搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铌酸钾钠基无铅压电陶瓷的高压电活性研究进展

邢洁 谭智 郑婷 吴家刚 肖定全 朱建国

引用本文:
Citation:

铌酸钾钠基无铅压电陶瓷的高压电活性研究进展

邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国

Research progress of high piezoelectric activity of potassium sodium niobate based lead-free ceramics

Xing Jie, Tan Zhi, Zheng Ting, Wu Jia-Gang, Xiao Ding-Quan, Zhu Jian-Guo
PDF
HTML
导出引用
  • 以Pb(Zr1–xTix)O3 (PZT)为代表的铅基压电陶瓷因为具有良好的压电性能和机电耦合性能已被广泛应用于科技、工业、军事以及日常生活中. 但是, PZT基陶瓷中Pb的含量超过了60% (质量比), 在生产、使用及废弃处理过程中都会给人类生态环境造成严重损害. 因此, 发展无铅压电陶瓷已成为世界压电陶瓷研究的热点之一. 铌酸钾钠 (K0.5Na0.5)NbO3 (KNN)无铅压电陶瓷因为具有较为优异的压电性能以及较高的居里温度, 被认为是最可能取代铅基压电陶瓷的材料体系之一. 经过研究者们的努力工作, 改性后的KNN基无铅压电陶瓷压电性能已经接近或超过了某些铅基压电陶瓷的性能. 本文综合介绍了具有高压电活性的KNN基无铅压电陶瓷国内外的研究进展, 重点阐述了高性能铌酸钾钠基无铅压电陶瓷制备工艺及相关理论基础的研究进展, 并就今后铌酸钾钠基无铅压电陶瓷研究发展的方向及前景提出建议.
    Due to excellent piezoelectric properties and electromechanical coupling properties, lead-based piezoelectric ceramics represented by lead zirconate titanate Pb(ZrxTi1–x)O3 (PZT) are widely used in science and technology, industry, military and daily life. However, the content of Pb in PZT-based ceramics exceeds 60% (mass ratio), which will cause serious damage to human ecological environment in the process of their production, use and waste treatment. Therefore, the development of lead-free piezoelectric ceramics has become one of the hot research spots. Potassium sodium niobate (K0.5Na0.5)NbO3 (KNN) lead-free piezoelectric ceramics are considered as one of the most promising material systems to substitute for lead-based piezoelectric ceramics because of their good piezoelectric properties and higher Curie temperature. Through many years of researches, the piezoelectric properties of modified KNN based lead-free piezoelectric ceramics have approached to or even exceeded those of some lead-based piezoelectric ceramics. Combining with our relevant work, we comprehensively review the research progress of high piezoelectric activity of KNN based lead-free piezoelectric ceramics, especially focus on the research progress of high-performance potassium sodium niobate lead-free piezoelectric ceramics, preparation technology and related theoretical mechanisms. The future research direction and prospect of KNN-based lead-free piezoelectric ceramics are also presented.
      通信作者: 朱建国, nic0400@scu.edu.cn
    • 基金项目: 国家级-国家自然科学基金(51932010)
      Corresponding author: Zhu Jian-Guo, nic0400@scu.edu.cn
    [1]

    Xiao D Q 2011 J. Adv. Dielectr. 01 33Google Scholar

    [2]

    Aksel E, Jones J L 2010 Sensors 10 1935Google Scholar

    [3]

    Rödel J, Webber K G, Dittmer R, Jo W, Kimura M, Damjanovic D 2015 J. Eur Ceram. Soc. 35 1659Google Scholar

    [4]

    Vats G, Vaish R 2014 Int. J. Appl. Ceram. Tec. 11 883Google Scholar

    [5]

    Thong H C, Zhao C L, Zhou Z, Wu C F, Liu Y X, Du Z Z, Li J F, Gong W, Wang K 2019 Mater. Today 29 37Google Scholar

    [6]

    Wang K, Malič B, Wu J G 2018 MRS Bull. 43 607Google Scholar

    [7]

    Lv X., Zhu J G, Xiao D Q, Zhang X X, Wu J G 2020 Chem. Soc. Rev. 49 671Google Scholar

    [8]

    Wu J G, Xiao D Q, Zhu J G 2015 Chem. Rev. 115 2559Google Scholar

    [9]

    Gou Q, Wu J G, Li A Q, Wu B, Xiao D Q, Zhu J G 2012 J. Alloy. Comp. 521 4Google Scholar

    [10]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar

    [11]

    Li P, Zhai J W, Shen Bo, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 30 1705171Google Scholar

    [12]

    Tao H, Wu H J, Liu Y, Zhang Y, Wu J G, Li F, Lyu X, Zhao C L, Xiao D Q, Zhu J G, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [13]

