搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

规范势下正方形格点超导量子比特电路中的量子态输运

赵艳军 谭宁 王堉琪 郑亚锐 王辉 刘伍明

引用本文:
Citation:

规范势下正方形格点超导量子比特电路中的量子态输运

赵艳军, 谭宁, 王堉琪, 郑亚锐, 王辉, 刘伍明

Quantum state transport in a square-lattice superconducting qubit circuit under gauge potential

Zhao Yan-Jun, Tan Ning, Wang Yu-Qi, Zheng Ya-Rui, Wang Hui, Liu Wu-Ming
PDF
HTML
导出引用
  • 借助于电感型耦合器产生人造规范势(有效磁通), 本文研究了正方形传输子量子比特模型中的量子态输运性质. 理论计算发现, 单粒子本征态与单空穴本征态具有相同的本征能谱, 并且相同能量下, 两者的平均粒子流与平均空穴流受有效磁通正弦调制后互为相反数. 当初态为占据一个格点的单粒子与单空穴时, 如果系统时间反演对称(有效磁通为$4{\rm \pi}$的整数倍), 单粒子与单空穴的含时波函数各分量相等, 否则不等. 分析证明, 以上计算结果是由于对体系哈密顿量的粒子-空穴操作等价于对其做时间反演. 此外还发现, 有效磁通为π时, 单粒子或单空穴只在初始比特与两个相邻比特之间输运, 有效磁通为0时, 单粒子或单空穴通过两个相邻比特输运到对角比特, 然后再反向输运; 无论有效磁通如何取值, 两者具有相同的平均(粒子或空穴)流和格点占据概率.
    In this paper, we study the transport properties of quantum states in the square-lattice quantum bit model by using inductive couplers to generate the artificial gauge potential (effective magnetic flux). It is found by theoretical calculation that the eigenstates of single particle and single hole have the same eigen energy spectrum, and the average particle and hole currents, sinusoidally modulated by the effective magnetic flux, are opposite to each other with respect to the same eigen energy. For an initial single-particle or single-hole state where only one lattice site is occuplied, if the time-inversion symmetry is preserved (the effective magnetic flux is an integral multiple of 4π), the components of the time-dependent wave functions of the single particle and the single hole are equal, otherwise they are not equal. The analysis demonstrates that the above calculation results are due to the fact that the particle-hole operation for the system Hamiltonian is equivalent to the time inversion. In addition, it is found that when the effective magnetic flux is π, a single particle or a single hole is only transported between the initial bit and two adjacent bits, and when the effective magnetic flux is 0, a single particle or a single hole is transported to the diagonal bit through two adjacent bits, and then transported in reverse. Regardless of the value of effective magnetic flux, both the single-particle and single-hole states share the same average (particle or hole) current and lattice site occupation probability.
      通信作者: 王辉, wanghuiphy@126.com ; 刘伍明, wliu@iphy.ac.cn
    • 基金项目: 北京市自然科学基金(批准号: 4222064)、国家自然科学基金(批准号: 11904013, 61835013, 12234012)、国家重点研发计划(批准号: 2021YFA1400900, 2021YFA0718300, 2021YFA1402100)和中国载人航天工程空间应用系统项目资助的课题.
      Corresponding author: Wang Hui, wanghuiphy@126.com ; Liu Wu-Ming, wliu@iphy.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No. 4222064), the National Natural Science Foundation of China (Grant Nos. 11904013, 61835013, 12234012), the National Key Research and Development Plan of China (Grant Nos. 2021YFA1400900, 2021YFA0718300, 2021YFA1402100), and the National Manned Space Engineering Space Application System Project.
    [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [2]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153Google Scholar

    [3]

    Berry M V 1984 Proc. R. Soc. A 392 45Google Scholar

    [4]

    Hatsugai Y 1993 Phys. Rev. B 48 11851

    [5]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [6]

