搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ge-S/F共掺杂对Li2MSiO4(M = Mn, Fe)晶体结构和性能影响的理论研究

郭厦蕾 侯育花 郑寿红 黄有林 陶小马

引用本文:
Citation:

Ge-S/F共掺杂对Li2MSiO4(M = Mn, Fe)晶体结构和性能影响的理论研究

郭厦蕾, 侯育花, 郑寿红, 黄有林, 陶小马

Theoretical study on effect of Ge-S/F co-doping on crystal structure and properties of Li2MSiO4(M = Mn, Fe)

Guo Xia-Lei, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma
PDF
HTML
导出引用
  • 基于密度泛函理论的第一性原理平面波赝势法, 结合广义梯度近似(GGA + U), 系统研究了Ge-S/F共掺杂对Li2MSiO4 (M = Mn, Fe)晶体结构稳定性和电化学性能的影响. 计算结果表明Ge-S/F共掺杂Li2MSiO4 (M = Mn, Fe) 体系在脱锂过程中均会发生Li和M的位置交换, 与Li2MSiO4(M = Mn, Fe) 相比, 掺杂体系具有更好的韧性, 且锂离子在掺杂体系中更容易迁移. 同时发生了位置交换的掺杂体系结构在脱锂过程中大多更为稳定, 尤其是Li2Mn0.5Ge0.5SiO3.5S0.5在整个脱锂过程中体积变化均很小, 说明其具有良好的结构循环稳定性. 此外, Ge-S/F共掺杂均降低了Li2MSiO4 (M = Mn, Fe) 的理论平均脱嵌电压. 结合态密度图和磁矩结果分析表明, Ge-S/F共掺杂可以提高Li2MnSiO4的导电性和延缓Li2MnSiO4体系中Jahn-Teller效应的出现, 有利于提高Li2MnSiO4的结构循环稳定性. 同时, 共掺杂不仅提高了Li2FeSiO4的导电性, 也有利于Li2FeSiO4体系脱出更多的Li+, 特别是Ge-F共掺杂体系有望实现完全脱锂.
    The effects of Ge-S/F co-doping on the structural stability and electrochemical properties of Li2MSiO4 (M = Mn, Fe) crystal are systematically studied by the first-principle calculations based on density functional theory combined with the generalized gradient approximation (GGA) + U method. The calculation results show that the Ge-S/F co-doping Li2MSiO4 (M = Mn, Fe) system undergoes the site exchange between Li and M in the delithiation process. Compared with Li2MSiO4(M = Mn, Fe), the doped system has good toughness, and lithium ions migrate easily in the doped system. And the doped system with site exchange is more stable in the process of delithium, especially the volume change of Li2Mn0.5Ge0.5SiO3.5S0.5 is very small, indicating that it has good structural cyclic stability. Moreover, the theoretical average deintercalation voltages of Li2MSiO4 (M = Mn, Fe) are reduced by Ge-S/F co-doping. The combination of the density of states with magnetic moment shows that the Ge-S/F co-doping can improve the conductivity of Li2MnSiO4 and delay the appearance of the Jahn-Teller effect in the Li2MnSiO4 system, which is beneficial to the improvement of the structural cycling stability of Li2MnSiO4. Meanwhile, the Ge-S/F co-doping can not only improve the conductivity of Li2FeSiO4, but also facilitate the removal of more Li+ from Li2FeSiO4 system, especially the complete delithium of Ge-F co-doping system is expected to be achieved.
      通信作者: 侯育花, hyhhyl@163.com
    • 基金项目: 江西省重点研发计划(批准号 20192ACB50020)、江西省自然科学基金(批准号: 20202BABL204022)和江西省研究生创新基金(批准号: YC2021-S657)资助的课题.
      Corresponding author: Hou Yu-Hua, hyhhyl@163.com
    • Funds: Project supported by the Jiangxi Provincial Key R&D Program, China (Grant No. 20192ACB50020), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20202BABL204022), and the Jiangxi Postgraduate Innovation Fund, China (Grant No. YC2021-S657).
    [1]

    Dominko R, Bele M, Kokalj A, Gaberscek, M, Jamnik J 2007 J. Power Sources 174 457Google Scholar

    [2]

