搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层haeckelites结构Ⅲ族金属硫族化合物MX (M = Al, Ga, In; X = S, Se, Te)

刘慧莹 王树申 林恒福

引用本文:
Citation:

单层haeckelites结构Ⅲ族金属硫族化合物MX (M = Al, Ga, In; X = S, Se, Te)

刘慧莹, 王树申, 林恒福

Group III monochalcogenide of single-layered haeckelites structure MX (M = Al, Ga, In; X = S, Se, Te)

Liu Hui-Ying, Wang Shu-Shen, Lin Heng-Fu
PDF
HTML
导出引用
  • 通过详尽的第一性原理计算, 提出了一类新型的二维III族金属硫族化合物MX (M = Al, Ga, In; X = S, Se, Te)的同素异形体. 这类化合物的结构是由正方形和八边形环构成的. 计算得到的结合能和声子谱表明, 所有的结构都同时具有能量和动力学稳定性. 所有结构都是间接带隙半导体, 其带隙大小随X原子由S到Se到Te的变化而减小. 计算结果表明这类材料具有很广的带隙范围, 从1.88到3.24 eV, 同时它们的能带结构可以通过双轴应变进一步调节. 这些结构具有丰富的电子结构性质和可调的带隙, 有可能被用于未来纳米电子学领域.
    Single-layered III-VI compounds have potential applications in many fields, such as highly sensitive photodetectors, field effect transistors, and electrochemical sensors, due to their wide range photosensitivities and excellent electronic properties. This paper presents a new two-dimensional tetragonal allotrope (called haeckelites structure) of single layered group III monochalcogenides MX (M = Al, Ga, In; X = S, Se, Te), which are constructed from the square and octagon rings. The first-principles calculations are performed using the Vienna ab initio simulation package (VASP) based on density functional theory (DFT). The cohesive energy of the haeckelite structure MX is positive and a little smaller than that (0.07—0.10 eV) of the hexagonal MX. The phonon spectra for the haeckelites structure MX have basically no imaginary frequencies in the whole Brillouin zone. The calculated binding energy and phonon spectrum show that these structures are energetically and dynamically stable. For all the compounds, the charge density isosurfaces show that most electrons are localized at the positions of X and M atoms, indicating that the M—X bond is ionic and M—M bond is covalent. All of haeckelite structure MX are indirect bandgap semiconductors, and their band gap sizes decrease with the X atom changing from S to Se to Te. For example, the band gaps of InS, InSe, and InTe are 2.42, 2.07, and 1.88 eV, respectively. The calculation results show that these materials have a wide band gap range from 1.88 to 3.24 eV. We find that the band gaps of AlS, AlSe, and GaS are relatively large with the values of 3.08, 3.03, and 3.24 eV, respectively. This may make them suitable for optically transparent devices. The band structures of GaSe, InS, InSe, and InTe can be further modulated by the biaxial strains. Their band gaps decrease linearly with the strain increasing. The band gap of AlS and AlSe both first increase and then decrease with the strain increasing.
      通信作者: 林恒福, hengfulin@126.com
    • 基金项目: 国家级-二维卤化钙钛矿半导体及其合金光电性质的(11804260)
      Corresponding author: Lin Heng-Fu, hengfulin@126.com
    [1]

    Late D J, Liu B, Luo J, Yan A M, Matte H S S R, Grayson M, Rao C N R, Dravid V P 2012 Adv. Mater. 24 3549Google Scholar

    [2]

    Hu P, Wang L, Yoon M, Zhang J, Feng W, Wang X, Wen Z, Idrobo J C, Miyamoto Y, Geohegan D B, Xiao K 2013 Nano Lett. 13 1649Google Scholar

    [3]

    Kuhn A, Chevy A, Chevalier R 1975 Phys. Status Solidi A 31 469Google Scholar

    [4]

    Hu P, Wen Z, Wang L, Tan P, Xiao K 2012 ACS Nano 6 5988Google Scholar

    [5]

