Wehner S, Elkouss D, Hanson R 2018 Science 362 eaam9288
Google Scholar
[3] Reiserer A 2022 Rev. Mod. Phys. 94 041003
Google Scholar
[4] Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317
Google Scholar
[5] Pan D, Liu Y C, Niu P, Zhang H, Zhang F, Wang M, Song X T, Chen X, Zheng C, Long G L 2025 Sci. Adv. 11 eadt4627
Google Scholar
[6] Ying J W, Sheng Y B, Zhou L, Kwek L C 2025 Front. Phys. 20 33401
Google Scholar
[7] Sheng Y B, Zhou L, Long G L 2022 Sci. Bull. 67 367
Google Scholar
[8] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501
Google Scholar
[9] Massa F, Moqanaki A, Baumeler A, Del Santo F, Kettlewell J A, Dakić B, Walther P 2019 Adv. Quantum Technol. 2 1900050
Google Scholar
[10] Zhao P, Zhong W, Du M M, Li X Y, Zhou L, Sheng Y B 2024 Front. Phys. 19 51201
Google Scholar
[11] Qi Z, Li Y, Huang Y, Feng J, Zheng Y, Chen X 2021 Light Sci. Appl. 10 183
Google Scholar
[12] Ying J W, Wang J Y, Xiao Y X, Gu S P, Wang X F, Zhong W, Du M M, Li X Y, Shen S T, Zhang A L, Zhou L, Sheng Y B 2025 Sci. China Phys. Mech. Astron. 68 240312
Google Scholar
[13] Liu C, Zhang C, Gu S P, Wang X F, Zhou L, Sheng Y B 2025 Sci. China Phys. Mech. Astron. 68 250311
Google Scholar
[14] Cao Z, Wang Y, Chai G, Chen X, Lu Y 2025 Chin. Phys. B 34 020308
Google Scholar
[15] Cirac J I, Ekert A K, Huelga S F, Macchiavello C 1999 Phys. Rev. A 59 4249
Google Scholar
[16] Jiang L, Taylor J M, Sørensen A S, Lukin M D 2007 Phys. Rev. A 76 062323
Google Scholar
[17] Qin W, Wang X, Miranowicz A, Zhong Z, Nori F 2017 Phys. Rev. A 96 012315
Google Scholar
[18] 吴宇恺, 段路明 2023 物理学报 72 230302
Google Scholar
Wu Y K, Duan L M 2023 Acta Phys. Sin. 72 230302
Google Scholar
[19] Su W, Qin W, Miranowicz A, Li T, Nori F 2024 Phys. Rev. A 110 052612
Google Scholar
[20] Hu Z G, Xu K, Zhang Y X, Li B B 2024 Chin. Phys. Lett. 41 014203
Google Scholar
[21] Qiu J, Liu Y, Hu L, Wu Y, Niu J, Zhang L, Huang W, Chen Y, Li J, Liu S, Zhong Y, Duan L, Yu D 2025 Sci. Bull. 70 351
Google Scholar
[22] Kómár P, Kessler E M, Bishof M, Jiang L, Sørensen A S, Ye J, Lukin M D 2014 Nat. Phys. 10 582
Google Scholar
[23] Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002
Google Scholar
[24] Hosseiny S M, Seyed-Yazdi J, Norouzi M 2025 Front. Phys. 20 24201
Google Scholar
[25] 郭弘, 吴腾, 罗斌, 刘院省 2024 物理 53 384
Google Scholar
Guo H, Wu T, Luo B, Liu Y X Quantum sensing (II): technologies and typical examples 2024 Physics 53 384
Google Scholar
[26] Jiao Y F, Wang J, Zhang Q, Lin H Z, Jing H 2025 Funda. Res. doi: 10.1016/j.fmre.2024.12.018 (in pressGoogle Scholar
[27] DeMille D, Hutzler N R, Rey A M, Zelevinsky T 2024 Nat. Phys. 20 741
Google Scholar