    Laughlin R B 1983 Phys. Rev. Lett. 50 1395Google Scholar

    [7]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [8]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [9]

    Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802Google Scholar

    [10]

    Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [11]

    Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J, Hasan M Z 2008 Nature 452 970Google Scholar

    [12]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [13]

    Goldman N, Juzeliunas G, Oehberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401Google Scholar

    [14]

    Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V, Spielman I B 2009 Phys. Rev. Lett. 102 130401Google Scholar

    [15]

    Lin Y J, Compton R L, Jimenez-Garcia K, Porto J V, Spielman I B 2009 Nature 462 628Google Scholar

    [16]

    Lin Y J, Compton R L, Jimenez-Garcia K, Phillips W D, Porto J V, Spielman I B 2011 Nat. Phys. 7 531Google Scholar

    [17]

    Aidelsburger M, Atala M, Nascimbene S, Trotzky S, Chen Y A, Bloch I 2011 Phys. Rev. Lett. 107 255301Google Scholar

    [18]

    Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B, Bloch I 2013 Phys. Rev. Lett. 111 185301Google Scholar

    [19]

    Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318Google Scholar

    [20]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718 1Google Scholar

    [21]

    Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93 025005Google Scholar

    [22]

    Nakamura Y, Pashkin Y A, Tsai J S 1999 Nature 398 786Google Scholar

    [23]

    Leek P J, Fink J M, Blais A, Bianchetti R, Göppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J, Wallraff A 2007 Science 318 1889Google Scholar

    [24]

    Möttönen M, Vartiainen J J, Pekola J P 2008 Phys. Rev. Lett. 100 177201Google Scholar

    [25]

    Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, O'Connell A D, Sank D, Wang H, Wenner J, Cleland A N, Geller M R, Martinis J M 2009 Science 325 722Google Scholar

    [26]

    Schroer M D, Kolodrubetz M H, Kindel W F, Sandberg M, Gao J, Vissers M R, Pappas D P, Polkovnikov A, Lehnert K W 2014 Phys. Rev. Lett. 113 050402Google Scholar

    [27]

    Roushan P, Neill C, Chen Y, et al. 2014 Nature 515 241Google Scholar

    [28]

    Barends R, Kelly J, Megrant A, et al. 2014 Nature 508 500Google Scholar

    [29]

    Tangpanitanon J, Bastidas V M, Al-Assam S, Roushan P, Jaksch D, Angelakis D G 2016 Phys. Rev. Lett. 117 213603Google Scholar

    [30]

    Alaeian H, Chang C W S, Moghaddam M V, Wilson C M, Solano E, Rico E 2019 Phys. Rev. A 99 053834Google Scholar

    [31]

    Zhao Y J, Xu X W, Wang H, Liu Y X, Liu W M 2020 Phys. Rev. A 102 053722Google Scholar

    [32]

    Koch J, Houck A A, Hur K L, Girvin S M 2010 Phys. Rev. A 82 043811Google Scholar

    [33]

    Yang Z H, Wang Y P, Xue Z Y, Yang W L, Hu Y, Gao J H, Wu Y 2016 Phys. Rev. A 93 062319Google Scholar

    [34]

    Roushan P, Neill C, Megrant A, et al. 2017 Nat. Phys. 13 146Google Scholar

    [35]

    Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B 2014 Phys. Rev. Lett. 113 220502Google Scholar

    [36]

    Geller M R, Donate E, Chen Y, Neill C, Roushan P, Martinis J M 2015 Phys. Rev. A 92 012320Google Scholar

    [37]

    Berkovits R 2013 Phys. Rev. B 87 075141Google Scholar

    [38]

    Luttinger J M 1951 Phys. Rev. 84 814Google Scholar

    [39]

    Ahmed S, Muoz C S, Nori F, Kockum A F 2021 Phys. Rev. Lett. 127 140502Google Scholar

