搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷离子注入纳米金刚石薄膜的n型导电性能与微结构研究

胡晓君 胡衡 陈小虎 许贝

引用本文:
Citation:

磷离子注入纳米金刚石薄膜的n型导电性能与微结构研究

胡晓君, 胡衡, 陈小虎, 许贝

The n-type conduction and microstructural properties of phosphorus ion implanted nanocrystalline diamond films

Hu Xiao-Jun, Hu Heng, Chen Xiao-Hu, Xu Bei
PDF
导出引用
  • 系统研究了磷离子注入并在不同温度退火后的纳米金刚石薄膜的微结构和电学性能.研究表明,当退火温度达到800 ℃以上时,薄膜呈良好的n型电导.Raman光谱和电子顺磁共振谱的结果表明,薄膜中金刚石相含量越高和完整性越好,薄膜电阻率越低. 这说明纳米金刚石晶粒为薄膜提供了电导.1000 ℃退火后,薄膜晶界中的非晶石墨相有序度提高,碳悬键数量降低,薄膜电阻率升高.薄膜导电机理为磷离子注入的纳米金刚石晶粒提供了n型电导,非晶碳晶界为其电导提供了传输路径.
    Phosphorus ions are implanted into nanocrystalline diamond (NCD) films followed by being annealed at different temperatures. The results show that the samples exhibit good n-type conductivity when annealing temperature is increased to 800 ℃ and above. Raman spectroscopy and electron paramagnetic resonance measurements display that the sample with a larger quantity of diamond phase with better lattice perfection has a lower resistivity. It is indicated that nano-sized diamond grains make contributions to the n-type conductivity in the films. After 1000 ℃ annealing, the amorphous carbon grain boundaries become more ordered, which leads the dangling carbon bonds to decrease and the resistivity of the film to increases. It is revealed that the amorphous carbon grain boundaries supply a conduction path to the n-type phosphorus ion implanted nanocrystalline diamond grains.
    • 基金项目: 国家自然科学基金(批准号:50972129, 50602039)、浙江省钱江人才计划(批准号:2010R10026)资助的课题.
    [1]

    Raina S, Kang W P, Davidson J L 2008 Diam. Relat. Mater. 17 790

    [2]

    Williams O A, Nesladek M, Daenen M, Michaelson S, Hoffman A, Osawa E, Haenen K, Jackman R B 2008 Diam. Relat. Mater. 17 1080

    [3]

    Butler J E, Surnant AV 2008 Chem. Vap. Depos. 14 145

    [4]

    Beloborodov I S, Zapol P, Gruen D M, Curtiss L A 2006 Phys. Rev. B 74 235434

    [5]

    Mares J J, Hubik P, Kristofik J, Kindl D, Fanta M, Nesladek M, Williams O, Gruen D M 2006 Appl. Phys. Lett. 88 092107

    [6]

    Williams O A 2006 Semicond. Sci. Technol. 21 R49

    [7]

    Vlasov I I, Goovaerts E, Ralchenko V G, Konov V I, Khomich A V, Kanzyuba M V 2007 Diam. Relat. Mater. 16 2074

    [8]

    Hu Q, Hirai M, Joshi R K, Kumar A 2009 J. Phys. D: Appl. Phys. 42 025301

    [9]

    Arenal R, Montagnac G, Bruno P, Gruen D M 2007 Phys. Rev. B 76 245316

    [10]

    Kato H, Yamasaki S, Okushi H 2005 Appl. Phys. Lett. 86 222111

    [11]

    Pernot J, Koizumi S 2008 Appl. Phys. Lett. 93 052105

    [12]

    Koizumi S, Teraji T, Kanda H 2000 Diam. Relat. Mater. 9 935

    [13]

    Achatz P, Williams O A, Bruno P, Gruen D M, Garrido J A, Stutzmann M 2006 Phys. Rev. B 74 155429

    [14]

    Karihara S A, Antonelli A, Bernhole J, Car R 1991 Phys. Rev. Lett. 66 2010

    [15]