    Egerton L, Dillond D M 1959 J. Am. Chem. Soc. 42 5Google Scholar

    [14]

    Qin Y L, Zhang J L, Yao W Z, Lu C J, Zhang S J 2016 ACS Appl. Mater. Interfaces 8 7257Google Scholar

    [15]

    Wang Y Y, Wu J G, Xiao D Q, Wu W J, Zhang B, Wu L, Zhu J G 2008 J. Am. Ceram. Soc. 91 2772Google Scholar

    [16]

    Tan C K I, Shannigrahi S, Yao K, Ma J 2015 J. Electroceram. 35 19Google Scholar

    [17]

    Pang X M, Qiu J H, Zhu K J 2014 J. Adv. Ceram. 3 147Google Scholar

    [18]

    Wang Y Y, Wu J G, Xiao D Q, Zhu J M, Jin Y, Zhu J G, Yu P, Wu L, Li X 2007 J. Appl. Phys. 102 054101Google Scholar

    [19]

    Wu W J, Wang Z, Xiao D Q, Ma J, Wu J G, Li J, Liang W F, Zhu J G 2013 Integr. Ferroelectr. 141 82Google Scholar

    [20]

    Wu W J, Xiao D Q, Wu J G, Liang W F, Li J, Zhu J G 2011 J. Alloy. Comp. 509 L284Google Scholar

    [21]

    Wu J G, Xiao D Q, Wang Y Y, Zhu J G, Yu P 2008 J. Appl. Phys. 103 024102Google Scholar

    [22]

    Wu B, Ma J, Wu W J, Chen M, Ding Y C 2018 Ceram. Inter. 44 1172Google Scholar

    [23]

    Wen Y, Fan G F, Hao M M, Wang Y J, Chen X, Zhang Q W, Lv W Z 2019 J. Electron. Mater. 49 931Google Scholar

    [24]

    Xing J, Tan Z, Yuan J, Jiang L M, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2016 RSC Adv. 6 57210Google Scholar

    [25]

    Tang X, Chen T, Liu Y H, Zhang J W, Zhang T, Wang G C, Zhou J F 2016 J. Alloy. Comp. 672 277Google Scholar

    [26]

    Yang Y, Wang H, Li Y, Zheng Q J, Liao J, Jie W J, Lin D M 2019 Dalton Trans. 48 10676Google Scholar

    [27]

    Wu W J, Chen M, Wu B, Ding Y C, Liu C Q 2017 J. Alloy. Comp. 695 1175Google Scholar

    [28]

    Lv X, Wu J G, Xiao D Q, Tao H, Yuan Y, Zhu J G, Wang X J, Lou X J 2015 Dalton Trans. 44 4440Google Scholar

    [29]

    Zhong H Y, Xiao HNY, Jiao N, Guo Y P 2019 J. Am. Ceram. Soc. 102 6422Google Scholar

    [30]

    Li F L, Tan Z, Xing J, Jiang L M, Wu B, Wu J G, Xiao D Q, Zhu J G 2017 J. Mater. Sci.- Mater. El. 28 8803Google Scholar

    [31]

    Li F L, Gou Q, Xing J, Tan Z, Jiang L M, Xie L X, Wu J G, Zhang W, Xiao D Q, Zhu J G 2017 J. Mater. Sci.- Mater. El. 28 18090Google Scholar

    [32]

    Lv X, Li Z Y, Wu J G, Xi J W, Gong M, Xiao D Q, Zhu J G 2016 Mater. Design 109 609Google Scholar

    [33]

    Lv X, Wu J G, Yang S, Xiao D Q, Zhu J G 2016 ACS Appl. Mater. Interfaces 8 18943Google Scholar

    [34]

    Zhou C M, Zhang J L, Yao W Z, Liu D K, He G H 2020 J. Alloy. Comp. 820 153411Google Scholar

    [35]

    Wu B, Ma J, Gou Q, Wu W J, Chen M 2019 J. Am. Ceram. Soc. 103 1698Google Scholar

    [36]

    Shi C Y, Ma J, Wu J, Chen K, Wu B 2020 Ceram. Inter. 46 7Google Scholar

    [37]

    Wang X P, Wu J G, Xiao D Q, Zhu J G, Cheng X J, Zheng T, Zhang B Y, Lou X J, Wang X J 2014 J. Am. Chem. Soc. 136 2905Google Scholar

    [38]

    Wang X P, Wu J G, Xiao D Q, Cheng X J, Zheng T, Zhang B Y, Lou X J, Zhu J G 2014 J. Mater. Chem. A 2 4122Google Scholar

    [39]

    Tao H, Wu J G, Zheng T, Wang X J, Lou X J 2015 J. Appl. Phys. 118 044102Google Scholar

