搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子辐射环境中NPN输入双极运算放大器的辐射效应和退火特性

姜柯 陆妩 胡天乐 王信 郭旗 何承发 刘默涵 李小龙

引用本文:
Citation:

电子辐射环境中NPN输入双极运算放大器的辐射效应和退火特性

姜柯, 陆妩, 胡天乐, 王信, 郭旗, 何承发, 刘默涵, 李小龙

Radiation damage effect and post-annealing treatments of NPN-input bipolar operational amplifier in electron radiation environment

Jiang Ke, Lu Wu, Hu Tian-Le, Wang Xin, Guo Qi, He Cheng-Fa, Liu Mo-Han, Li Xiao-Long
PDF
导出引用
  • 本文对不同偏置下的NPN输入双极运算放大器LM108分别在1.8 MeV和1 MeV两种电子能量下、不同束流电子辐照环境中的损伤特性及变化规律进行了研究, 分析了不同偏置状态下其辐照敏感参数在辐照后三种温度 (室温, 100 ℃, 125 ℃) 下随时间变化的关系, 讨论了引起电参数失效的机理, 并且分析了器件在室温和高温的退火效应以讨论引起器件电参数失效的机理. 结果表明, 1.8 MeV和1 MeV 电子对运算放大器LM108主要产生电离损伤, 相同束流下1.8 MeV电子造成的损伤比1 MeV 电子更大, 相同能量下0.32 Gy(Si)/s束流电子产生的损伤大于1.53 Gy(Si)/s束流电子. 对于相同能量和束流的电子辐照, 器件零偏时的损伤大于正偏时的损伤. 器件辐照后的退火行为都与温度有较大的依赖关系, 而这种关系与辐照感生的界面态密度增长直接相关.
    With the rapid development of the space technology, operational amplifier is widely used as the basic liner circuit in a satellite system. There are many charged particles trapped in the earth's magnetosphere, most of the particles are protons and electrons. In BJTs, the damage caused by electrons causes both bulk recombination and surface recombination to increase and subsequently current gain to decrease. Transistor gain degradation is the primary cause of parametric shifts and functional failures in linear bipolar circuits. The severity of electron radiation response correlates with electron's energy and flux, therefore it is important to understand the electron radiation response in different conditions. In this paper, the tested devices used in this study are NPN-input bipolar operational amplifiers commercial-off-the-shelf (COTS) manufactured by Texas Instruments (TI). NPN-input bipolar operational amplifiers LM108 are irradiated with different energy and different beam current electrons respectively under different bias conditions to study the electron radiation damage effect. Experiment using 60Coγ-ray radiation is conducted to compare the different radiation damages between 60Coγ-ray and electron radiation. The total radiation experiments are carried out with the 60Coγ-ray source (Xinjiang Technical Institute of physics and chemistry). The radiation dose rates for the test samples are 1 Gy (Si)/s, and the total accumulated dose is 1000 Gy (Si). Subsequently, room temperature and high temperature annealings are conducted to analyze the parametric failure mechanism of LM108 caused by a total dose radiation for different biases. Result shows that 0.32 Gy(Si)/s beam current electrons can induce more damage than that caused by 1.53 Gy(Si)/s electrons with the same energy; 1.8 MeV electrons can induce more damages than 1 MeV electrons with the same electron beam current because the former produces more displacement damage than the latter. Comparison between zero and forward biased devices shows that different biased devices have different radiation sensibility, and radiation produces more damages in zero biased devices than in forward biased devices with the same electron energy and beam current. This is because forward biased BJT will suppress the edge electric field, thus leading to the decrease of oxide-trapped charge and interface-trapped charge. During high-temperature annealing, degradation of the devices obviously can be recovered and almost return to the initial value finally. This result indicates that the 1.8 MeV and 1 MeV electron radiation mainly induces ionization damage in bipolar operational amplifier LM108.
    [1]

    Hu T L, Lu W, Xi S B 2013 Acta Phys. Sin. 62 076105 (in Chinese) [胡天乐, 陆妩, 席善斌 2013 物理学报 62 076105]

    [2]

    Hu T L, Lu W, He C F 2013 Atomic Energy Science and Technology 4 657 (in Chinese) [胡天乐, 陆妩, 何承发 2013 原子能科学技术 4 657]

    [3]