[28] Munro W J, Azuma K, Tamaki K, Nemoto K 2015 IEEE J. Sel. Top. Quantum Electron. 21 78
Google Scholar
[29] Togan E, Chu Y, Trifonov A S, Jiang L, Maze J, Childress L, Dutt M V G, Sørensen A S, Hemmer P R, Zibrov A S, Lukin M D 2010 Nature 466 730
Google Scholar
[30] Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33
Google Scholar
[31] Jones C, Kim D, Rakher M T, Kwiat P G, Ladd T D 2016 New J. Phys. 18 083015
Google Scholar
[32] van Loock P, Alt W, Becher C, Benson O, Boche H, Deppe C, Eschner J, Höfling S, Meschede D, Michler P, Schmidt F, Weinfurter H 2020 Adv. Quantum Technol. 3 1900141
Google Scholar
[33] Wang C, Zhang Y, Jin G S 2011 Phys. Rev. A 84 032307
Google Scholar
[34] Li T, Miranowicz A, Hu X, Xia K, Nori F 2018 Phys. Rev. A 97 062318
Google Scholar
[35] Cabrillo C, Cirac J I, García-Fernández P, Zoller P 1999 Phys. Rev. A 59 1025
Google Scholar
[36] Yu C S, Yi X X, Song H S, Mei D 2007 Phys. Rev. A 75 044301
Google Scholar
[37] Li T, Deng F G 2016 Phys. Rev. A 94 062310
Google Scholar
[38] Hurst D L, Joanesarson K B, Iles-Smith J, Mørk J, Kok P 2019 Phys. Rev. Lett. 123 023603
Google Scholar
[39] Zhang J N, Zhang T Y, Duan J C, Gong Y X, Zhu S N 2024 Chin. Phys. B 33 110301
Google Scholar
[40] Zhu P, Wang Y, Du Y, Yu M, Zhang K, Wang K, Xu P 2025 Sci. China Phys. Mech. Astron. 68 260311
Google Scholar
[41] Lei Y, Asadi F K, Zhong T, Kuzmich A, Simon C, Hosseini M 2023 Optica 10 1511
Google Scholar
[42] Li T, Yang G J, Deng F G 2016 Phys. Rev. A 93 012302
Google Scholar
[43] Wang G, Long G 2020 Sci. China Phys. Mech. Astron. 63 220311
Google Scholar
[44] Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F, Guo G C 2021 Nature 594 41
Google Scholar
[45] Lago-Rivera D, Grandi S, Rakonjac J V, Seri A, de Riedmatten H 2021 Nature 594 37
Google Scholar
[46] 王云飞, 周颖, 王英, 颜辉, 朱诗亮 2023 物理学报 72 206701
Google Scholar
Wang Y F, Zhou Y, Wang Y, Yan H, Zhu S L 2023 Acta Phys. Sin. 72 206701
Google Scholar
[47] Moiseev S A, Gerasimov K I, Minnegaliev M M, Moiseev E S, Deev A D, Balega Y Y 2025 Front. Phys. 20 23301
Google Scholar
[48] Yan P S, Zhou L, Zhong W, Sheng Y B 2023 Sci. China-Phys. Mech. Astron. 66 250301
Google Scholar
[49] Li T, Miranowicz A, Xia K, Nori F 2019 Phys. Rev. A 100 052302
Google Scholar
[50] Lu C Y, Yang T, Pan J W 2009 Phys. Rev. Lett. 103 020501
Google Scholar
[51] Bhaskar M K, Riedinger R, Machielse B, Levonian D S, Nguyen C T, Knall E N, Park H, Englund D, Lon $ \breve{\mathrm{c}}$ar M, Sukachev D D, Lukin M D 2020 Nature 580 60
[52] Wang T J, Song S Y, Long G L 2012 Phys. Rev. A 85 062311
Google Scholar
[53] Sheng Y B, Zhou L, Long G L 2013 Phys. Rev. A 88 022302
