搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外探测用无铅铁电陶瓷的热释电特性研究进展

郭少波 闫世光 曹菲 姚春华 王根水 董显林

引用本文:
Citation:

红外探测用无铅铁电陶瓷的热释电特性研究进展

郭少波, 闫世光, 曹菲, 姚春华, 王根水, 董显林

Research progress of pyroelectric characteristics of lead-free ferroelectric ceramics for infrared detection

Guo Shao-Bo, Yan Shi-Guang, Cao Fei, Yao Chun-Hua, Wang Gen-Shui, Dong Xian-Lin
PDF
HTML
导出引用
  • 铁电陶瓷具有优异的热释电性能, 是红外探测器的核心敏感元材料, 目前普遍采用铅基陶瓷材料, 发展无铅铁电陶瓷用于热释电红外探测是近年来电介质物理与材料的一个热点. 本文综述了无铅铁电陶瓷的热释电性能研究进展, 主要包括钛酸钡基、钛酸铋钠基、铌酸锶钡基、铌酸钾钠基等系列铁电陶瓷的热释电效应研究现状, 归纳了不同体系增强热释电效应的手段. 通过比较分析主要无铅铁电陶瓷的热释电性能和退极化性能的制约关系, 指出钛酸铋钠基陶瓷是目前最具应用潜力的无铅材料体系, 并对无铅铁电陶瓷热释电探测应用未来的发展方向进行了展望.
    Due to the excellent pyroelectric properties, ferroelectric ceramics containing lead element are widely used as sensitive materials in pyroelectric infrared detectors at present. The research and development of lead-free ferroelectric ceramics for this kind of detector has become a hot research spot in the areas of dielectric physics and materials in recent years. In this article, the recent research progress of the pyroelectric effect in series of important lead-free ferroelectric ceramic systems is reviewed, including barium titanate, sodium bismuth titanate, potassium sodium niobite, barium strontium niobite, etc. The methods of enhancing the pyroelectric effect are summarized, including doping modification, phase boundary design, process improvement, etc. Through comparative analysis of the relationship between pyroelectric properties and depolarization temperatures of different systems, it is concluded that bismuth sodium titanate based ceramics are the most potential lead-free materials in the future. The prospective research work of lead-free ferroelectric ceramics for infrared detection is also suggested.
      通信作者: 王根水, genshuiwang@mail.sic.ac.cn ; 董显林, xldong@mail.sic.ac.cn
    • 基金项目: 国家级-国家自然科学基金(61475176)
      Corresponding author: Wang Gen-Shui, genshuiwang@mail.sic.ac.cn ; Dong Xian-Lin, xldong@mail.sic.ac.cn
    [1]

    钟维烈 2000 铁电体物理学 (北京: 科学出版社) 第17页

    Zhong W L 2000 Ferroelectric Physics (Beijing: Science Press) p17 (in Chinese)

    [2]

    王永龄 2003 功能陶瓷性能与应用 (北京: 科学出版社) 第3页

    Wang Y L 2003 Performance and Application of Functional Ceramics (Beijing: Science Press) p3 (in Chinese)

    [3]

    殷之文 2003 电介质物理学 (第二版) (北京: 科学出版社) 第715页

    Yin Z W 2003 Dielectrics Physics (2nd Ed.) (Beijing: Science Press) p715 (in Chinese)

    [4]

    Wentz J L, Kennedy L Z 1964 J. Appl. Phys. 35 1767Google Scholar

    [5]

    Liu S T, Kyonka J 1974 Ferroelectrics 7 167Google Scholar

    [6]

    Hardiman B, Reeves C P, Zeyfang R R 1976 Ferroelectrics 12 163Google Scholar

    [7]

    Whatmore R W, Osbond P C, Shorrocks N M 1987 Ferroelectrics 76 351Google Scholar

    [8]

    Nadoliisky M M, Vassileva T K, Yanchev R V 1991 Ferroelectrics 118 111Google Scholar

    [9]

    Frutos J D, Jimenez B 1992 Sens. Actuators A 32 393Google Scholar

    [10]

    Mendiola J, Alemany C, Frutos J D 1993 Sens. Actuators A 37 516Google Scholar

    [11]

    Stringfellow S B, Gupta S, Shaw C P, Alcock J R, Whatmore R W 2002 J. Eur. Ceram. Soc. 22 573Google Scholar

    [12]

    Shaw C P, Gupta S, Stringfellow S B, Navarro A, Alcock J R, Whatmore R W 2002 J. Eur. Ceram. Soc. 22 2123Google Scholar

    [13]

    Whatmore R W, Molter O, Shaw C P 2003 J. Eur. Ceram. Soc. 23 721Google Scholar

    [14]

    Liu S T, Long D 1978 Proc. IEEE 66 14Google Scholar

    [15]

    Whatmore R W 1986 Rep. Prog. Phys. 49 1335Google Scholar

    [16]

    Lang S B 2005 Phys. Today 58 31Google Scholar

    [17]

    Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 33Google Scholar

    [18]

    Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 36Google Scholar

    [19]

    Arlt G, Hennings D, With G D 1985 J. Appl. Phys. 58 1619Google Scholar

    [20]

    Randall C A, Kim N, Kucera J P, Cao W, Shrout T R 2005 J. Am. Ceram. Soc. 81 677Google Scholar

    [21]

    Kamel T M, With G D 2008 J. Eur. Ceram. Soc. 28 851Google Scholar

    [22]

    Shaw C P, Whatmore R W, Alcock J R. Porous 2007 J. Am. Ceram. Soc. 90 137Google Scholar

    [23]

    Zeng T, Wang G S, Dong X L, He H L, Chen X F 2007 Mater. Sci. Eng. B 140 5Google Scholar

    [24]

    聂恒昌, 王永龄, 贺红亮, 王根水, 董显林 2018 无机材料学报 33 153Google Scholar

    Nie H C, Wang Y L, He H L, Wang G S, Dong X L 2018 J. Inorg. Mater. 33 153Google Scholar

    [25]

    景奇, 李晓娟 2019 物理学报 68 057701Google Scholar

    Jing Q, Li X J 2019 Acta Phys. Sin. 68 057701Google Scholar

    [26]

    Venet M, Guerra J L S, Santos I A, Eiras J A, Garcia D 2007 J. Phys: Condens. Matter 19 026207Google Scholar

    [27]

    伍萌佳, 杨群保, 李永祥 2007 无机材料学报 22 1025Google Scholar

    Wu M J, Yang Q B, Li Y X 2007 J. Inorg. Mater. 22 1025Google Scholar

    [28]

    Perls T A, Diesel T J, Dobrov W I 1958 J. Appl. Phys. 29 1297Google Scholar

    [29]