  • 图 1  四量子比特电路结构示意图. 在该示意图中量子比特是由电容、电感和约瑟夫森结组成, 而耦合器由电感与约瑟夫森结组成的环路构成. 相邻两个量子比特之间通过耦合器实现耦合, 每一个耦合器可以调节外加磁通来实现可调耦合. 其中, $ Q_{j} $表示量子比特, $ L_{j} $$ L_{{\rm{T}}j} $(j = 1, 2, 3, 4)都代表约瑟夫森结电感, $ C_{j} $代表电容, $ L_{0} $代表电感, $ M_{0} $表示相邻电感之间的互感

    Fig. 1.  Schematic diagram of the four qubit circuit structure. In this diagram, a qubit is composed of a capacitor, an inductance and a Josephson junction, while a coupler is composed of a loop consisting of an inductance and a Josephson junction. The coupling between two adjacent qubits is realized by a coupler, where the external magnetic flux can be tuned to achieve adjustable coupling. Here, $ Q_{j} $ stands for a qubit, $ L_{j} $ and $ L_{{\rm{T}}j} $(j = 1, 2, 3, 4) stand for Josephson junction inductance, $ C_ {j} $ stands for the capacitance, $ L_{0} $ stands for the inductance, $ M_{0} $ denotes the mutual inductance between adjacent inductances.

    图 2  n分别取(a) 1, (b) 2, (c) 3, (d) 4时, 单粒子(空穴)本征态$ |k_{n} \rangle $ ($ |k_{n}\rangle_{\rm{h}} $)下的平均粒子(空穴)流$ \langle I_{j, j+1}\rangle _{k_{n}} $ ($ \langle I_{j, j+1}\rangle _{{\rm{h}}, k_{n}} $)随有效磁通$\varPhi_{{\rm{S}}}$的变化曲线. 取裸耦合强度$g_0/(2\pi)=4\operatorname{MHz}$. 此外, 蓝色实线(红色虚线)代表平均粒子(空穴)流

    Fig. 2.  Average particle (hole) current $ \langle I_{j, j+1}\rangle _{k_{n}} $ ($ \langle I_{j, j+1}\rangle _{{\rm{h}}, k_{n}} $) in the single-particle (hole) eigenstate $ |k_n\rangle $ ($ |k_n\rangle_{\rm{h}} $) against the effective magnetic flux $\varPhi_{{\rm{S}}}$ for n taking (a) 1, (b) 2, (c) 3, and (d) 4, respectively. We have taken the coupling strength $g_0/(2\pi)=4\operatorname{MHz}$. Additionally, the solid blue (dashed red) curves represent the particle (hole) current.

    图 3  当有效磁通取$\varPhi_{\rm{S}}=\pi$ ($\varPhi_{\rm{S}}=0$)时, 单粒子态$ |1\rangle $演化时间t后(a)—(d) [(i)—(l)]比特$ Q_j- Q_{j+1} $之间的平均粒子流$ \langle I_{j, j+1}\rangle_1 $与(e)—(h) [(m)—(p)]量子态$ |j\rangle $上的占据概率$ P_{j} $的变化曲线. 其中, 蓝色虚线(红色实线)指排除(包含)环境影响, 此外, 取裸耦合强度$g_{0}/({2\pi})=4$ MHz, $ Q_j $弛豫速率$\gamma _{j}/({2\pi})\equiv0.05$ MHz, $ Q_j $退相速率$\varGamma_{j}/({2\pi})\equiv 0.1$ MHz

    Fig. 3.  Variation curves of both the (a)–(d) [(i)–(l)] average $ Q_j $$ Q_{j+1} $ particle current $ \langle I_{j, j+1}\rangle_1 $ and (e)–(h) [(m)–(p)] occupation probability $ P_{j} $ on the quantum state $ |j\rangle $ for the effective magnetic flux taking $\varPhi_{\rm{S}}=\pi$ ($\varPhi_{\rm{S}}=0$) after the time t for which the single-particle state $ |1\rangle $ evolves. Here, the dashed blue (solid red) curves represent the environment influence is exluded (included). Additionally, we specify the bare coupling strength $g_{0}/({2\pi})=4$ MHz, $ Q_j $ relaxation rate $ \gamma _{j}/({2\pi})\equiv 0.05 $ MHz, and $ Q_j $ dephasing rate $ \varGamma_{j}/({2\pi})\equiv 0.1 $ MHz.