Google Scholar
[54] Sinclair N, Saglamyurek E, Mallahzadeh H, Slater J A, George M, Ricken R, Hedges M P, Oblak D, Simon C, Sohler W, Tittel W 2014 Phys. Rev. Lett. 113 053603
Google Scholar
[55] Chang W, Li C, Wu Y K, Jiang N, Zhang S, Pu Y F, Chang X Y, Duan L M 2019 Phys. Rev. X 9 041033
[56] Zhang S, Shi J, Liang Y, Sun Y, Wu Y, Duan L, Pu Y 2024 Nat. Commun. 15 10306
Google Scholar
[57] Wang M, Jiao H, Lu J, Fan W, Li S, Wang H 2025 Optica 12 274
Google Scholar
[58] Munro W, Harrison K, Stephens A, Devitt S, Nemoto K 2010 Nature Photon. 4 792
Google Scholar
[59] Erhard M, Krenn M, Zeilinger A 2020 Nat. Rev. Phys. 2 365
Google Scholar
[60] Jiang G L, Liu W Q, Wei H R 2024 Adv. Quantum Technol. 7 2400033
Google Scholar
[61] Jiang G L, Yuan J B, Liu W Q, Wei H R 2024 Phys. Rev. Appl. 21 014001
Google Scholar
[62] Xu C, Huang S, Yu Q, Wei D, Chen P, Nie S, Zhang Y, Xiao M 2021 Phys. Rev. A 104 063716
Google Scholar
[63] Lo Piparo N, Hanks M, Gravel C, Nemoto K, Munro W J 2020 Phys. Rev. Lett. 124 210503
Google Scholar
[64] Lo Piparo N, Munro W J, Nemoto K 2019 Phys. Rev. A 99 022337
Google Scholar
[65] Xie Z, Liu Y, Mo X, Li T, Li Z 2021 Phys. Rev. A 104 062409
Google Scholar
[66] Zhou H, Li T, Xia K 2023 Phys. Rev. A 107 022428
Google Scholar
[67] Zheng Y, Sharma H, Borregaard J 2022 PRX Quantum 3 040319
Google Scholar
[68] Du F F, Fan G, Wu Y M, Ren B C 2023 Chin. Phys. B 32 060304
Google Scholar
[69] Xie Z, Wang G, Guo Z, Li Z, Li T 2023 Opt. Express 31 37802
Google Scholar
[70] Doda M, Huber M, Murta G, Pivoluska M, Plesch M, Vlachou C 2021 Phys. Rev. Appl. 15 034003
Google Scholar
[71] Islam N T, Lim C C W, Cahall C, Qi B, Kim J, Gauthier D J 2019 Quantum Sci. Technol. 4 035008
Google Scholar
[72] Vagniluca I, Da Lio B, Rusca D, Cozzolino D, Ding Y, Zbinden H, Zavatta A, Oxenløwe L K, Bacco D 2020 Phys. Rev. Appl. 14 014051
Google Scholar
[73] Li J, Xie Z, Li Y, Liang Y, Li Z, Li T 2024 Sci. China-Phys. Mech. Astron. 67 220311
Google Scholar
[74] Gong B, Tu T, Guo A L, Zhu L T, Li C F 2021 Chin. Phys. Lett. 38 044201
Google Scholar
[75] Canteri M, Koong Z X, Bate J, Winkler A, Krutyanskiy V, Lanyon B P 2024 arXiv: 2406.09480 [quant-ph]
[76] Ruskuc A, Wu C J, Green E, Hermans S L N, Pajak W, Choi J, Faraon A 2025 Nature 639 54
Google Scholar
[77] Borregaard J, Sørensen A S, Lodahl P 2019 Adv. Quantum Technol. 2 1800091
Google Scholar
[78] Chen K C, Bersin E, Englund D 2021 NPJ Quantum Inf. 7 2
Google Scholar
[79] Qin W, Miranowicz A, Li P B, Lu X Y, You J Q, Nori F 2018 Phys. Rev. Lett. 120 093601
Google Scholar
[80] Uppu R, Midolo L, Zhou X, Carolan J, Lodahl P 2021 Nat. Nanotechnol. 16 1308