    Lang S B, Rice L H, Shaw S A 1969 J. Appl. Phys. 40 4335Google Scholar

    [30]

    Ianculescu A, Pintilie I, Vasilescu C A, Botea M, Iuga A, Melinescu A, Dragan N, Pintilie L 2016 Ceram. Int. 42 10338Google Scholar

    [31]

    Yoo J H, Gao W, Yoon K H 1999 J. Mater. Sci. 34 5361Google Scholar

    [32]

    Deb K K, Hi ll, M.D, Kelly J F 1992 J. Mater. Res. 7 3296Google Scholar

    [33]

    Deb K K 1994 MRS Proc. 360 127Google Scholar

    [34]

    Movchikova A, Malyshkina O, Suchaneck G, Gerlach G, Steinhausen R, Langhammer H T, Pientschke C, Beige H 2008 J. Electroceram. 20 43Google Scholar

    [35]

    Srikanth K S, Singh V P, Vaish R 2017 J. Eur. Ceram. Soc. 37 3943Google Scholar

    [36]

    Jha P A, Jha A K 2014 Indian J. Phys. 88 489Google Scholar

    [37]

    Srikanth K S, Vaish R 2017 J. Eur. Ceram. Soc. 37 3927Google Scholar

    [38]

    Sagar R, Madolappa S, Raibagkar R L 2012 Solid State Sci. 14 211Google Scholar

    [39]

    Whatmore R W, Watton R 2000 Ferroelectrics 236 259Google Scholar

    [40]

    Liu W F, Ren X B 2009 Phys. Rev. Lett. 103 257602Google Scholar

    [41]

    Benabdallah F, Simon A, Khemakhem H, Elissalde C, Maglione M 2011 J. Appl. Phys. 109 124116Google Scholar

    [42]

    Yao S, Ren W, Ji H, Wu X, Ye Z G 2012 J. Phys. D: Appl. Phys. 45 195301Google Scholar

    [43]

    Liu X, Chen Z H, Wu D, Fang B J, Ding J N, Zhao X Y, Xu H Q, Luo H S 2015 Jpn. J. Appl. Phys. 54 071501Google Scholar

    [44]

    Liu X, Wu D, Chen Z H, Fa ng, B J, Di ng, J N, Zhao X Y, Luo H S 2015 Adv. Appl. Ceram. 114 436Google Scholar

    [45]

    Patel S, Chauhan A, Vaish R 2015 Solid State Sci. 52 10Google Scholar

    [46]

    Smolenskii G A, Isupov V A, Agranovskaya A I, Krainik N 1961 Sov. Phys. Solid State 2 2651

    [47]

    Dorcet V, Trolliard G, Boullay P 2008 Chem. Mater. 20 5061Google Scholar

    [48]

    Trolliard G, Dorcet V 2008 Chem. Mater. 20 5074Google Scholar

    [49]

    Hagiyev M S, Ismailzade I H, Abiyev A K 1984 Ferroelectrics 56 215Google Scholar

    [50]

    Balakt A M, Shaw C P, Zhang Q 2017 J. Mater. Sci. 52 7382Google Scholar

    [51]

    Balakt A M, Shaw C P, Zhang Q 2016 J. Mater. Sci.: Mater. Electron. 27 12947Google Scholar

    [52]

    Balakt A M, Shaw C P, Zhang Q 2017 J. Eur. Ceram. Soc. 37 1459Google Scholar

    [53]

    Balakt A M, Shaw C P, Zhang Q 2017 Ceram. Int. 43 3726Google Scholar

    [54]

    Balakt A M, Shaw C P, Zhang Q 2017 J. Alloys Compd. 709 82Google Scholar

    [55]

    Jia J, Guo S, Yan S, Cao F, Yao C, Dong X, Wang G 2019 Appl. Phys. Lett. 114 032902Google Scholar

    [56]

    Guo F, Yang B, Zhang S, Wu F, Liu D, Hu P, Sun Y, Wang D, Cao W 2013 Appl. Phys. Lett. 103 182906Google Scholar

    [57]

    Shen M, Li W, Li M, Liu H, Xu, J M, Qiu S, Zhang G, Lu Z, Li H, Jiang S 2019 J. Eur. Ceram. Soc. 39 1810Google Scholar

    [58]

    Zhang X, Jiang G, Guo F, Liu D, Zhang S, Yang B, Cao W 2018 J. Am. Ceram. Soc. 101 2996Google Scholar

    [59]

    Yang Z, Liu B, Wei L, Hou Y 2008 Mater. Res. Bull. 43 81Google Scholar

    [60]

    Nagata H, Yoshida M, Makiuchi Y, Takenaka T 2003 Jpn. J. Appl. Phys. 42 7401Google Scholar

    [61]

    Mahdi R I, Al-Bahnam N J, Abbo A I, Hmood J K, Majid W H A 2016 J. Alloys Compd. 688 77Google Scholar

    [62]

    Lau S T, Cheng C H, Choy S H, Lin D M, Kwok K W, Chan H L W 2008 J. Appl. Phys. 103 104105Google Scholar

    [63]

    Zhang Q, Jiang S, Yang T 2012 J. Electroceram. 29 8Google Scholar

    [64]

    Jia J, Guo S, Cao F, Yan S, Yao C, Dong X, Wang G 2019 Mater. Res. Express 6 046308Google Scholar

    [65]

    Patel S, Chauhan A, Kundu S, Madhar N A, Ilahi B, Vaish R, Varma K B R 2015 AIP Adv. 5 087145Google Scholar

    [66]

    Peng P, Nie H, Liu Z, Cao F, Wang G, Dong X 2018 J. Am. Ceram. Soc. 101 4044Google Scholar

    [67]

    Liu Z, Ren W, Peng P, Guo S, Lu T, Liu Y, Dong X, Wang G 2018 Appl. Phys. Lett. 112 142903Google Scholar

    [68]

    Shen M, Qin Y, Zhang Y, Marwat M A, Zhang C, Wang W, Li M, Zhang H, Zhang G, Jiang S 2019 J. Am. Ceram. Soc. 102 3990Google Scholar

    [69]

    Ballman A A, Brown H 1967 J. Cryst. Growth 1 311Google Scholar

    [70]

    Glass A M 1969 J. Appl. Phys. 40 4699Google Scholar

    [71]

    Zhang J, Wang G, Gao F, Mao C, Cao F, Dong X 2013 Ceram. Int. 39 1971Google Scholar

    [72]

    Santos I A, Spinola D U, Garcia D, Eiras J A 2002 J. Appl. Phys. 92 3251Google Scholar

    [73]