    图 4  当有效磁通取$\varPhi_{\rm{S}}=\pi$ ($\varPhi_{\rm{S}}=0$)时, 单空穴态$ |1\rangle_{\rm{h}} $演化时间t后(a)—(d) [(i)—(l)]比特$Q_j $Qj+1之间的平均空穴流$ \langle I_{j, j+1}\rangle_{{\rm{h}}, 1} $与(e)—(h) [(m)—(p)]量子态$ |j\rangle_{\rm{h}} $上的占据概率$ P_{j}^{\rm{h}} $的变化曲线. 这里, 蓝色虚线(红色实线)指排除(包含)环境影响, 此外, 取裸耦合强度$g_{0}/({2\pi})=4$MHz, $ Q_j $弛豫速率$\gamma _{j}/({2\pi})\equiv0.05$ MHz, $ Q_j $退相速率$\varGamma_{j}/({2\pi})\equiv 0.1$ MHz

    Fig. 4.  Variation curves of both the (a)–(d) [(i)–(l)] average $ Q_j $$ Q_{j+1} $ hole current $ \langle I_{j, j+1}\rangle_1 $ and (e)–(h) [(m)–(p)] occupation probability $ P_{j}^{\rm{h}} $ on the quantum state $ |j\rangle_{\rm{h}} $ for the effective magnetic flux taking $\varPhi_{\rm{S}}=\pi$ ($ \varPhi_{\rm{S}}=0 $) after the time t for which the single-hole state $ |1\rangle_{\rm{h}} $ evolves. Here, the dashed blue (solid red) curves represent the environment influence is exluded (included). Additionally, we specify the bare coupling strength $g_{0}/({2\pi})=4$ MHz, $ Q_j $ relaxation rate $ \gamma _{j}/({2\pi})\equiv 0.05 $ MHz, and $ Q_j $ dephasing rate $ \varGamma_{j}/({2\pi})\equiv 0.1 $ MHz.

    图 5  当有效磁通取$\varPhi_{\rm{S}}=0$(红色实线), $\varPhi_{\rm{S}}=\pi/4$(蓝点段线)或$\varPhi_{\rm{S}}=\pi/2$(绿色虚线)时, 演化时间t后单空穴态含时波函数$ |\psi^{\rm{h}}(t)\rangle $与单粒子态含时波函数$ |\psi(t)\rangle $的相近度$ |\langle \psi^{\rm{h}}(t)|\psi(t)\rangle| $的变化. 这里取裸耦合强度$g_{0}/({2\pi})=4$ MHz

    Fig. 5.  Variation curves of the similarity degree $ |\langle \psi^{\rm{h}}(t)|\psi(t)\rangle| $ between the time-dependent wave function $ |\psi^{\rm{h}}(t)\rangle $ in the single hole state and the time-dependent wave function $ |\psi(t)\rangle $ in the single particle state for the effective magnetic flux taking $\varPhi_{\rm{S}}=0$ (solid red), $\varPhi_{\rm{S}}=\pi/4$ (dash-dotted blue) or $\varPhi_{\rm{S}}=\pi/2$(dashed green) after an evolution time t. Here, we specify the bare coupling strength $g_{0}/({2\pi})=4$ MHz.