    Lei S, Ge L, Liu Z, Najmaei S, Shi G, You G, Lou J, Vajtai R, Ajayan P M 2013 Nano Lett. 13 2777Google Scholar

    [6]

    Zhou Y, Nie Y, Liu Y, Yan K, Hong J, Jin C, Zhou Y, Yin J, Liu Z, Peng H 2014 ACS Nano 8 1485Google Scholar

    [7]

    Mudd G W, Svatek S A, Hague L, et al. 2015 Adv. Mater. 27 3760Google Scholar

    [8]

    Yang S, Li Y, Wang X, Huo N, Xia J B, Li S S, Li J 2014 Nanoscale 6 2582Google Scholar

    [9]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [10]

    Cao T, Li Z, Louie S G 2015 Phys. Rev. Lett. 114 236602Google Scholar

    [11]

    Li W, Li J 2015 Nano Res. 8 3796Google Scholar

    [12]

    Wypych F, Schöllhorn R 1992 J. Chem. Soc., Chem. Commun. 138 6

    [13]

    Tang Q, Jiang D E 2015 Chem. Mater. 27 3743Google Scholar

    [14]

    Terrones H, Terrones M, Hernández E, Grobert N, Charlier J C, Ajayan P M 2000 Phys. Rev. Lett. 84 1716Google Scholar

    [15]

    Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi B 248 1879Google Scholar

    [16]

    Liu Y, Wang G, Huang Q, Guo L, Chen X 2012 Phys. Rev. Lett. 108 225505Google Scholar

    [17]

    Sun H, Mukherjee S, Daly M, Krishnan A, Karigerasi M H, Singh C V 2016 Carbon 110 443Google Scholar

    [18]

    Li W, Guo M, Zhang G, Zhang Y W 2014 Phys. Rev. B 89 205402Google Scholar

    [19]

    Ma Y, Kou L, Li X, Dai Y, Smith S C, Heine T 2015 Phys. Rev. B 92 085427Google Scholar

    [20]

    Nie S M, Song Z, Weng H, Fang Z 2015 Phys. Rev. B 91 235434Google Scholar

    [21]

    Sun Y, Felser C, Yan B 2015 Phys. Rev. B 92 165421Google Scholar

    [22]

    Ersan F, Aktürk E, Ciraci S 2016 Phys. Rev. B 94 245417Google Scholar

    [23]

    Kou L, Tan X, Ma Y, Tahini H, Zhou L, Sun Z, Aijun D, Chen C, Smith S C 2015 2D Mater. 2 045010

    [24]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [30]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, Ángyán J G 2006 J. Chem. Phys. 124 154709Google Scholar

    [31]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [32]

    Demirci S, Avazlı N, Durgun E, Cahangirov S 2017 Phys. Rev. B 95 115409Google Scholar

    [33]

    Zólyomi V, Drummond N D, Fal'ko V I 2014 Phys. Rev. B 89 205416Google Scholar

    [34]

    Zheng H, Li X B, Chen N K, Xie S Y, Tian W Q, Chen Y, Xia H, Zhang S B, Sun H B 2015 Phys. Rev. B 92 115307Google Scholar

    [35]

    Monroy E, Omn s F, Calle F 2003 Semicond. Sci. Technol. 18 R33Google Scholar

    [36]

    Caraveo Frescas J A, Nayak P K, Al Jawhari H A, Granato D B, Schwingenschlögl U, Alshareef H N 2013 ACS Nano 7 5160Google Scholar

  • 图 1  四方III族金属硫族化合物MX的几何结构 (a), (b) 分别对应原子结构的俯视图和侧视图; (c) 体系计算中选择的各种组成成分; (d) 体系的第一布里渊区, 其中字母标出了能带计算时的特殊点和路径

    Fig. 1.  The geometric structures of tetragonal group III monochalcogenide MX: (a) and (b) Top-view and side-view of the structure; (c) considered systems with various choice of compositions; (d) the first Brillouin zone of structure with letters designating special points and the lines for band-structure calculation.