    Nishimori T, Nakano K, Sakamoto H, Takakuwa Y 1997 Appl. Phys. Lett. 71 945

    [16]

    Deguchi M, Kitabatake M, Hirao T 1996 Thin Solid Films 281—282 267

    [17]

    Kalish R 2007 J. Phys. D: Appl. Phys. 40 6467

    [18]

    Klauser F, Steinmuller-Nethl D, Kaindl R, Bertel E, Memmel N 2010 Chem. Vap. Depos. 16 127

    [19]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405

    [20]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [21]

    Prawer S, Nugent K W, Jamieson D N, Orwa J O, Bursill L A, Peng J L 2000 Chem. Phys. Lett. 332 93

    [22]

    Prawer S, Nemanich R J 2009 Phil. Trans. Roy. Soc. Lond. A 362 2537

    [23]

    Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410 (in Chinese) [潘金平、 胡晓君、 陆利平、 印 迟 2010物理学报59 7410]

    [24]

    Sails S R, Gardiner D J, Bowden M, Savage J, Rodway D 1996 Diam. Relat. Mater. 5 589

    [25]

    Tamor M A, Haire J A, Wu C H, Hass K C 1989 Appl. Phys. Lett. 54 123

    [26]

    Chhowalla M, Ferrari A C, Robertson J, Amaratunga A J 2000 Appl. Phys. Lett. 76 1419

    [27]

    Poole C P 1983 Electron Spin Resonance (New York: Wiley)

    [28]

    Zvanut M E, Carlos W E, Freitas J A, Jamison K D, Hellmer R P 1994 Appl. Phys. Lett. 65 2287

    [29]

    Dubois M, Guerin K, Petit E, Batisse N, Hamwi A, Komatsu N, Giraudet J, Pirotte P, Masin F 2009 J. Phys. Chem. C 113 10371

    [30]

    Isoya J, Kanda H, Sakaguchi I 1997 Radiat. Phys. Chem. 50 321

    [31]

    Brosious P R, Corbett J W, Bourgoin J C 1974 Phys. Stat. Sol (a) 21 677

    [32]

    Teicher M, Beserman R 1982 J. Appl. Phys. 53 1467

    [33]

    Barklie R C 2001 Diam. Relat. Mater. 10 174

    [34]

    Show Y, Matsuoka F, Izumi T, Deguchi M, Kitabatake M, 1997 Appl. Surf. Sci. 117—118 574

    [35]

    Dasgupta D, Demichelis F, Pirri C F 1991 Phys. Rev. B 43 2131

    [36]

    Hu X J, Dai Y B, He X C, Shen H S, Li R B 2002 Acta Phys. Sin. 51 1388 (in Chinese) [胡晓君、 戴永兵、 何贤昶、 沈荷生、 李荣斌 2002 物理学报 51 1388]

  • [1]

    Raina S, Kang W P, Davidson J L 2008 Diam. Relat. Mater. 17 790

    [2]

    Williams O A, Nesladek M, Daenen M, Michaelson S, Hoffman A, Osawa E, Haenen K, Jackman R B 2008 Diam. Relat. Mater. 17 1080

    [3]

    Butler J E, Surnant AV 2008 Chem. Vap. Depos. 14 145

    [4]

    Beloborodov I S, Zapol P, Gruen D M, Curtiss L A 2006 Phys. Rev. B 74 235434

    [5]

    Mares J J, Hubik P, Kristofik J, Kindl D, Fanta M, Nesladek M, Williams O, Gruen D M 2006 Appl. Phys. Lett. 88 092107

    [6]

    Williams O A 2006 Semicond. Sci. Technol. 21 R49

    [7]

    Vlasov I I, Goovaerts E, Ralchenko V G, Konov V I, Khomich A V, Kanzyuba M V 2007 Diam. Relat. Mater. 16 2074

    [8]

    Hu Q, Hirai M, Joshi R K, Kumar A 2009 J. Phys. D: Appl. Phys. 42 025301

    [9]