Google Scholar
[81] Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379
Google Scholar
[82] Radulaski M, Zhang J L, Tzeng Y K, Lagoudakis K G, Ishiwata H, Dory C, Fischer K A, Kelaita Y A, Sun S, Maurer P C, Alassaad K, Ferro G, Shen Z X, Melosh N A, Chu S, Vučković J 2019 Laser Photon. Rev. 13 1800316
Google Scholar
[83] Nguyen C T, Sukachev D D, Bhaskar M K, Machielse B, Levonian D S, Knall E N, Stroganov P, Riedinger R, Park H, Lončar M, Lukin M D 2019 Phys. Rev. Lett. 123 183602
Google Scholar
[84] Fu Y, Yin H L, Chen T Y, Chen Z B 2015 Phys. Rev. Lett. 114 090501
Google Scholar
[85] Gao Z, Li T, Li Z 2020 Sci. China-Phys. Mech. Astron. 63 120311
Google Scholar
[86] Wang X, Fu J, Liu S, Wei Y, Jing J 2022 Optica 9 663
Google Scholar
[87] Li C L, Fu Y, Liu W B, Xie Y M, Li B H, Zhou M G, Yin H L, Chen Z B 2023 Phys. Rev. Res. 5 033077
Google Scholar
[88] 李晓玲, 翟淑琴, 刘奎 2025 物理学报 74 090301
Google Scholar
Li X, Zhai S, Liu K 2025 Acta Phys. Sin. 74 090301
Google Scholar
[89] Zhang C, Zhang Q, Zhong W, Du M M, Shen S T, Li X Y, Zhang A L, Zhou L, Sheng Y B 2025 Phys. Rev. A 111 012602
Google Scholar
[90] Yang C P, Ni J H, Bin L, Zhang Y, Yu Y, Su Q P 2024 Front. Phys. 19 31201
Google Scholar
[91] Ma M, Li Y, Shang J 2024 Funda. Res. doi: 10.1016/j.fmre.2024.03.031 (in pressGoogle Scholar
[92] Liu Y, Zhou Y, Wu L, Qin J, Yan Z, Jia X 2025 Funda. Res. 5 132
Google Scholar
[93] Zhang Q, Ying J W, Wang Z J, Zhong W, Du M M, Shen S T, Li X Y, Zhang A L, Gu S P, Wang X F, Zhou L, Sheng Y B 2025 Phys. Rev. A 111 012603
Google Scholar
[94] Du F F, Fan Z G, Ren X M, Ma M, Liu W Y 2025 Chin. Phys. B 34 010303
Google Scholar
[95] Zhao P, Ying J W, Yang M Y, Zhong W, Du M M, Shen S T, Li Y X, Zhang A L, Zhou L, Sheng Y B 2025 Phys. Rev. Appl. 23 014003
Google Scholar
[96] Du F F, Ma M, Bai Z Y, Tan Q L 2025 Phys. Rev. A 111 032604
Google Scholar
[97] Sheng Y B, Zhou L 2024 Sci. China Phys. Mech. Astron. 67 220331
Google Scholar
[98] Erhard A, Poulsen Nautrup H, Meth M, Postler L, Stricker R, Stadler M, Negnevitsky V, Ringbauer M, Schindler P, Briegel H J, Blatt R, Friis N, Monz T 2021 Nature 589 220
Google Scholar
[99] Devitt S J, Munro W J, Nemoto K 2013 Rep. Prog. Phys. 76 076001
Google Scholar
[100] Arab A R 2024 Front. Phys. 19 51203
Google Scholar
[101] Borregaard J, Pichler H, Schröder T, Lukin M D, Lodahl P, Sørensen A S 2020 Phys. Rev. X 10 021071
[102] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lon $ \breve{\mathrm{c}}$ar M 2018 Nature 562 101
[103] Chakravarthi S, Yama N S, Abulnaga A, Huang D, Pederson C, Hestroffer K, Hatami F, de Leon N P, Fu K M C 2023 Nano Lett. 23 3708
Google Scholar