    L w, Ren D Y, Guo Q 1998 J. Semicond 1 35 (in Chinese) [陆妩, 任迪远, 郭旗 1998 半导体学报 1 35]

    [4]

    Wang Y Y, Lu W, Ren D Y 2001 Atomic Energy Science and Technology 9 1147 (in Chinese) [王义元, 陆妩, 任迪远 2001 原子能科学技术 9 1147]

    [5]

    Graves R. J, Cirba C. R 1998 IEEE Transactions on Nuclear Science 45 2352

    [6]

    Witczak S C, Lacoe R C 1998 IEEE Transactions on Nuclear Science 45 2339

    [7]

    Fleetwood D. M, Kosier, S. L 1994 IEEE Transactions on Nuclear Science 41 1817

    [8]

    Nichols D K, Price W E, Gauthier M K 1982 IEEE Transactions on Nuclear Science 29 2081

    [9]

    Brucker G J, Dennehy W J, Holmes-Siedle A G 1966 IEEE Transactions on Nuclear Science 13 188

    [10]

    Qian S M, Wang B L, Wang P D 1984 Journal of Beijing Normal University Natural Science 3 31 (in Chinese) [钱思敏, 王炳林, 王培德 1984 北京师范大学学报(自然科学版) 3 31]

    [11]

    Dale C J, Marshall P W, Burke E A 1988 IEEE Transactions on Nuclear Science 35 1280

    [12]

    MA T P, Dressendorfer P V 1989 New York John wiley & Sons Inc. 1989

    [13]

    Pershenkov V S, Belyakov V V, Shalnov A V 1994 IEEE Transactions on Nuclear Science 41 2593

  • [1]

    Hu T L, Lu W, Xi S B 2013 Acta Phys. Sin. 62 076105 (in Chinese) [胡天乐, 陆妩, 席善斌 2013 物理学报 62 076105]

    [2]

    Hu T L, Lu W, He C F 2013 Atomic Energy Science and Technology 4 657 (in Chinese) [胡天乐, 陆妩, 何承发 2013 原子能科学技术 4 657]

    [3]

    L w, Ren D Y, Guo Q 1998 J. Semicond 1 35 (in Chinese) [陆妩, 任迪远, 郭旗 1998 半导体学报 1 35]

    [4]

    Wang Y Y, Lu W, Ren D Y 2001 Atomic Energy Science and Technology 9 1147 (in Chinese) [王义元, 陆妩, 任迪远 2001 原子能科学技术 9 1147]

    [5]

    Graves R. J, Cirba C. R 1998 IEEE Transactions on Nuclear Science 45 2352

    [6]

    Witczak S C, Lacoe R C 1998 IEEE Transactions on Nuclear Science 45 2339

    [7]

    Fleetwood D. M, Kosier, S. L 1994 IEEE Transactions on Nuclear Science 41 1817

    [8]

    Nichols D K, Price W E, Gauthier M K 1982 IEEE Transactions on Nuclear Science 29 2081

    [9]

    Brucker G J, Dennehy W J, Holmes-Siedle A G 1966 IEEE Transactions on Nuclear Science 13 188

    [10]

    Qian S M, Wang B L, Wang P D 1984 Journal of Beijing Normal University Natural Science 3 31 (in Chinese) [钱思敏, 王炳林, 王培德 1984 北京师范大学学报(自然科学版) 3 31]

    [11]

    Dale C J, Marshall P W, Burke E A 1988 IEEE Transactions on Nuclear Science 35 1280

    [12]

    MA T P, Dressendorfer P V 1989 New York John wiley & Sons Inc. 1989

    [13]

    Pershenkov V S, Belyakov V V, Shalnov A V 1994 IEEE Transactions on Nuclear Science 41 2593