    Arenal R, Montagnac G, Bruno P, Gruen D M 2007 Phys. Rev. B 76 245316

    [10]

    Kato H, Yamasaki S, Okushi H 2005 Appl. Phys. Lett. 86 222111

    [11]

    Pernot J, Koizumi S 2008 Appl. Phys. Lett. 93 052105

    [12]

    Koizumi S, Teraji T, Kanda H 2000 Diam. Relat. Mater. 9 935

    [13]

    Achatz P, Williams O A, Bruno P, Gruen D M, Garrido J A, Stutzmann M 2006 Phys. Rev. B 74 155429

    [14]

    Karihara S A, Antonelli A, Bernhole J, Car R 1991 Phys. Rev. Lett. 66 2010

    [15]

    Nishimori T, Nakano K, Sakamoto H, Takakuwa Y 1997 Appl. Phys. Lett. 71 945

    [16]

    Deguchi M, Kitabatake M, Hirao T 1996 Thin Solid Films 281—282 267

    [17]

    Kalish R 2007 J. Phys. D: Appl. Phys. 40 6467

    [18]

    Klauser F, Steinmuller-Nethl D, Kaindl R, Bertel E, Memmel N 2010 Chem. Vap. Depos. 16 127

    [19]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405

    [20]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [21]

    Prawer S, Nugent K W, Jamieson D N, Orwa J O, Bursill L A, Peng J L 2000 Chem. Phys. Lett. 332 93

    [22]

    Prawer S, Nemanich R J 2009 Phil. Trans. Roy. Soc. Lond. A 362 2537

    [23]

    Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410 (in Chinese) [潘金平、 胡晓君、 陆利平、 印 迟 2010物理学报59 7410]

    [24]

    Sails S R, Gardiner D J, Bowden M, Savage J, Rodway D 1996 Diam. Relat. Mater. 5 589

    [25]

    Tamor M A, Haire J A, Wu C H, Hass K C 1989 Appl. Phys. Lett. 54 123

    [26]

    Chhowalla M, Ferrari A C, Robertson J, Amaratunga A J 2000 Appl. Phys. Lett. 76 1419

    [27]

    Poole C P 1983 Electron Spin Resonance (New York: Wiley)

    [28]

    Zvanut M E, Carlos W E, Freitas J A, Jamison K D, Hellmer R P 1994 Appl. Phys. Lett. 65 2287

    [29]

    Dubois M, Guerin K, Petit E, Batisse N, Hamwi A, Komatsu N, Giraudet J, Pirotte P, Masin F 2009 J. Phys. Chem. C 113 10371

    [30]

    Isoya J, Kanda H, Sakaguchi I 1997 Radiat. Phys. Chem. 50 321

    [31]

    Brosious P R, Corbett J W, Bourgoin J C 1974 Phys. Stat. Sol (a) 21 677

    [32]

    Teicher M, Beserman R 1982 J. Appl. Phys. 53 1467

    [33]

    Barklie R C 2001 Diam. Relat. Mater. 10 174

    [34]

    Show Y, Matsuoka F, Izumi T, Deguchi M, Kitabatake M, 1997 Appl. Surf. Sci. 117—118 574

    [35]

    Dasgupta D, Demichelis F, Pirri C F 1991 Phys. Rev. B 43 2131

    [36]

    Hu X J, Dai Y B, He X C, Shen H S, Li R B 2002 Acta Phys. Sin. 51 1388 (in Chinese) [胡晓君、 戴永兵、 何贤昶、 沈荷生、 李荣斌 2002 物理学报 51 1388]