    Yao Y, Mak C L, Wong K H, Lu S, Xu Z 2009 Int. J. Appl. Ceram. Technol. 6 671Google Scholar

    [74]

    Said M, Velayutham T S, Abd Majid W H 2017 Ceram. Int. 43 9783Google Scholar

    [75]

    Rao K S, Prasad T N V K V, Subrahmanyam A S V, Lee J H, Kim J J, Cho S H 2003 Mater. Sci. Eng. B 98 279Google Scholar

    [76]

    Yao Y B, Mak C L, Ploss B 2012 J. Eur. Ceram. Soc. 32 4353Google Scholar

    [77]

    Qi Y, Lu C, Zhu J, Chen X, Song H, Zhang H, Xu X 2005 Appl. Phys. Lett. 87 082904Google Scholar

    [78]

    Ke S, Fan H, Huang H, Chan H, Yu S 2008 J. Appl. Phys. 104 024101Google Scholar

    [79]

    Muehlberg M, Burianek M, Joschko B, Klimm D, Danilewsky A, Gelissen M, Bayarjargal L, Gorler G P, Hildmann B O 2008 J. Cryst. Growth 310 2288Google Scholar

    [80]

    Zhang J, Dong X, Cao F, Guo S, Wang G 2013 Appl. Phys. Lett. 102 102908Google Scholar

    [81]

    Yao Y, Guo K, Bi D, Tao T, Liang B, Mak C L, Lu S G 2018 J. Mater. Sci. 29 17777Google Scholar

    [82]

    Chen H, Guo S, Dong X, Cao F, Mao C, Wang G 2017 J. Alloys Compd. 695 2723Google Scholar

    [83]

    Nagata K, Yamamoto Y, Igarashi H, Okazaki K 1981 Ferroelectrics 38 853Google Scholar

    [84]

    Venet M, Santos I A, Eiras J A, Garcia D 2006 Solid State Ionics 177 589Google Scholar

    [85]

    Venet M, Vendramini A, Santos I A, Eiras J A, Garcia D 2005 Mater. Sci. Eng. B 117 254Google Scholar

    [86]

    Duran C, Trolier-McKinstry S, Messing G L 2000 J. Am. Ceram. Soc. 83 2203Google Scholar

    [87]

    Dursun S, Mensur-Alkoy E, Alkoy S 2016 J. Eur. Ceram. Soc. 36 2479Google Scholar

    [88]

    Chen W, Kinemuchi Y, Watari K, Tamura T, Miwa K 2006 J. Am. Ceram. Soc. 89 381Google Scholar

    [89]

    Kubota T, Tanaka N, Kageyama K, Takagi H, Sakabe Y, Suzuki T S, Sakka Y 2009 Jpn. J. Appl. Phys. 48 031405Google Scholar

    [90]

    Chen H, Guo S, Yao C, Dong X, Mao C, Wang G 2017 Ceram. Int. 43 3610Google Scholar

    [91]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, nakamura M 2004 Nature 432 84Google Scholar

    [92]

    Birol H, Damjanovic D, Setter N 2006 J. Eur. Ceram. Soc. 26 861Google Scholar

    [93]

    Jiang X P, Chen Y, Lam K H, Choy S H, Wang J 2010 J. Alloys Compd. 506 323Google Scholar

    [94]

    Zhang Y Y, Zhang J P, Wang E P, Jiang S L, Lu L 2013 Appl. Mech. Mater. 377 161Google Scholar

    [95]

    Zhou M, Liang R, Zhou Z, Dong X 2020 J. Am. Ceram. Soc. 103 193Google Scholar

    [96]

    Zhou M, Liang R, Zhou Z, Dong X 2019 J. Eur. Ceram. Soc. 39 2058Google Scholar

    [97]

    Li S, Nie H, Wang G, Liu N, Zhou M, Cao F, Dong X 2019 J. Mater. Chem. C 7 4403Google Scholar

    [98]

    Takenaka T, Sakata K 1991 Ferroelectrics 118 123Google Scholar

    [99]

    Tang Y, Shen Z, Zhang S, Shrout T R 2016 J. Am. Ceram. Soc. 99 1294Google Scholar

    [100]

    Zhao M, Wang C, Zhong W, Wang J, Chen H 2002 Jpn. J. Appl. Phys. 41 1455Google Scholar

    [101]

    Tang Y, Shen Z Y, Du Q, Zhao X, Wang F, Qin X, Wang T, Shi W, Sun D, Zhou Z, Zhang S 2018 J. Eur. Ceram. Soc. 38 5348Google Scholar

    [102]

    Takenaka T, Sakata K 1989 Ferroelectrics 94 175Google Scholar

    [103]

    Takenaka T, Sakata K 1980 Jpn. J. Appl. Phys. 19 31Google Scholar

    [104]

    Shen Z, Liu J, Grins J, Nygren M, Wang P, Kan Y, Yan H, Sutter U 2005 Adv. Mater. 17 676Google Scholar

    [105]

    Chen W, Hotta Y, Tamura T, Miwa K, Watari K 2006 Scr. Mater. 54 2063Google Scholar

    [106]

    Chen W, Kinemuchi Y, Watari K, Tamura T, Miwa K 2006 J. Am. Ceram. Soc. 89 490Google Scholar

    [107]

    Karthik C, Varma K B R 2008 Mater. Res. Bull. 43 3026Google Scholar

  • 图 1  铁电材料中的热释电效应起源示意图

    Fig. 1.  Schematic illustration of the pyroelectric effect in ferroelectric materials.

    图 2  (a) BZT-BCT相图; (b) 0.5 Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3热释电系数温谱[40,42]

    Fig. 2.  (a) Phase diagram of the BZT-BCT system; (b) the pyroelectric coefficient of the 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics[40,42].

    图 3  钛酸铋钠BNT无铅铁电材料的相结构演变过程

    Fig. 3.  Phase transitions of BNT lead-free material from low temperature to high temperature.

    图 4  BNT-BT固溶体组分温度相图[50]

    Fig. 4.  Phase diagram of BNT-BT solid solution[50].

    图 5  0.98BNT-0.02BA-xNN陶瓷在20—80 ℃范围内的热释电性能 (a)电流响应优值Fi; (b)电压响应优值Fv; (c)探测率优值Fd; (d) 1 kHz下的介电温谱[66]

    Fig. 5.  Pyroelectric figure of merits (a) Fi, (b) Fv, (c) Fd and (d) dielectric constant as a function of temperature within 20—80 ℃ of 0.98BNT-0.02BA-xNN ceramics[66].