    Sasaki H, Nemoto A, Moriya M, Masahiko M, Mana H, Shingo K, Yuji A, Akira N, Shinichi H 2015 Ceram. Int. 41 S680Google Scholar

    [3]

    Li Y X, Gong Z L, Yang Y 2007 J. Power Sources 174 528Google Scholar

    [4]

    Dominko R 2008 J. Power Sources 184 462Google Scholar

    [5]

    Muraliganth T, Stroukoff K R, Manthiram A 2010 Chem. Mater. 22 5754Google Scholar

    [6]

    Liu S S, Song L J, Yu B J, Wang C Y, Li M W 2016 Electrochim. Acta 188 145Google Scholar

    [7]

    Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas J O 2005 Electrochem. Commun. 7 156Google Scholar

    [8]

    Arroyo-de Dompablo M E, Armand M, Tarascon J M, Amador U 2006 Electrochem. Commun. 8 1292Google Scholar

    [9]

    Wang C, Xu Y L, Zhang B F, Ma X N 2019 Solid State Ionics 338 39Google Scholar

    [10]

    Ma D W, Feng Y Y, Zhang B, Feng J, Pan J H 2021 Scr. Mater. 193 122Google Scholar

    [11]

    Wang K, Teng G F, Yang J L, Tan R, Duan Y D, Zheng J X, Pan F 2015 J. Mater. Chem. A 3 24437Google Scholar

    [12]

    Li T, Jiang X T, Gao K, Wang C Y, Li S D 2016 J. Chin. Chem. Soc. 63 800Google Scholar

    [13]

    Zhu L, Li L, Cheng T M, Xu D S 2015 J. Mater. Chem. A 10 5449

    [14]

    Singh S, Raj A K, Sen R, Johari P, Mitra S 2017 ACS Appl. Mater. Interfaces 9 26885Google Scholar

    [15]

    Nytén A, Kamali S, Haggstrom L, Torbjorn G, John O T 2006 J. Mater. Chem. 16 2266Google Scholar

    [16]

    Yan X T, Hou Y H, Huang Y L, Zheng S H, Shi Z Q, Tao X M 2019 J. Electrochem. Soc. 166 A3874Google Scholar

    [17]

    Yan X T, Hou Y H, Zheng S H, Huang Y L, Shi Z Q, Tao X M 2020 Phys. Chem. Chem. Phys. 22 14712Google Scholar

    [18]

    Zheng S H, Hou Y H, Guo X L, Huang Y L, Li W, Tao X M 2021 Electrochim. Acta 367 137553Google Scholar

    [19]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Monkhorst H J 1976 Phys. Rev. B 13 5188Google Scholar

    [24]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [25]

    Feng Y M, Ji R, Ding Z P, Zhang D L, Liang C P, Chen L B, Ivey, Douglas G, Wei W F 2018 Inorg. Chem. 57 3223Google Scholar

    [26]

    Zeng Y, Chiu H C, Ouyang B, Song J, Zaghib K, Demopoulos G P 2019 J. Mater. Chem. A 7 25399Google Scholar

    [27]

    Lian D X, Zhao Y H, Hou H, Wang S, Wen Z Q, Zhang Q, Guo Q W 2019 Comput. Mater. Sci. 168 260Google Scholar

    [28]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [29]

    Li L, Zhu L, Xu L H, Cheng T M, Wang W, Li X, Sui Q T 2014 J. Mater. Chem. A 2 4251Google Scholar

    [30]

    Hill R 1952 Proc. Phys. Soc. 65 349Google Scholar

    [31]

    Watt J P 1979 J. Appl. Phys. 50 6290Google Scholar

    [32]

    Pugh S F 1954 Philos. Mag. 45 823Google Scholar

    [33]

    Frantsevich I N, Voronov F F, Bokuta S A 1983 Naukova Dumka Kiev 43 60

    [34]

    郑寿红, 李 伟, 姜茗浩, 闫小童, 侯育花, 陶小马 2021 功能材料 52 06084Google Scholar

    Zheng S H, Li W, Jiang M H, Yan X T, Hou Y H, Tao X M 2021 Funct. Mater. 52 06084Google Scholar

    [35]