  • [1] 何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明. 碳离子注入金刚石制备氮空位色心的机理. 物理学报, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [2] 许静, 何梓民, 杨文龙, 吴荣, 赖晓芳, 简基康. 层状Bi1–xSbxSe纳米薄膜的制备及其热电性能研究. 物理学报, 2022, 71(19): 197301. doi: 10.7498/aps.71.20220834
    [3] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能. 物理学报, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [4] 王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇. Ib型金刚石大单晶的限形生长. 物理学报, 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [5] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [6] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [7] 王峰浩, 胡晓君. 氧离子注入微晶金刚石薄膜的微结构与光电性能研究. 物理学报, 2013, 62(15): 158101. doi: 10.7498/aps.62.158101
    [8] 杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 崔玉亭. N离子注入富氧ZnO薄膜的p型导电及拉曼特性研究. 物理学报, 2013, 62(3): 037703. doi: 10.7498/aps.62.037703
    [9] 张小东, 林德旭, 李公平, 尤 伟, 张利民, 张 宇, 刘正民. 离子注入n型GaN光致发光谱中宽黄光发射带研究. 物理学报, 2006, 55(10): 5487-5493. doi: 10.7498/aps.55.5487
    [10] 高 鹏, 徐 军, 邓新绿, 王德和, 董 闯. 微波ECR全方位离子注入制备类金刚石碳膜的结构及摩擦学性能研究. 物理学报, 2005, 54(7): 3241-3246. doi: 10.7498/aps.54.3241
    [11] 李俊杰, 吴汉华, 龙北玉, 吕宪义, 胡超权, 金曾孙. N离子注入对金刚石膜场发射特性的影响. 物理学报, 2005, 54(3): 1447-1451. doi: 10.7498/aps.54.1447
    [12] 孙立涛, 巩金龙, 朱志远, 朱德彰, 何绥霞, 王震遐. 等离子体诱导碳纳米管到纳米金刚石的相变. 物理学报, 2004, 53(10): 3467-3471. doi: 10.7498/aps.53.3467
    [13] 方志军, 夏义本, 王林军, 张伟丽, 马哲国, 张明龙. Al2O3陶瓷衬底碳离子预注入对金刚石薄膜应力的影响研究. 物理学报, 2003, 52(4): 1028-1033. doi: 10.7498/aps.52.1028
    [14] 杨仕娥, 姚宁, 王小平, 李会军, 马丙现, 秦广雍, 张兵临. Mo离子注入对金刚石涂层附着性能的影响. 物理学报, 2002, 51(2): 347-350. doi: 10.7498/aps.51.347
    [15] 邱东江, 石成儒, 吴惠桢. 石英衬底上生长的高光学质量的纳米金刚石薄膜. 物理学报, 2002, 51(8): 1870-1874. doi: 10.7498/aps.51.1870
    [16] 孔春阳, 王万录, 廖克俊, 马勇, 王蜀霞, 方亮. p型半导体金刚石膜的磁阻效应. 物理学报, 2001, 50(8): 1616-1622. doi: 10.7498/aps.50.1616
    [17] 王印月, 甄聪棉, 龚恒翔, 阎志军, 王亚凡, 刘雪芹, 杨映虎, 何山虎. 传输线模型测量Au/Ti/p型金刚石薄膜的欧姆接触电阻率. 物理学报, 2000, 49(7): 1348-1351. doi: 10.7498/aps.49.1348
    [18] 韩祀瑾, 陈金松, 方容川, 尚乃贵, 邵庆益, 乐德芬, 廖 源, 叶祉渊, 易 波, 崔景彪. 金刚石薄膜在多晶铜和磷脱氧铜基片上的生长. 物理学报, 1998, 47(4): 686-691. doi: 10.7498/aps.47.686
    [19] 宋汝安, 程先安, 周忠毅. 磁场-微波等离子体与大面积金刚石薄膜. 物理学报, 1990, 39(10): 1635-1639. doi: 10.7498/aps.39.1635
    [20] 项金钟, 郑志豪, 熊京, 张仿清. 类金刚石膜不同能量下的离子注入. 物理学报, 1990, 39(3): 420-423. doi: 10.7498/aps.39.420
计量
  • 文章访问数:  8192
  • PDF下载量:  1679
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-05
  • 修回日期:  2010-12-31
  • 刊出日期:  2011-03-05

/

返回文章
返回