    图 6  Sr/Ba比(30/70—50/50)对SBN铁电陶瓷电性能的影响规律 (a)介电温谱; (b)居里温度; (c)电滞回线; (d)热释电系数温谱[71]

    Fig. 6.  (a) Dielectric constant, (b) Curie temperature, (c) P-E hysteresis loops, and (d) pyroelectric constant as a function of temperature for SBN ceramics with different Sr/Ba ratio (30/70−50/50)[71].

    图 7  (K0.5Na0.5)2x(Sr0.6Ba0.4)5–x Nb10O30 (KNSBN)陶瓷 (a)介电温谱; (b)热释电系数温谱[76]

    Fig. 7.  The dependence of (a) dielectric constant and (b) pyroelectric coefficient on temperature of (K0.5Na0.5)2x(Sr0.6Ba0.4)5–x Nb10O30 (KNSBN) ceramics[76].

    图 8  CaNb2O6-SrNb2O6-BaNb2O6准三元系相图, 其中灰色区域为CSBN单相稳定存在的区域[79]

    Fig. 8.  Phase diagram of CaNb2O6-SrNb2O6-BaNb2O6 ternary system. The grayish area marks the stability field of CSBN[79].

    图 9  Cax(Sr0.5Ba0.5)1–x Nb2O6 (x = 0, 0.10, 0.15, 0.20)无铅铁电陶瓷热释电性能 (a) 电流响应优值Fi; (b) 电压响应优值Fv; (c) 探测率优值Fd; (d) 热释电系数[80]

    Fig. 9.  Pyroelectric figures of merits (a) Fi, (b) Fv, (c) Fd, and (d) pyroelectric coefficient as a function of temperature for Cax(Sr0.5Ba0.5)1–x Nb2O6 (x = 0, 0.10, 0.15, 0.20) ceramics[80].

    图 10  Cax Sr0.3–x Ba0.7Nb2O6陶瓷热释电及退极化性能 (a) 热释电系数; (b)退极化性能(以样品高温退火后d33T与完全极化d33RT比值表示)[82]

    Fig. 10.  (a) Pyroelectric coefficient as a function of temperature of CSBN (x) ceramics; (b) the ratio of piezoelectric constant measured at different temperatures (d33T) to room temperature piezoelectric constant (d33RT) of ceramics and commercially PZT ceramics. The inset shows the depoling results for CSBN (x).

    图 11  (a) Sr0.63Ba0.37Nb2O6陶瓷普通烧结与热锻烧结的介电温谱与损耗温谱; (b) Sr0.63Ba0.37Nb2O6陶瓷热锻样品的室温电滞回线; (c) Sr0.53Ba0.47Nb2O6和Sr0.63Ba0.37Nb2O6陶瓷热锻样品热释电系数温谱; (d) Sr0.53Ba0.47Nb2O6和Sr0.63Ba0.37Nb2O6陶瓷热锻样品电流响应优值温谱[84]

    Fig. 11.  (a) Dielectric constant and loss as a function of temperature for the Sr0.63Ba0.37Nb2O6 ordinary sintering (O.S) and hot forging (H.F) ceramics (1. H.F∥; 2. O.S; 3. H.F⊥); (b) hysteresis loops for the Sr0.63Ba0.37Nb2O6 H.F ceramics at room temperature and 50 Hz; (c) pyroelectric coefficient as a function of temperature for SBN textured ceramics; (d) figure of merit Fi as a function of temperature for SBN textured ceramics[84].

    图 12  不同体系铁电陶瓷的热释电系数与退极化温度关系图

    Fig. 12.  Comparison of pyroelectric coefficient and depoling temperature between lead-free and lead-based ferroelectric ceramics.

    图 13  不同体系铁电陶瓷的电压响应优值与退极化温度的关系图

    Fig. 13.  Comparison of pyroelectric figure of merit Fv and depoling temperature between lead-free and lead-based ferroelectric ceramics.

    表 1  BT基无铅铁电陶瓷的热释电性能列表

    Table 1.  Pyroelectric properties of BT-based lead-free ferroelectric ceramics.

    材料组成热释电系数/
    10–4 C·m–2·K–1
    介电
    常数
    介电
    损耗
    居里
    温度/℃
    Fi/pm·V–1Fv/m2·C–1Fd/µPa–1/2文献
    BaTiO32.001200120800.00804.20[28]
    Ba0.95Ca0.05TiO3~2.00113[29]
    Ba0.90Sr0.10TiO34.7010880.0161080.0173[30]
    Ba0.80Sr0.20TiO34.2014190.018770.0118[30]
    BaSn0.05Ti0.95O34.3225200.029772280.01008.20[35]
    Porous BaSn0.05Ti0.95O35.5721800.035/3550.0180022.00[35]
    BaZr0.025Ti0.975O37.50105[36]
    BaCe0.10Ti0.90O37.82833390.011010.39[37]
    0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO35.8493[32]
    (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-1 wt%Li8.6025900.03379407.60.015015.80[43]
    (Ba0.85Sr0.15)(Zr0.1Ti0.9)O314.0046910.041466000.015014.50[45]
    (Ba0.84Ca0.15Sr0.01)(Zr0.09Ti0.9Sn0.01)O311.7042000.020834790.013018.10[44]
    Modified PZT3.802900.0032301520.060058.00[15]
    Modified PT3.802200.0112551520.080033.00[15]
    PMN-PZT3.562180.0072261420.074159.30[12]
    下载: 导出CSV

    表 2  BNT基无铅铁电陶瓷的热释电性能列表

    Table 2.  Pyroelectric properties of BNT-based lead-free ferroelectric ceramics.

    材料组成热释电系数/10–4 C·m–2·K–1介电常数介电损耗居里温度/℃退极化
    温度/℃
    Fi/pm·V–1Fv/m2·C–1Fd/µPa–1/2文献
    (Bi0.5Na0.5)TiO32.50320200[49]
    0.94BNT-0.06BT3.153960.04361151120.02109.080[50]
    0.94(Bi0.52Na0.52)TiO3-0.06BT6.99552500.047016.630[50]
    0.94BNT-0.06BT-0.005La+0.002Ta12.926710.0472404610.07802.760[54]
    0.94BNT-0.06BT-0.005La7.42692650.04801.400[52]
    0.94BNT-0.06Ba1.02TiO33.54851240.00958.300[51]
    0.80BNT-0.20BT2.422090.026815.300[55]
    0.93BNT-0.07Ba(Zr0.055Ti0.945)O35.70872030.022010.500[56]
    0.93BNT-0.07Ba(Zr0.055Ti0.945)O3-0.00125Mn6.10~300722170.023012.600[58]
    0.94BNT-0.06Ba(Zr0.25Ti0.75)O327.2014620.0460300380.0750[57]
    0.95(0.95BNT-0.05BKT)-0.05BT3.258530.027819450.026013.430[52]
    0.95(0.94BNT-0.016BLT-0.05BKT)-0.05BT3.608580.02942210.029014.750[52]
    0.82BNT-0.18BKT-0.008Mn17.006050.0160~350~15065.600[53]
    0.88BNT-0.084BKT-0.036BT3.669330.02353011652150.026015.408[61]
    0.98BNT-0.02BA3.873300.0110~3001901380.047123.300[66]
    0.98(0.98BNT-0.02BA)-0.02NN7.483720.0110~3001552660.080742.200[66]
    0.97(0.99BNT-0.01BA)-0.03KNN3.705120.02902821181320.028911.500[67]
    0.98(0.98BNT-0.02BA)-0.02KNN8.428800.0400~2803030.039017.200[68]
    0.715BNT-0.22ST-0.065BT-0.4 wt%glass6.807340.1430157/0.03708.850[65]
    0.98BNT-0.02BN4.424650.00801951710.038227.400[64]
    0.97BNT-0.03BNN5.605490.00901432170.04130.100[64]
    下载: 导出CSV