    图 2  四方MX的总电荷密度等值面的俯视图和侧视图 (a) AlTe; (b) GaSe; (c) GaTe; (d) InSe; (e) InTe. 选择的总电荷密度等值面的值为0.05 electrons/Å3

    Fig. 2.  Top view and side view of the total charge density isosorfaces of tetragonal MX: (a) AlTe; (b) GaSe; (c) GaTe; (d) InSe; (e) InTe. Isosurface value is 0.05 electrons/Å3.

    图 3  单层haeckelites结构III族金属硫族化合物沿着二维布里渊区高对称方向的振动声子谱 (a) AlS; (b) AlSe; (c) AlTe; (d) GaS; (e) GaSe; (f) GaTe; (g) InS; (h) InSe; (i) InTe

    Fig. 3.  Vibrational phonon spectra of group III monochalocogenide haeckelites monolayers along the high symmetry directions in the 2D Brillouin zone: (a) AlS; (b) AlSe; (c) AlTe; (d) GaS; (e) GaSe; (f) GaTe; (g) InS; (h) InSe; (i) InTe.

    图 4  PBE和HSE泛函给出的四方MX单层的能带结构, 所有化合物都是间接带隙半导体

    Fig. 4.  The PBE and HSE band structures for tetragonal MX monolayers. All the compounds are indirect band gap semiconductors.

    图 5  四方MX在不同的层内应变强度(–0.10—0.10)下的电子带隙

    Fig. 5.  The electronic band gaps for tetragonal MX as a function of the in-layer strain from –0.10 to 0.10.

    图 6  二维四方GaSe在不同应变下的电子能带结构, 其中费米能级设为零

    Fig. 6.  Electronic band structure of 2D tetragonal GaSe under different strains. The Fermi level is set to zero.

    表 1  计算得到的二维四方III族金属硫族化合物MX (M = Al, Ga, In; X = S, Se, Te)的结构和电学性质: 晶格参数ab, 结合能(EC)和分别用PBE和HSE06泛函计算得到的带隙(EgPBEEgHSE), 表中同时给出了六方结构的结合能(EC(2H))和带隙(Eg(2H)PBE)

    Table 1.  The calculated structural and electronic properties of 2D tetragonal group III monochalcogenides MX (M = Al, Ga, and In, X = S, Se, and Te): Lattice parameters a and b, cohesive energy (EC), band gap calculated using PBE and HSE06 functional (EgPBE and EgHSE, respectively). For comparison, the cohesive energy (EC(2H)) and band gap (Eg(2H)PBE) of the hexagonal MX are also given.

    MXabEC/eVEC(2H)/eVEgPBE/eVEgHSE/eVEg(2H)PBE/eV
    AlS7.077.064.444.542.283.082.10
    AlSe7.437.453.984.072.343.031.99
    AlTe8.078.083.483.552.072.701.84
    GaS7.167.153.783.892.213.242.35
    GaSe7.517.533.423.521.702.611.77
    GaTe8.128.153.033.111.502.231.43
    InS7.767.753.493.591.552.421.64
    InSe8.088.093.183.271.292.071.37
    InTe8.648.672.832.911.231.881.29
    下载: 导出CSV
  • [1]

    Late D J, Liu B, Luo J, Yan A M, Matte H S S R, Grayson M, Rao C N R, Dravid V P 2012 Adv. Mater. 24 3549Google Scholar

    [2]

    Hu P, Wang L, Yoon M, Zhang J, Feng W, Wang X, Wen Z, Idrobo J C, Miyamoto Y, Geohegan D B, Xiao K 2013 Nano Lett. 13 1649Google Scholar

    [3]

    Kuhn A, Chevy A, Chevalier R 1975 Phys. Status Solidi A 31 469Google Scholar

    [4]

    Hu P, Wen Z, Wang L, Tan P, Xiao K 2012 ACS Nano 6 5988Google Scholar

    [5]

    Lei S, Ge L, Liu Z, Najmaei S, Shi G, You G, Lou J, Vajtai R, Ajayan P M 2013 Nano Lett. 13 2777Google Scholar

    [6]