    Dominko R, Arcon I, Kodre A, Hanzel D, Gaberšček M 2009 J. Power Sources 189 51Google Scholar

    [36]

    Zhong G H, Li Y L, Yan P, Liu, Z, Xie M H, Lin H Q 2010 J. Phys. Chem. C 114 3693Google Scholar

    [37]

    Marianetti C A, Kotliar G, Ceder G 2004 Phy. Rev. Lett. 92 196405Google Scholar

    [38]

    Brese B N E, O’Keeffe M 1991 Acta Crystallogr. B47 192

  • 图 1  (a) 位置交换的LiMn0.5Ge0.5SiO3.5S0.5的晶胞结构; (b) 位置交换的LiMn0.5Ge0.5SiO3.5F0.5; (c) 位置交换的LiFe0.5Ge0.5SiO3.5S0.5; (d) 位置交换的LiFe0.5Ge0.5SiO3.5F0.5

    Fig. 1.  Crystal cell structure of (a) site exchange LiMn0.5Ge0.5SiO3.5S0.5, (b) site exchange LiMn0.5Ge0.5SiO3.5F0.5, (c) site exchange LiFe0.5Ge0.5SiO3.5S0.5, (d) site exchange LiFe0.5Ge0.5SiO3.5F0.5.

    图 2  (a) 初始LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1, 2) 的晶胞体积; (b) 发生位置交换LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1, 2) 的晶胞体积

    Fig. 2.  (a) The unit cell volume of initial LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1, 2); (b) the unit cell volume of site exchange LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1, 2).

    图 3  初始和位置交换LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1, 2) 的晶格常数

    Fig. 3.  Lattice parameters of initial and site exchange LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1, 2).

    图 4  (a) 初始和位置交换Li2Mn0.5Ge0.5SiO3.5R0.5的平均脱嵌电压(R = S, F); (b) 初始和位置交换Li2Fe0.5Ge0.5SiO3.5R0.5的平均脱嵌电压 (R = S, F)

    Fig. 4.  (a) Average deintercalation voltage of initial and site exchange Li2Mn0.5Ge0.5SiO3.5R0.5 (R = S, F); (b) average deintercalation voltage of initial and site exchange Li2Fe0.5Ge0.5SiO3.5R0.5 (R = S, F).

    图 5  (a) 初始LixMn0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2)的TDOS和PDOS; (b) 初始 LixMn0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2) 中 Mn和Ge的PDOS; (c) 位置交换LixMn0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2)的TDOS和PDOS; (d) Mn和Ge在位置交换 LixMn0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2) 中的PDOS

    Fig. 5.  (a) TDOS and PDOS of initial LixMn0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2); (b) PDOS of Mn and Ge in initial LixMn0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2); (c) TDOS and PDOS of site exchange LixMn0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2); (d) PDOS of Mn and Ge in site exchange LixMn0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2).

    图 6  (a) 初始LixMn0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2)的TDOS和PDOS; (b) 初始 LixMn0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2) 中Mn和Ge的 PDOS; (c) 位置交换LixMn0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2)的TDOS和PDOS; (d) 位置交换LixMn0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2) 中的Mn和Ge的PDOS

    Fig. 6.  (a) TDOS and PDOS of initial LixMn0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2); (b) PDOS of Mn and Ge in initial LixMn0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2); (c) TDOS and PDOS of site exchange LixMn0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2); (d) PDOS of Mn and Ge in site exchange LixMn0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2).

    图 7  (a) 初始LixFe0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2)的TDOS和PDOS; (b) 初始 LixFe0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2) 中Fe和Ge的 PDOS; (c) 位置交换LixFe0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2)的TDOS和PDOS; (d) 位置交换LixFe0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2)中Fe和Ge的 PDOS

    Fig. 7.  (a) TDOS and PDOS of initial LixFe0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2); (b) PDOS of Fe and Ge in initial LixFe0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2); (c) TDOS and PDOS of site exchange LixFe0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2); (d) PDOS of Fe and Ge in site exchange LixFe0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2).