    表 4  KNN基铁电陶瓷的热释电性能列表

    Table 4.  Pyroelectric properties of KNN-based lead-free ferroelectric ceramics.

    材料组成热释电系数/
    10–4 C·m–2·K–1
    介电
    常数
    介电
    损耗
    居里
    温度/℃
    退极化
    温度/℃
    Fi/pm·V–1Fv/m2·C–1Fd/µPa–1/2文献
    KNN1.40472410[92]
    0.97KNN-0.03BKT+0.8 wt%MnO2.2112770.031~35090.070.00804.81[93]
    0.97KNN-0.03BKT+2 wt%MnO2.189800.035~35099.40.01145.71[93]
    0.96(K0.5N0.5)(Nb0.8Ta0.2)O3-0.04Li(Nb0.8Ta0.2)O31.6512300.018123.50.01108.82[62]
    0.96(K0.5N0.5)(Nb0.84Ta0.1Sb0.06)O3-0.04Li(Nb0.84Ta0.1Sb0.06)O31.9015200.01893.10.00705.98[62]
    0.95(K0.45Na0.55) NbO3-0.05LiSbO315.0089135[94]
    NaNbO3-0.01MnO-0.005Bi2O31.85270670.033353.20[96]
    0.85NaNbO3-0.15Ba0.6(Bi0.5Na0.5)0.4TiO33.1111510.0161101040.01028.10[95]
    0.95AgNbO3-0.05LiTaO33.682520.0221301380.060219.70[97]
    下载: 导出CSV

    表 3  SBN基无铅铁电陶瓷的热释电性能列表

    Table 3.  Pyroelectric properties of SBN-based lead-free ferroelectric ceramics.

    材料组成热释电系数
    /10–4C·m–2·K–1
    介电
    常数
    介电
    损耗
    居里
    温度/℃
    Fi/pm·V–1Fv/m2·C–1Fd/µPa–1/2文献
    Sr0.5Ba0.5Nb2O62.0084[71]
    Gd0.01Sr0.515Ba0.47Nb2O62.8524801494.5[74]
    (K0.5Na0.5)2.3(Sr0.6Ba0.4)3.85Nb10O302.11~160022714.1[76]
    Ca0.15(Sr0.5Ba0.5)0.85Nb2O63.619330.0270~901720.021011.5[80]
    Sr0.525Ca0.125Ba0.35Nb2O62.37~50[81]
    Ca0.2Sr0.1Ba0.7Nb2O61.24217600.02036.1[82]
    Sr0.53Ba0.47Nb2O6 H.F(⊥)5.109800.0180~1052300.028118.7[84]
    Sr0.53Ba0.47Nb2O6 H.F(//)4.004680.0050~1151890.045640.6[84]
    Sr0.53Ba0.47Nb2O6 TGG(⊥)2.907700.0360148[86]
    Sr0.3Ba0.7Nb2O6 O.F0.714910.0469163340.00782.4[90]
    Sr0.3Ba0.7Nb2O6 H.P(200 MPa⊥)2.386760.05341631130.01896.3[90]
    下载: 导出CSV

    表 5  BLSF铁电陶瓷的热释电性能列表

    Table 5.  Pyroelectric properties of KNN-based lead-free ferroelectric ceramics.

    材料组成热释电系数
    /10–4 C·m–2·K–1
    介电
    常数
    介电
    损耗
    居里
    温度/℃
    Fi/pm·V–1Fv/m2·C–1Fd/µPa–1/2文献
    (NaBi)Bi4Ti4O15+1 wt%MnCO3(O.F)0.5601400.002965818.700.0159.88[102]
    (NaBi)Bi4Ti4O15+1 wt%MnCO3(H.F)1.3001490.003266043.500.03321.1[102]
    (NaBi)0.95Ca0.05Bi4Ti4O15+1 wt%MnCO3(O.F)0.8201480.001668029.100.02763.5[102]
    (NaBi)0.95Ca0.05Bi4Ti4O15+1 wt%MnCO3(H.F)1.0001340.001766535.200.03278.4[102]
    Sr1.1Bi3.9Ti3.9Ta0.1O15+0.5 wt%MnCO31.3001900.0010~5200.03040.0[100]
    CaBi4Ti4O150.3591450.008079014.740.0124.6[99]
    CaBi4Ti3.95Nb0.05O150.4401360.006079018.070.0156.7[99]
    CaBi4Ti4O15+0.2 wt%MnO20.5821300.005079023.900.02110.0[99]
    CaBi4Ti3.95Nb0.05O15+0.2 wt%MnO20.844990.002079034.650.04024.4[99]
    Bi4Ti2.9W0.1O12-0.04%Mn0.5711470.0030655[101]
    下载: 导出CSV
  • [1]

    钟维烈 2000 铁电体物理学 (北京: 科学出版社) 第17页

    Zhong W L 2000 Ferroelectric Physics (Beijing: Science Press) p17 (in Chinese)

    [2]

    王永龄 2003 功能陶瓷性能与应用 (北京: 科学出版社) 第3页

    Wang Y L 2003 Performance and Application of Functional Ceramics (Beijing: Science Press) p3 (in Chinese)

    [3]

    殷之文 2003 电介质物理学 (第二版) (北京: 科学出版社) 第715页

    Yin Z W 2003 Dielectrics Physics (2nd Ed.) (Beijing: Science Press) p715 (in Chinese)

    [4]

    Wentz J L, Kennedy L Z 1964 J. Appl. Phys. 35 1767Google Scholar

    [5]

    Liu S T, Kyonka J 1974 Ferroelectrics 7 167Google Scholar

    [6]