  • [1] 周悦, 胡志远, 毕大炜, 武爱民. 硅基光电子器件的辐射效应研究进展. 物理学报, 2019, 68(20): 204206. doi: 10.7498/aps.68.20190543
    [2] 陈剑辉, 杨静, 沈艳娇, 李锋, 陈静伟, 刘海旭, 许颖, 麦耀华. 后退火增强氢化非晶硅钝化效果的研究. 物理学报, 2015, 64(19): 198801. doi: 10.7498/aps.64.198801
    [3] 贾艳丽, 杨桦, 袁洁, 于和善, 冯中沛, 夏海亮, 石玉君, 何格, 胡卫, 龙有文, 朱北沂, 金魁. 浅析电子型掺杂铜氧化物超导体的退火过程. 物理学报, 2015, 64(21): 217402. doi: 10.7498/aps.64.217402
    [4] 谷文萍, 张林, 李清华, 邱彦章, 郝跃, 全思, 刘盼枝. 中子辐照对AlGaN/GaN高电子迁移率晶体管器件电特性的影响. 物理学报, 2014, 63(4): 047202. doi: 10.7498/aps.63.047202
    [5] 胡天乐, 陆妩, 席善斌, 郭旗, 何承发, 吴雪, 王信. PNP输入双极运算放大器在不同辐射环境下的辐射效应和退火特性. 物理学报, 2013, 62(7): 076105. doi: 10.7498/aps.62.076105
    [6] 刘建朋, 朱彦旭, 郭伟玲, 闫微微, 吴国庆. ITO退火对GaN基LED电学特性的影响. 物理学报, 2012, 61(13): 137303. doi: 10.7498/aps.61.137303
    [7] 范雪, 李威, 李平, 张斌, 谢小东, 王刚, 胡滨, 翟亚红. 基于环形栅和半环形栅N沟道金属氧化物半导体晶体管的总剂量辐射效应研究. 物理学报, 2012, 61(1): 016106. doi: 10.7498/aps.61.016106
    [8] 高博, 刘刚, 王立新, 韩郑生, 张彦飞, 王春林, 温景超. 国产星用VDMOS器件总剂量辐射损伤效应研究. 物理学报, 2012, 61(17): 176107. doi: 10.7498/aps.61.176107
    [9] 田雪雁, 赵谡玲, 徐征, 姚江峰, 张福俊, 贾全杰, 陈雨, 龚伟, 樊星. 高分子有机场效应晶体管中退火引起的自组织微观结构变化的研究. 物理学报, 2011, 60(5): 057201. doi: 10.7498/aps.60.057201
    [10] 何宝平, 丁李利, 姚志斌, 肖志刚, 黄绍燕, 王祖军. 超深亚微米器件总剂量辐射效应三维数值模拟. 物理学报, 2011, 60(5): 056105. doi: 10.7498/aps.60.056105
    [11] 翟亚红, 李平, 张国俊, 罗玉香, 范雪, 胡滨, 李俊宏, 张健, 束平. 抗辐射双极n-p-n晶体管的研究. 物理学报, 2011, 60(8): 088501. doi: 10.7498/aps.60.088501
    [12] 张树玲, 孙剑飞, 邢大伟. 磁场退火对Co基熔体抽拉丝巨磁阻抗效应的影响. 物理学报, 2010, 59(3): 2068-2072. doi: 10.7498/aps.59.2068
    [13] 宋超, 陈谷然, 徐骏, 王涛, 孙红程, 刘宇, 李伟, 陈坤基. 不同退火温度下晶化硅薄膜的电学输运性质. 物理学报, 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [14] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究. 物理学报, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [15] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [16] 孙成伟, 刘志文, 张庆瑜. 退火温度对ZnO薄膜结构和发光特性的影响. 物理学报, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [17] 尚淑珍, 邵建达, 沈 健, 易 葵, 范正修. 退火对电子束热蒸发193nm Al2O3/MgF2反射膜性能的影响. 物理学报, 2006, 55(5): 2639-2643. doi: 10.7498/aps.55.2639
    [18] 吴世亮, 陈叶清, 吴奕初, 王少阶, 温熙宇, 翟同广. AA 2037新型连铸铝合金热轧板退火的正电子湮没研究. 物理学报, 2006, 55(11): 6129-6135. doi: 10.7498/aps.55.6129
    [19] 何宝平, 王桂珍, 周 辉, 龚建成, 罗尹虹, 姜景和. NMOS器件不同剂量率γ射线辐射响应的理论预估. 物理学报, 2003, 52(1): 188-191. doi: 10.7498/aps.52.188
    [20] 王剑屏, 徐娜军, 张廷庆, 汤华莲, 刘家璐, 刘传洋, 姚育娟, 彭宏论, 何宝平, 张正选. 金属-氧化物-半导体器件γ辐照温度效应. 物理学报, 2000, 49(7): 1331-1334. doi: 10.7498/aps.49.1331
计量
  • 文章访问数:  4861
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-24
  • 修回日期:  2015-02-16
  • 刊出日期:  2015-07-05

/

返回文章
返回