    图 8  (a) 初始LixFe0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2)的TDOS和PDOS; (b) 初始 LixFe0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2) 中Fe和Ge的PDOS; (c) 位置交换LixFe0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2)的TDOS和PDOS; (d) 位置交换LixFe0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2)中Fe和Ge的PDOS

    Fig. 8.  (a) TDOS and PDOS of initial LixFe0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2); (b) PDOS of Fe and Ge in initial LixFe0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2); (c) TDOS and PDOS of site exchange LixFe0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2); (d) PDOS of Fe and Ge in site exchange LixFe0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2) .

    表 1  Li2M0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F)的弹性常数矩阵的特征值和形成能(ΔEf)

    Table 1.  The eigenvalues of the elastic constant matrix and formation energy (ΔEf) of Li2M0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F).

    Mn-SMn-FFe-SFe-F
    特征值12.0023.5616.1713.52
    19.0828.8520.1222.87
    29.8737.6920.7636.42
    37.2253.0539.8253.41
    62.4173.1753.5268.55
    207.87209.12222.90225.26
    ΔEf /eV–17.39–17.88–17.02–17.30
    下载: 导出CSV

    表 2  计算的Li2M0.5Ge0.5SiO3.5R0.5体积模量B、剪切模量G、模量比B/G、泊松比ν、杨氏模量E和德拜温度θD (M = Mn, Fe; R = S, F )

    Table 2.  Calculated bulk modulus B, shear modulus G, modulus ratio B/G, Poisson’s ratio ν, Young’s modulus E and Debye temperature θD of Li2M0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F).

    B/GPaG/GPaB/GνE/GPaθD/K
    Li2Mn0.5Ge0.5SiO3.5S0.556.0621.522.600.3357.24387
    Li2Mn0.5Ge0.5SiO3.5F0.567.0330.372.210.3079.15462
    Li2Fe0.5Ge0.5SiO3.5S0.563.9121.153.020.3557.15383
    Li2Fe0.5Ge0.5SiO3.5F0.568.8525.652.680.3368.45426
    下载: 导出CSV

    表 3  位置交换的LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1)的平均键长 (单位: Å)

    Table 3.  The average bond length (in Å) of LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1) with the site exchange case

    M—OMRGe—OGe—RSi1—OSi1—RSi2—OSi2—R
    Mn—S (x = 2)2.2202.4732.2161.6382.1561.667
    Mn—S (x = 1∶SE)2.0921.8102.1961.6332.1781.657
    Mn—S (x = 0∶SE)1.8261.7942.2001.6442.1311.639
    Mn—F (x = 2)2.1082.1632.8921.6561.6441.725
    Mn—F (x = 1∶SE)2.0101.8631.6561.6241.658
    Mn—F (x = 0∶SE)1.9381.8171.6281.7081.666
    Fe—S (x = 2)2.1462.4502.2141.6661.6422.137
    Fe—S (x = 1∶SE)1.9822.3501.8041.6541.7032.057
    Fe—S (x = 0∶SE)1.8521.7842.2391.6391.6262.179
    Fe—F (x = 2)2.0582.1802.3961.6581.6472.646
    Fe—F (x = 1∶SE)1.9001.9752.7931.6511.6261.661
    Fe—F (x = 0∶SE)1.8631.7551.9831.6441.6121.817
    下载: 导出CSV

    表 4  位置交换的LixM0.5Ge0.5SiO3.5R0.5中(M = Mn, Fe; R = S, F; x = 0, 1 )、Ge 和 Si 的键合价和 BVS

    Table 4.  Bond-valence sums (BVS) of M (M = Mn, Fe), Ge and Si in LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1) with site exchange case.

    MGeSi1Si2
    Mn—S (x = 2)1.421.233.813.56
    Mn—S (x = 1∶SE)1.773.603.813.68
    Mn—S (x = 0∶SE)3.353.703.833.85
    Mn—F (x = 2)1.701.013.673.52
    Mn—F (x = 1∶SE)2.282.203.703.82
    Mn—F (x = 0∶SE)2.503.353.963.21
    Fe—S (x = 2)1.441.183.573.83
    Fe—S (x = 1∶SE)2.143.453.723.67
    Fe—S (x = 0∶SE)3.123.663.853.85
    Fe—F (x = 2)1.681.083.652.88
    Fe—F (x = 1∶SE)2.741.673.723.78
    Fe—F (x = 0∶SE)3.023.373.823.65
    下载: 导出CSV

    表 5  初始和位点交换情况下 M (M = Mn, Fe) 离子的磁矩 (μB) 和氧化态

    Table 5.  Magnetic moment (in μB) and oxidation state of M (M = Mn, Fe) ions in the case of initial and site exchange.