    Hardiman B, Reeves C P, Zeyfang R R 1976 Ferroelectrics 12 163Google Scholar

    [7]

    Whatmore R W, Osbond P C, Shorrocks N M 1987 Ferroelectrics 76 351Google Scholar

    [8]

    Nadoliisky M M, Vassileva T K, Yanchev R V 1991 Ferroelectrics 118 111Google Scholar

    [9]

    Frutos J D, Jimenez B 1992 Sens. Actuators A 32 393Google Scholar

    [10]

    Mendiola J, Alemany C, Frutos J D 1993 Sens. Actuators A 37 516Google Scholar

    [11]

    Stringfellow S B, Gupta S, Shaw C P, Alcock J R, Whatmore R W 2002 J. Eur. Ceram. Soc. 22 573Google Scholar

    [12]

    Shaw C P, Gupta S, Stringfellow S B, Navarro A, Alcock J R, Whatmore R W 2002 J. Eur. Ceram. Soc. 22 2123Google Scholar

    [13]

    Whatmore R W, Molter O, Shaw C P 2003 J. Eur. Ceram. Soc. 23 721Google Scholar

    [14]

    Liu S T, Long D 1978 Proc. IEEE 66 14Google Scholar

    [15]

    Whatmore R W 1986 Rep. Prog. Phys. 49 1335Google Scholar

    [16]

    Lang S B 2005 Phys. Today 58 31Google Scholar

    [17]

    Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 33Google Scholar

    [18]

    Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 36Google Scholar

    [19]

    Arlt G, Hennings D, With G D 1985 J. Appl. Phys. 58 1619Google Scholar

    [20]

    Randall C A, Kim N, Kucera J P, Cao W, Shrout T R 2005 J. Am. Ceram. Soc. 81 677Google Scholar

    [21]

    Kamel T M, With G D 2008 J. Eur. Ceram. Soc. 28 851Google Scholar

    [22]

    Shaw C P, Whatmore R W, Alcock J R. Porous 2007 J. Am. Ceram. Soc. 90 137Google Scholar

    [23]

    Zeng T, Wang G S, Dong X L, He H L, Chen X F 2007 Mater. Sci. Eng. B 140 5Google Scholar

    [24]

    聂恒昌, 王永龄, 贺红亮, 王根水, 董显林 2018 无机材料学报 33 153Google Scholar

    Nie H C, Wang Y L, He H L, Wang G S, Dong X L 2018 J. Inorg. Mater. 33 153Google Scholar

    [25]

    景奇, 李晓娟 2019 物理学报 68 057701Google Scholar

    Jing Q, Li X J 2019 Acta Phys. Sin. 68 057701Google Scholar

    [26]

    Venet M, Guerra J L S, Santos I A, Eiras J A, Garcia D 2007 J. Phys: Condens. Matter 19 026207Google Scholar

    [27]

    伍萌佳, 杨群保, 李永祥 2007 无机材料学报 22 1025Google Scholar

    Wu M J, Yang Q B, Li Y X 2007 J. Inorg. Mater. 22 1025Google Scholar

    [28]

    Perls T A, Diesel T J, Dobrov W I 1958 J. Appl. Phys. 29 1297Google Scholar

    [29]

    Lang S B, Rice L H, Shaw S A 1969 J. Appl. Phys. 40 4335Google Scholar

    [30]

    Ianculescu A, Pintilie I, Vasilescu C A, Botea M, Iuga A, Melinescu A, Dragan N, Pintilie L 2016 Ceram. Int. 42 10338Google Scholar

    [31]

    Yoo J H, Gao W, Yoon K H 1999 J. Mater. Sci. 34 5361Google Scholar

    [32]

    Deb K K, Hi ll, M.D, Kelly J F 1992 J. Mater. Res. 7 3296Google Scholar

    [33]

    Deb K K 1994 MRS Proc. 360 127Google Scholar

    [34]

    Movchikova A, Malyshkina O, Suchaneck G, Gerlach G, Steinhausen R, Langhammer H T, Pientschke C, Beige H 2008 J. Electroceram. 20 43Google Scholar

    [35]

    Srikanth K S, Singh V P, Vaish R 2017 J. Eur. Ceram. Soc. 37 3943Google Scholar

    [36]

    Jha P A, Jha A K 2014 Indian J. Phys. 88 489Google Scholar

    [37]

    Srikanth K S, Vaish R 2017 J. Eur. Ceram. Soc. 37 3927Google Scholar

    [38]

    Sagar R, Madolappa S, Raibagkar R L 2012 Solid State Sci. 14 211Google Scholar

    [39]

    Whatmore R W, Watton R 2000 Ferroelectrics 236 259Google Scholar

    [40]

    Liu W F, Ren X B 2009 Phys. Rev. Lett. 103 257602Google Scholar

    [41]

    Benabdallah F, Simon A, Khemakhem H, Elissalde C, Maglione M 2011 J. Appl. Phys. 109 124116Google Scholar

    [42]

    Yao S, Ren W, Ji H, Wu X, Ye Z G 2012 J. Phys. D: Appl. Phys. 45 195301Google Scholar

    [43]

    Liu X, Chen Z H, Wu D, Fang B J, Ding J N, Zhao X Y, Xu H Q, Luo H S 2015 Jpn. J. Appl. Phys. 54 071501Google Scholar

    [44]

    Liu X, Wu D, Chen Z H, Fa ng, B J, Di ng, J N, Zhao X Y, Luo H S 2015 Adv. Appl. Ceram. 114 436Google Scholar

    [45]

    Patel S, Chauhan A, Vaish R 2015 Solid State Sci. 52 10Google Scholar

    [46]

    Smolenskii G A, Isupov V A, Agranovskaya A I, Krainik N 1961 Sov. Phys. Solid State 2 2651

    [47]

    Dorcet V, Trolliard G, Boullay P 2008 Chem. Mater. 20 5061Google Scholar

    [48]

    Trolliard G, Dorcet V 2008 Chem. Mater. 20 5074Google Scholar

    [49]

    Hagiyev M S, Ismailzade I H, Abiyev A K 1984 Ferroelectrics 56 215Google Scholar

    [50]

    Balakt A M, Shaw C P, Zhang Q 2017 J. Mater. Sci. 52 7382Google Scholar

    [51]

    Balakt A M, Shaw C P, Zhang Q 2016 J. Mater. Sci.: Mater. Electron. 27 12947Google Scholar

    [52]

    Balakt A M, Shaw C P, Zhang Q 2017 J. Eur. Ceram. Soc. 37 1459Google Scholar

    [53]

    Balakt A M, Shaw C P, Zhang Q 2017 Ceram. Int. 43 3726Google Scholar

    [54]