  • [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [2]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153Google Scholar

    [3]

    Berry M V 1984 Proc. R. Soc. A 392 45Google Scholar

    [4]

    Hatsugai Y 1993 Phys. Rev. B 48 11851

    [5]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [6]

    Laughlin R B 1983 Phys. Rev. Lett. 50 1395Google Scholar

    [7]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [8]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [9]

    Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802Google Scholar

    [10]

    Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [11]

    Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J, Hasan M Z 2008 Nature 452 970Google Scholar

    [12]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [13]

    Goldman N, Juzeliunas G, Oehberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401Google Scholar

    [14]

    Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V, Spielman I B 2009 Phys. Rev. Lett. 102 130401Google Scholar

    [15]

    Lin Y J, Compton R L, Jimenez-Garcia K, Porto J V, Spielman I B 2009 Nature 462 628Google Scholar

    [16]

    Lin Y J, Compton R L, Jimenez-Garcia K, Phillips W D, Porto J V, Spielman I B 2011 Nat. Phys. 7 531Google Scholar

    [17]

    Aidelsburger M, Atala M, Nascimbene S, Trotzky S, Chen Y A, Bloch I 2011 Phys. Rev. Lett. 107 255301Google Scholar

    [18]

    Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B, Bloch I 2013 Phys. Rev. Lett. 111 185301Google Scholar

    [19]

    Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318Google Scholar

    [20]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718 1Google Scholar

    [21]

    Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93 025005Google Scholar

    [22]

    Nakamura Y, Pashkin Y A, Tsai J S 1999 Nature 398 786Google Scholar

    [23]

    Leek P J, Fink J M, Blais A, Bianchetti R, Göppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J, Wallraff A 2007 Science 318 1889Google Scholar

    [24]

    Möttönen M, Vartiainen J J, Pekola J P 2008 Phys. Rev. Lett. 100 177201Google Scholar

    [25]

    Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, O'Connell A D, Sank D, Wang H, Wenner J, Cleland A N, Geller M R, Martinis J M 2009 Science 325 722Google Scholar

    [26]

    Schroer M D, Kolodrubetz M H, Kindel W F, Sandberg M, Gao J, Vissers M R, Pappas D P, Polkovnikov A, Lehnert K W 2014 Phys. Rev. Lett. 113 050402Google Scholar

    [27]

    Roushan P, Neill C, Chen Y, et al. 2014 Nature 515 241Google Scholar

    [28]

    Barends R, Kelly J, Megrant A, et al. 2014 Nature 508 500Google Scholar

    [29]

    Tangpanitanon J, Bastidas V M, Al-Assam S, Roushan P, Jaksch D, Angelakis D G 2016 Phys. Rev. Lett. 117 213603Google Scholar

    [30]

    Alaeian H, Chang C W S, Moghaddam M V, Wilson C M, Solano E, Rico E 2019 Phys. Rev. A 99 053834Google Scholar

    [31]

    Zhao Y J, Xu X W, Wang H, Liu Y X, Liu W M 2020 Phys. Rev. A 102 053722Google Scholar

    [32]

    Koch J, Houck A A, Hur K L, Girvin S M 2010 Phys. Rev. A 82 043811Google Scholar

    [33]

    Yang Z H, Wang Y P, Xue Z Y, Yang W L, Hu Y, Gao J H, Wu Y 2016 Phys. Rev. A 93 062319Google Scholar

    [34]

    Roushan P, Neill C, Megrant A, et al. 2017 Nat. Phys. 13 146Google Scholar

    [35]

    Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B 2014 Phys. Rev. Lett. 113 220502Google Scholar

    [36]

    Geller M R, Donate E, Chen Y, Neill C, Roushan P, Martinis J M 2015 Phys. Rev. A 92 012320Google Scholar

    [37]

    Berkovits R 2013 Phys. Rev. B 87 075141Google Scholar

    [38]

    Luttinger J M 1951 Phys. Rev. 84 814Google Scholar

    [39]

    Ahmed S, Muoz C S, Nori F, Kockum A F 2021 Phys. Rev. Lett. 127 140502Google Scholar