    Zhou Y, Nie Y, Liu Y, Yan K, Hong J, Jin C, Zhou Y, Yin J, Liu Z, Peng H 2014 ACS Nano 8 1485Google Scholar

    [7]

    Mudd G W, Svatek S A, Hague L, et al. 2015 Adv. Mater. 27 3760Google Scholar

    [8]

    Yang S, Li Y, Wang X, Huo N, Xia J B, Li S S, Li J 2014 Nanoscale 6 2582Google Scholar

    [9]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [10]

    Cao T, Li Z, Louie S G 2015 Phys. Rev. Lett. 114 236602Google Scholar

    [11]

    Li W, Li J 2015 Nano Res. 8 3796Google Scholar

    [12]

    Wypych F, Schöllhorn R 1992 J. Chem. Soc., Chem. Commun. 138 6

    [13]

    Tang Q, Jiang D E 2015 Chem. Mater. 27 3743Google Scholar

    [14]

    Terrones H, Terrones M, Hernández E, Grobert N, Charlier J C, Ajayan P M 2000 Phys. Rev. Lett. 84 1716Google Scholar

    [15]

    Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi B 248 1879Google Scholar

    [16]

    Liu Y, Wang G, Huang Q, Guo L, Chen X 2012 Phys. Rev. Lett. 108 225505Google Scholar

    [17]

    Sun H, Mukherjee S, Daly M, Krishnan A, Karigerasi M H, Singh C V 2016 Carbon 110 443Google Scholar

    [18]

    Li W, Guo M, Zhang G, Zhang Y W 2014 Phys. Rev. B 89 205402Google Scholar

    [19]

    Ma Y, Kou L, Li X, Dai Y, Smith S C, Heine T 2015 Phys. Rev. B 92 085427Google Scholar

    [20]

    Nie S M, Song Z, Weng H, Fang Z 2015 Phys. Rev. B 91 235434Google Scholar

    [21]

    Sun Y, Felser C, Yan B 2015 Phys. Rev. B 92 165421Google Scholar

    [22]

    Ersan F, Aktürk E, Ciraci S 2016 Phys. Rev. B 94 245417Google Scholar

    [23]

    Kou L, Tan X, Ma Y, Tahini H, Zhou L, Sun Z, Aijun D, Chen C, Smith S C 2015 2D Mater. 2 045010

    [24]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [30]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, Ángyán J G 2006 J. Chem. Phys. 124 154709Google Scholar

    [31]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [32]

    Demirci S, Avazlı N, Durgun E, Cahangirov S 2017 Phys. Rev. B 95 115409Google Scholar

    [33]

    Zólyomi V, Drummond N D, Fal'ko V I 2014 Phys. Rev. B 89 205416Google Scholar

    [34]

    Zheng H, Li X B, Chen N K, Xie S Y, Tian W Q, Chen Y, Xia H, Zhang S B, Sun H B 2015 Phys. Rev. B 92 115307Google Scholar

    [35]

    Monroy E, Omn s F, Calle F 2003 Semicond. Sci. Technol. 18 R33Google Scholar

    [36]

    Caraveo Frescas J A, Nayak P K, Al Jawhari H A, Granato D B, Schwingenschlögl U, Alshareef H N 2013 ACS Nano 7 5160Google Scholar

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [3] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [4] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [5] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究. 物理学报, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [6] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [7] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [8] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [9] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [10] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究. 物理学报, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [11] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [12] 杨天兴, 成强, 许红斌, 王渊旭. 几种三元过渡金属碳化物弹性及电子结构的第一性原理研究. 物理学报, 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [13] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [14] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究. 物理学报, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [15] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究. 物理学报, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [16] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [17] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [18] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究. 物理学报, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [19] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [20] 宫长伟, 王轶农, 杨大智. NiTi形状记忆合金马氏体相变的第一性原理研究. 物理学报, 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
计量
  • 文章访问数:  8875
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-24
  • 修回日期:  2020-04-28
  • 上网日期:  2020-05-11
  • 刊出日期:  2020-07-20

/

返回文章
返回