    Balakt A M, Shaw C P, Zhang Q 2017 J. Alloys Compd. 709 82Google Scholar

    [55]

    Jia J, Guo S, Yan S, Cao F, Yao C, Dong X, Wang G 2019 Appl. Phys. Lett. 114 032902Google Scholar

    [56]

    Guo F, Yang B, Zhang S, Wu F, Liu D, Hu P, Sun Y, Wang D, Cao W 2013 Appl. Phys. Lett. 103 182906Google Scholar

    [57]

    Shen M, Li W, Li M, Liu H, Xu, J M, Qiu S, Zhang G, Lu Z, Li H, Jiang S 2019 J. Eur. Ceram. Soc. 39 1810Google Scholar

    [58]

    Zhang X, Jiang G, Guo F, Liu D, Zhang S, Yang B, Cao W 2018 J. Am. Ceram. Soc. 101 2996Google Scholar

    [59]

    Yang Z, Liu B, Wei L, Hou Y 2008 Mater. Res. Bull. 43 81Google Scholar

    [60]

    Nagata H, Yoshida M, Makiuchi Y, Takenaka T 2003 Jpn. J. Appl. Phys. 42 7401Google Scholar

    [61]

    Mahdi R I, Al-Bahnam N J, Abbo A I, Hmood J K, Majid W H A 2016 J. Alloys Compd. 688 77Google Scholar

    [62]

    Lau S T, Cheng C H, Choy S H, Lin D M, Kwok K W, Chan H L W 2008 J. Appl. Phys. 103 104105Google Scholar

    [63]

    Zhang Q, Jiang S, Yang T 2012 J. Electroceram. 29 8Google Scholar

    [64]

    Jia J, Guo S, Cao F, Yan S, Yao C, Dong X, Wang G 2019 Mater. Res. Express 6 046308Google Scholar

    [65]

    Patel S, Chauhan A, Kundu S, Madhar N A, Ilahi B, Vaish R, Varma K B R 2015 AIP Adv. 5 087145Google Scholar

    [66]

    Peng P, Nie H, Liu Z, Cao F, Wang G, Dong X 2018 J. Am. Ceram. Soc. 101 4044Google Scholar

    [67]

    Liu Z, Ren W, Peng P, Guo S, Lu T, Liu Y, Dong X, Wang G 2018 Appl. Phys. Lett. 112 142903Google Scholar

    [68]

    Shen M, Qin Y, Zhang Y, Marwat M A, Zhang C, Wang W, Li M, Zhang H, Zhang G, Jiang S 2019 J. Am. Ceram. Soc. 102 3990Google Scholar

    [69]

    Ballman A A, Brown H 1967 J. Cryst. Growth 1 311Google Scholar

    [70]

    Glass A M 1969 J. Appl. Phys. 40 4699Google Scholar

    [71]

    Zhang J, Wang G, Gao F, Mao C, Cao F, Dong X 2013 Ceram. Int. 39 1971Google Scholar

    [72]

    Santos I A, Spinola D U, Garcia D, Eiras J A 2002 J. Appl. Phys. 92 3251Google Scholar

    [73]

    Yao Y, Mak C L, Wong K H, Lu S, Xu Z 2009 Int. J. Appl. Ceram. Technol. 6 671Google Scholar

    [74]

    Said M, Velayutham T S, Abd Majid W H 2017 Ceram. Int. 43 9783Google Scholar

    [75]

    Rao K S, Prasad T N V K V, Subrahmanyam A S V, Lee J H, Kim J J, Cho S H 2003 Mater. Sci. Eng. B 98 279Google Scholar

    [76]

    Yao Y B, Mak C L, Ploss B 2012 J. Eur. Ceram. Soc. 32 4353Google Scholar

    [77]

    Qi Y, Lu C, Zhu J, Chen X, Song H, Zhang H, Xu X 2005 Appl. Phys. Lett. 87 082904Google Scholar

    [78]

    Ke S, Fan H, Huang H, Chan H, Yu S 2008 J. Appl. Phys. 104 024101Google Scholar

    [79]

    Muehlberg M, Burianek M, Joschko B, Klimm D, Danilewsky A, Gelissen M, Bayarjargal L, Gorler G P, Hildmann B O 2008 J. Cryst. Growth 310 2288Google Scholar

    [80]

    Zhang J, Dong X, Cao F, Guo S, Wang G 2013 Appl. Phys. Lett. 102 102908Google Scholar

    [81]

    Yao Y, Guo K, Bi D, Tao T, Liang B, Mak C L, Lu S G 2018 J. Mater. Sci. 29 17777Google Scholar

    [82]

    Chen H, Guo S, Dong X, Cao F, Mao C, Wang G 2017 J. Alloys Compd. 695 2723Google Scholar

    [83]

    Nagata K, Yamamoto Y, Igarashi H, Okazaki K 1981 Ferroelectrics 38 853Google Scholar

    [84]

    Venet M, Santos I A, Eiras J A, Garcia D 2006 Solid State Ionics 177 589Google Scholar

    [85]

    Venet M, Vendramini A, Santos I A, Eiras J A, Garcia D 2005 Mater. Sci. Eng. B 117 254Google Scholar

    [86]

    Duran C, Trolier-McKinstry S, Messing G L 2000 J. Am. Ceram. Soc. 83 2203Google Scholar

    [87]

    Dursun S, Mensur-Alkoy E, Alkoy S 2016 J. Eur. Ceram. Soc. 36 2479Google Scholar

    [88]

    Chen W, Kinemuchi Y, Watari K, Tamura T, Miwa K 2006 J. Am. Ceram. Soc. 89 381Google Scholar

    [89]

    Kubota T, Tanaka N, Kageyama K, Takagi H, Sakabe Y, Suzuki T S, Sakka Y 2009 Jpn. J. Appl. Phys. 48 031405Google Scholar

    [90]

    Chen H, Guo S, Yao C, Dong X, Mao C, Wang G 2017 Ceram. Int. 43 3610Google Scholar

    [91]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, nakamura M 2004 Nature 432 84Google Scholar

    [92]

    Birol H, Damjanovic D, Setter N 2006 J. Eur. Ceram. Soc. 26 861Google Scholar

    [93]

    Jiang X P, Chen Y, Lam K H, Choy S H, Wang J 2010 J. Alloys Compd. 506 323Google Scholar

    [94]

    Zhang Y Y, Zhang J P, Wang E P, Jiang S L, Lu L 2013 Appl. Mech. Mater. 377 161Google Scholar

    [95]

    Zhou M, Liang R, Zhou Z, Dong X 2020 J. Am. Ceram. Soc. 103 193Google Scholar

    [96]