    结构磁矩M(初始)/
    M(位置交换)
    氧化态M(初始)/
    M(位置交换)
    Mn—S (x = 2)4.64/4.64+2(3d5)/+2(3d5)
    Mn—S (x = 1)4.61/4.65+2(3d5)/+2(3d5)
    Mn—S (x = 0)3.78/3.41+(3 + δ)(3d(4–δ))/
    +(3 + φ)(3d(4–φ))
    Mn—F (x = 2)4.65/4.65+2(3d5)/+2(3d5)
    Mn—F (x = 1)4.64/4.17+2(3d5)/
    +(2 + α)(3d(5–α))
    Mn—F (x = 0)3.87/3.98+3(3d4)/+3(3d4)
    Fe—S (x = 2)3.73/3.73+2(3d6)/+2(3d6)
    Fe—S (x = 1)3.71/3.68+2(3d6)/+2(3d6)
    Fe—S (x = 0)4.02/4.14+(3 + τ)(3d(5–τ))/
    +(3 + ψ)(3d(5–ψ))
    Fe—F (x = 2)3.73/3.73+2(3d6)/+2(3d6)
    Fe—F (x = 1)4.23/4.23+3(3d5)/+3(3d5)
    Fe—F (x = 0)4.25/4.26+3(3d5)/+3(3d5)
    下载: 导出CSV
  • [1]

    Dominko R, Bele M, Kokalj A, Gaberscek, M, Jamnik J 2007 J. Power Sources 174 457Google Scholar

    [2]

    Sasaki H, Nemoto A, Moriya M, Masahiko M, Mana H, Shingo K, Yuji A, Akira N, Shinichi H 2015 Ceram. Int. 41 S680Google Scholar

    [3]

    Li Y X, Gong Z L, Yang Y 2007 J. Power Sources 174 528Google Scholar

    [4]

    Dominko R 2008 J. Power Sources 184 462Google Scholar

    [5]

    Muraliganth T, Stroukoff K R, Manthiram A 2010 Chem. Mater. 22 5754Google Scholar

    [6]

    Liu S S, Song L J, Yu B J, Wang C Y, Li M W 2016 Electrochim. Acta 188 145Google Scholar

    [7]

    Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas J O 2005 Electrochem. Commun. 7 156Google Scholar

    [8]

    Arroyo-de Dompablo M E, Armand M, Tarascon J M, Amador U 2006 Electrochem. Commun. 8 1292Google Scholar

    [9]

    Wang C, Xu Y L, Zhang B F, Ma X N 2019 Solid State Ionics 338 39Google Scholar

    [10]

    Ma D W, Feng Y Y, Zhang B, Feng J, Pan J H 2021 Scr. Mater. 193 122Google Scholar

    [11]

    Wang K, Teng G F, Yang J L, Tan R, Duan Y D, Zheng J X, Pan F 2015 J. Mater. Chem. A 3 24437Google Scholar

    [12]

    Li T, Jiang X T, Gao K, Wang C Y, Li S D 2016 J. Chin. Chem. Soc. 63 800Google Scholar

    [13]

    Zhu L, Li L, Cheng T M, Xu D S 2015 J. Mater. Chem. A 10 5449

    [14]

    Singh S, Raj A K, Sen R, Johari P, Mitra S 2017 ACS Appl. Mater. Interfaces 9 26885Google Scholar

    [15]

    Nytén A, Kamali S, Haggstrom L, Torbjorn G, John O T 2006 J. Mater. Chem. 16 2266Google Scholar

    [16]

    Yan X T, Hou Y H, Huang Y L, Zheng S H, Shi Z Q, Tao X M 2019 J. Electrochem. Soc. 166 A3874Google Scholar

    [17]

    Yan X T, Hou Y H, Zheng S H, Huang Y L, Shi Z Q, Tao X M 2020 Phys. Chem. Chem. Phys. 22 14712Google Scholar

    [18]