[104] Knaut C M, Suleymanzade A, Wei Y C, Assumpcao D R, Stas P J, Huan Y Q, Machielse B, Knall E N, Sutula M, Baranes G, Sinclair N, De-Eknamkul C, Levonian D S, Bhaskar M K, Park H, Lončar M, Lukin M D 2024 Nature 629 573
Google Scholar
[105] Nguyen C T, Sukachev D D, Bhaskar M K, Machielse B, Levonian D S, Knall E N, Stroganov P, Chia C, Burek M J, Riedinger R, Park H, Lončar M, Lukin M D 2019 Phys. Rev. B 100 165428
Google Scholar
[106] Sukachev D D, Sipahigil A, Nguyen C T, Bhaskar M K, Evans R E, Jelezko F, Lukin M D 2017 Phys. Rev. Lett. 119 223602
Google Scholar
[107] Wang G Y, Li T, Ai Q, Alsaedi A, Hayat T, Deng F G 2018 Phys. Rev. Appl. 10 054058
Google Scholar
[108] Ren B C, Deng F G 2017 Opt. Express 25 10863
Google Scholar
[109] Cao C, Zhang L, Han Y H, Yin P P, Fan L, Duan Y W, Zhang R 2020 Opt. Express 28 2857
Google Scholar
[110] Du F F, Ma M, Tan Q L 2024 Adv. Quantum Technol. 7 2400322
Google Scholar
[111] Dong L, Zhang X Y, Lv L, Li S Y, Zhao Z L, Yuan Z Q, Ji Y Q, Xiu X M 2025 Opt. Laser Technol. 186 112583
Google Scholar
[112] Chi Y, Yu Y, Gong Q, Wang J 2023 Sci. China Inf. Sci. 66 180501
Google Scholar
[113] Liu W Q, Wei H R, Kwek L C 2020 Phys. Rev. Appl. 14 054057
Google Scholar
[114] Deng F G, Ren B C, Li X H 2017 Sci. Bull. 62 46
Google Scholar
[115] Du F F, Ren X M, Ma M, Fan G 2024 Opt. Lett. 49 1229
Google Scholar
[116] Zeng H, Du M M, Zhong W, Zhou L, Sheng Y B 2024 Funda. Res. 4 851
Google Scholar
[117] 刘圆凯, 侯云龙, 杨宜霖, 侯刘敏, 李渊华, 林佳, 陈险峰2025物理学报doi: 10.7498/aps.74.20250458
Liu Y, Hou Y, Yang Y, Hou L, Li Y, Lin J, Chen X Acta Phys. Sin. 74 (in press
[118] Xu F, Wang M, Qiao C, Li S, Wang H, Su X 2025 Sci. Bull. 70 876
Google Scholar
[119] Yang Y G, Liu B X, Xu G B, Jiang D H, Zhou Y H, Shi W M, Shang T 2024 Adv. Quantum Technol. 7 2400016
[120] Lv M Y, Hu X M, Gong N F, Wang T J, Guo Y, Liu B H, Huang Y F, Li C F, Guo G C 2024 Sci. China Phys. Mech. Astron. 67 230311
Google Scholar
[121] Tubío V D, Dijksman M C, Borregaard J 2025 arXiv: 2505.16751 [quant-ph]
[122] Sheng Y B, Deng F G, Long G L 2010 Phys. Rev. A 82 032318
Google Scholar
[123] Wang T J, Lu Y, Long G L 2012 Phys. Rev. A 86 042337
Google Scholar
[124] Ren B C, Du F F, Deng F G 2013 Phys. Rev. A 88 012302
Google Scholar
[125] He L Y, Wang T J, Wang C 2016 Opt. Express 24 15429
Google Scholar
[126] Wang T J, Yang G Q, Wang C 2020 Phys. Rev. A 101 012323
Google Scholar
[127] Gong N F, Cai D B, Huang Z G, Qian L, Zhang R Q, Hu X M, Liu B H, Wang T J 2024 Phys. Rev. Appl. 22 054045
Google Scholar
[128] Bharos N, Markovich L, Borregaard J 2025 Quantum 9 1711
Google Scholar
计量
- 文章访问数: 481
- PDF下载量: 11
- 被引次数: 0