    Zhou M, Liang R, Zhou Z, Dong X 2019 J. Eur. Ceram. Soc. 39 2058Google Scholar

    [97]

    Li S, Nie H, Wang G, Liu N, Zhou M, Cao F, Dong X 2019 J. Mater. Chem. C 7 4403Google Scholar

    [98]

    Takenaka T, Sakata K 1991 Ferroelectrics 118 123Google Scholar

    [99]

    Tang Y, Shen Z, Zhang S, Shrout T R 2016 J. Am. Ceram. Soc. 99 1294Google Scholar

    [100]

    Zhao M, Wang C, Zhong W, Wang J, Chen H 2002 Jpn. J. Appl. Phys. 41 1455Google Scholar

    [101]

    Tang Y, Shen Z Y, Du Q, Zhao X, Wang F, Qin X, Wang T, Shi W, Sun D, Zhou Z, Zhang S 2018 J. Eur. Ceram. Soc. 38 5348Google Scholar

    [102]

    Takenaka T, Sakata K 1989 Ferroelectrics 94 175Google Scholar

    [103]

    Takenaka T, Sakata K 1980 Jpn. J. Appl. Phys. 19 31Google Scholar

    [104]

    Shen Z, Liu J, Grins J, Nygren M, Wang P, Kan Y, Yan H, Sutter U 2005 Adv. Mater. 17 676Google Scholar

    [105]

    Chen W, Hotta Y, Tamura T, Miwa K, Watari K 2006 Scr. Mater. 54 2063Google Scholar

    [106]

    Chen W, Kinemuchi Y, Watari K, Tamura T, Miwa K 2006 J. Am. Ceram. Soc. 89 490Google Scholar

    [107]

    Karthik C, Varma K B R 2008 Mater. Res. Bull. 43 3026Google Scholar

  • [1] 张福平, 李玺钦, 杜金梅, 刘雨生, 叶福庆. 铁电陶瓷脉冲耐压失效分布及耐压可靠性. 物理学报, 2024, 73(10): 107701. doi: 10.7498/aps.73.20231354
    [2] 吴波, 王爵, 王崴, 周国富. 非简并双光子吸收及其应用研究进展. 物理学报, 2023, 72(20): 204204. doi: 10.7498/aps.72.20230911
    [3] 刘钟磊, 曹津铭, 王智, 赵宇宏. 相场法探究铁电体涡旋拓扑结构与准同型相界. 物理学报, 2023, 72(3): 037702. doi: 10.7498/aps.72.20221898
    [4] 陈许敏, 叶盼, 王继光, 霍德璇, 曹东兴. 钙钛矿超晶格SrTiO3/BaTiO3的挠曲电效应. 物理学报, 2022, 71(20): 206302. doi: 10.7498/aps.71.20220988
    [5] 崔宗杨, 谢忠帅, 汪尧进, 袁国亮, 刘俊明. 钙钛矿铁电半导体的光催化研究现状及其展望. 物理学报, 2020, 69(12): 127706. doi: 10.7498/aps.69.20200287
    [6] 裴明辉, 田瑜, 张金星. 钙钛矿型铁电氧化物表面结构与功能的控制及其潜在应用. 物理学报, 2020, 69(21): 217709. doi: 10.7498/aps.69.20200884
    [7] 朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊. 缺陷离子调控对BiFeO3-BaTiO3基钙钛矿材料的铁电光伏特性影响. 物理学报, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [8] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展. 物理学报, 2018, 67(15): 157504. doi: 10.7498/aps.67.20180936
    [9] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [10] 向军, 郭银涛, 褚艳秋, 周广振. 双掺杂的Sm0.9Sr0.1Al1-xCoxO3-δ钙钛矿结构导电陶瓷的制备及其电性能. 物理学报, 2011, 60(2): 027203. doi: 10.7498/aps.60.027203
    [11] 蒋冬冬, 谷岩, 冯玉军, 杜金梅. 静水压下锆锡钛酸铅铁电陶瓷相变和介电性能研究. 物理学报, 2011, 60(10): 107703. doi: 10.7498/aps.60.107703
    [12] 余罡, 董显林, 王根水, 陈学锋, 曹菲. 37BiScO3-63PbTiO3铁电陶瓷的极化翻转行为研究. 物理学报, 2010, 59(12): 8890-8896. doi: 10.7498/aps.59.8890
    [13] 陈学锋, 李华梅, 李东杰, 曹 菲, 董显林. 脉冲电容器用细电滞回线铁电陶瓷材料的研究. 物理学报, 2008, 57(11): 7298-7304. doi: 10.7498/aps.57.7298
    [14] 宇 霄, 罗晓光, 陈贵锋, 沈 俊, 李养贤. 第一性原理计算XHfO3(X=Ba, Sr)的结构、弹性和电子特性. 物理学报, 2007, 56(9): 5366-5370. doi: 10.7498/aps.56.5366
    [15] 杨立森, 刘思敏, 张光寅, 许京军, 郭 儒, 高垣梅, 黄春福, 陆 猗, 汪大云. 快速响应的光致折射率改变效应的实验研究. 物理学报, 2004, 53(2): 461-467. doi: 10.7498/aps.53.461
    [16] 段 苹, 谈国太, 戴守愚, 陈正豪, 周岳亮, 吕惠宾. 钙钛矿结构La0.9Sb0.1MnO3的庞磁电阻性质. 物理学报, 2003, 52(8): 2061-2065. doi: 10.7498/aps.52.2061
    [17] 马世红, 严 媚, 李淑红, 陆兴泽, 王根水, 诸君浩, 王文澄. 有序组装超薄膜热释电性能的优化研究. 物理学报, 2003, 52(1): 197-201. doi: 10.7498/aps.52.197
    [18] 刘鹏, 边小兵, 张良莹, 姚熹. (PbBa)(Zr,Sn,Ti)O_3反铁电/弛豫型铁电相界陶瓷的相变与介电、热释电性质. 物理学报, 2002, 51(7): 1628-1633. doi: 10.7498/aps.51.1628
    [19] 冯玉军, 姚 熹, 徐 卓. 改性锆钛酸铅温度诱导相变的热释电性. 物理学报, 2000, 49(8): 1606-1610. doi: 10.7498/aps.49.1606
    [20] 杨平雄, 邓红梅, 褚君浩. 层状钙钛矿结构铁电薄膜SrBi2Ta2O9的掺杂改性研究. 物理学报, 1998, 47(7): 1222-1228. doi: 10.7498/aps.47.1222
计量
  • 文章访问数:  14849
  • PDF下载量:  426
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-27
  • 修回日期:  2020-04-14
  • 刊出日期:  2020-06-20

/

返回文章
返回