    Zheng S H, Hou Y H, Guo X L, Huang Y L, Li W, Tao X M 2021 Electrochim. Acta 367 137553Google Scholar

    [19]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Monkhorst H J 1976 Phys. Rev. B 13 5188Google Scholar

    [24]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [25]

    Feng Y M, Ji R, Ding Z P, Zhang D L, Liang C P, Chen L B, Ivey, Douglas G, Wei W F 2018 Inorg. Chem. 57 3223Google Scholar

    [26]

    Zeng Y, Chiu H C, Ouyang B, Song J, Zaghib K, Demopoulos G P 2019 J. Mater. Chem. A 7 25399Google Scholar

    [27]

    Lian D X, Zhao Y H, Hou H, Wang S, Wen Z Q, Zhang Q, Guo Q W 2019 Comput. Mater. Sci. 168 260Google Scholar

    [28]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [29]

    Li L, Zhu L, Xu L H, Cheng T M, Wang W, Li X, Sui Q T 2014 J. Mater. Chem. A 2 4251Google Scholar

    [30]

    Hill R 1952 Proc. Phys. Soc. 65 349Google Scholar

    [31]

    Watt J P 1979 J. Appl. Phys. 50 6290Google Scholar

    [32]

    Pugh S F 1954 Philos. Mag. 45 823Google Scholar

    [33]

    Frantsevich I N, Voronov F F, Bokuta S A 1983 Naukova Dumka Kiev 43 60

    [34]

    郑寿红, 李 伟, 姜茗浩, 闫小童, 侯育花, 陶小马 2021 功能材料 52 06084Google Scholar

    Zheng S H, Li W, Jiang M H, Yan X T, Hou Y H, Tao X M 2021 Funct. Mater. 52 06084Google Scholar

    [35]

    Dominko R, Arcon I, Kodre A, Hanzel D, Gaberšček M 2009 J. Power Sources 189 51Google Scholar

    [36]

    Zhong G H, Li Y L, Yan P, Liu, Z, Xie M H, Lin H Q 2010 J. Phys. Chem. C 114 3693Google Scholar

    [37]

    Marianetti C A, Kotliar G, Ceder G 2004 Phy. Rev. Lett. 92 196405Google Scholar

    [38]

    Brese B N E, O’Keeffe M 1991 Acta Crystallogr. B47 192

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] 余跃, 杨恒玉, 周五星, 欧阳滔, 谢国锋. 第一性原理研究单层Ge2X4S2 (X = P, As)的热电性能. 物理学报, 2023, 72(7): 077201. doi: 10.7498/aps.72.20222244
    [3] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [4] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [5] 钟淑琳, 仇家豪, 罗文崴, 吴木生. 稀土掺杂对LiFePO4性能影响的第一性原理研究. 物理学报, 2021, 70(15): 158203. doi: 10.7498/aps.70.20210227
    [6] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [7] 彭林峰, 曾子琪, 孙玉龙, 贾欢欢, 谢佳. 富钠反钙钛矿型固态电解质的简易合成与电化学性能. 物理学报, 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [8] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算. 物理学报, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [9] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [10] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能. 物理学报, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [11] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [12] 陈畅, 汝强, 胡社军, 安柏楠, 宋雄. Co2SnO4/Graphene复合材料的制备与电化学性能研究. 物理学报, 2014, 63(19): 198201. doi: 10.7498/aps.63.198201
    [13] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究. 物理学报, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [14] 白莹, 丁玲红, 张伟风. ZnFe2O4的固相法和水热法制备及其电化学性能研究. 物理学报, 2011, 60(5): 058201. doi: 10.7498/aps.60.058201
    [15] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [16] 顾牡, 林玲, 刘波, 刘小林, 黄世明, 倪晨. M’型GdTaO4电子结构的第一性原理研究. 物理学报, 2010, 59(4): 2836-2842. doi: 10.7498/aps.59.2836
    [17] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [18] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [19] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [20] 孙 博, 刘绍军, 段素青, 祝文军. Fe的结构与物性及其压力效应的第一性原理计算. 物理学报, 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
计量
  • 文章访问数:  4279
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 修回日期:  2022-05-05
  • 上网日期:  2022-08-25
  • 刊出日期:  2022-09-05

/

返回文章
返回