  • [1] 刘钊. 莫尔超晶格中的分数化拓扑量子态. 物理学报, 2024, 73(20): 207303. doi: 10.7498/aps.73.20241029
    [2] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案. 物理学报, 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [3] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信. 物理学报, 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [4] 陈舒越, 蒋闯, 柯少林, 王兵, 陆培祥. 基于Aharonov-Bohm笼的非厄米趋肤效应抑制现象. 物理学报, 2022, 71(17): 174201. doi: 10.7498/aps.71.20220978
    [5] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210907
    [6] 丁晨, 李坦, 张硕, 郭楚, 黄合良, 鲍皖苏. 基于辅助单比特测量的量子态读取算法. 物理学报, 2021, 70(21): 210303. doi: 10.7498/aps.70.20211066
    [7] 赵健, 陈昭昀, 庄希宁, 薛程, 吴玉椿, 郭国平. 量子态制备及其在量子机器学习中的前景. 物理学报, 2021, 70(14): 140307. doi: 10.7498/aps.70.20210958
    [8] 杨乐, 李凯, 戴宏毅, 张明. 基于量子算法的量子态层析新方案. 物理学报, 2019, 68(14): 140301. doi: 10.7498/aps.68.20190157
    [9] 邓富国, 李熙涵, 李涛. 基于光量子态避错及容错传输的量子通信. 物理学报, 2018, 67(13): 130301. doi: 10.7498/aps.67.20180598
    [10] 黄江. 弱测量对四个量子比特量子态的保护. 物理学报, 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [11] 孙新梅, 查新未, 祁建霞, 兰倩. 基于非最大纠缠的五粒子Cluster态的高效量子态共享方案. 物理学报, 2013, 62(23): 230302. doi: 10.7498/aps.62.230302
    [12] 刘小娟, 周并举, 刘一曼, 姜春蕾. 运动双原子与光场依赖强度耦合系统中的纠缠操纵与量子态制备. 物理学报, 2012, 61(23): 230301. doi: 10.7498/aps.61.230301
    [13] 李永放, 任立庆, 马瑞琼, 樊荣, 刘娟. 利用相位可控光场实现量子态波函数时域演化的量子控制. 物理学报, 2010, 59(3): 1671-1676. doi: 10.7498/aps.59.1671
    [14] 胡菊菊, 蔡十华, 王建秋, 嵇英华. 声子库的量子态对介观电路量子特性影响的研究. 物理学报, 2008, 57(1): 496-501. doi: 10.7498/aps.57.496
    [15] 马瑞琼, 李永放, 时 坚. 量子态的非相干光时域测量. 物理学报, 2008, 57(9): 5593-5599. doi: 10.7498/aps.57.5593
    [16] 张 淼, 贾焕玉, 姬晓辉, 司 坤, 韦联福. 制备囚禁冷离子的振动压缩量子态. 物理学报, 2008, 57(12): 7650-7657. doi: 10.7498/aps.57.7650
    [17] 王忠纯. 外场驱动对Tavis-Cummings模型中量子态保真度的影响. 物理学报, 2006, 55(9): 4624-4630. doi: 10.7498/aps.55.4624
    [18] 刘 清, 邹 丹, 嵇英华. 交流源作用下介观RLC电路系统量子态随时间的演化. 物理学报, 2006, 55(4): 1596-1601. doi: 10.7498/aps.55.1596
    [19] 胡学宁, 李新奇. 量子点接触对单电子量子态的量子测量. 物理学报, 2006, 55(7): 3259-3264. doi: 10.7498/aps.55.3259
    [20] 宋同强. 利用双模压缩真空态实现量子态的远程传输. 物理学报, 2004, 53(10): 3358-3362. doi: 10.7498/aps.53.3358
计量
  • 文章访问数:  3269
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-11
  • 修回日期:  2023-03-23
  • 上网日期:  2023-03-29
  • 刊出日期:  2023-05-20

/

返回文章
返回