    [40]

    Zhou J S, Wang K, Yao F Z, Zheng T, Wu J G, Xiao D Q, Zhu J G, Li J F 2015 J. Mater. Chem. C 3 8780Google Scholar

    [41]

    Xing J, Tan Z, Jiang L M, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2016 J. Appl. Phys. 119 034101Google Scholar

    [42]

    Zheng T, Wu H J, Yuan Y, Lv X, Li Q, Men T L, Zhao C L, Xiao D Q, Wu J G, Wang K, Li J F, Gu Y L, Zhu J G, Pennycook S J 2017 Energy Environ. Sci. 10 528Google Scholar

    [43]

    Wu B, Wu H J, Wu J G, Xiao D Q, Zhu J G, Pennycook S J 2016 J. Am. Chem. Soc. 138 15459Google Scholar

    [44]

    Yang W W, Li P, Li F, Liu X, Shen B, Zhai J W 2019 Ceram. Inter. 45 2275Google Scholar

    [45]

    Xu K, Li J, Lv X, Wu J G, Zhang X X, Xiao D Q, Zhu J G 2016 Adv. Mater. 28 8519Google Scholar

    [46]

    Wu B, Ma J, Wu W J, Chen M 2020 J. Mater. Chem. C 8 2838Google Scholar

    [47]

    Yang W W, Li P, Wu S H, Li F, Shen B, Zhai J W 2020 Ceram. Inter. 46 6Google Scholar

    [48]

    Liu Q, Zhang Y C, Gao J, Zhou Z, Wang H, Wang K, Zhang X W, Li L T, Li J F 2018 Energy Environ. Sci. 11 3531Google Scholar

    [49]

    Feng W, Cen Z Y, Liang S Y, Luo B C, Zhang Y, Zhen Y C, Wang X H, Li L T 2019 J. Alloy. Comp. 786 498Google Scholar

    [50]

    Hreščak J, Dražić G, Deluca M, Arčon I, Kodre A, Dapiaggi M, Rojac T, Malič B, Bencan A 2017 J. Eur Ceram. Soc. 37 2073Google Scholar

    [51]

    Cen Z Y, Yu Y, Zhao P Y, Chen L L, Zhu C Q, Li L T, Wang X H 2019 J. Mater. Chem. C 7 1379Google Scholar

    [52]

    Sun X X, Zhang J W, Lv X, Zhang X X, Liu Y, Li F, Wu J G 2019 J. Mater. Chem. A 7 16803Google Scholar

    [53]

    Qin Y L, Zhang J L, Tan Y Q, Yao W Z, Wang C L, Zhang S J 2014 J. Eur Ceram. Soc. 34 4177Google Scholar

    [54]

    Yao W Z, Zhang J L, Wang X M, Zhou C M, Sun X, Zhan J 2019 J. Eur Ceram. Soc. 39 287Google Scholar

    [55]

    Zhou C M, Zhang J L, Yao W Z, Wang X M, Liu D K, Sun X 2018 J. Appl. Phys. 124 164101Google Scholar

    [56]

    López-Juárez R, Novelo-Peralta O, González-García F, Rubio-Marcos F, Villafuerte-Castrejón M-E 2011 J. Eur Ceram. Soc. 31 1861Google Scholar

    [57]

    Xing J, Tan Z, Chen X Y, Jiang L M, Wang W W, Deng X, Wu B, Wu J G, Xiao D Q, Zhu J G 2019 Inorg. Chem. 58 428Google Scholar

    [58]

    Huan Y, Wei T, Wang Z X, Lei Y C, Chen F L, Wang X H 2019 J. Eur Ceram. Soc. 39 1002Google Scholar

    [59]

    Ding Y, Zheng T, Zhao C L, Wu J G 2019 J. Appl. Phys. 126 124101Google Scholar

    [60]

    Zhao C L, Wu B, Wang K, Li J F, Xiao D Q, Zhu J G, Wu J G 2018 J. Mater. Chem. A 6 23736Google Scholar

    [61]

    Qin Y L, Zhang J L, Gao Y, Tan Y Q, Wang C L 2013 J. Appl. Phys. 113 204107Google Scholar

    [62]

    Liu Q, Zhang Y C, Zhao L, Gao J, Zhou Z, Wang K, Zhang X W, Li L T, Li J F 2018 J. Mater. Chem. C 6 10618Google Scholar

    [63]

    Liu Q, Li J F, Zhao L, Zhang Y C, Gao J, Sun W, Wang K, Li L T 2018 J. Mater. Chem. C 6 1116Google Scholar

    [64]

    Fu J, Zuo R Z, Qi H, Zhang C, Li J F, Li L T 2014 Appl. Phys. Lett. 105 242903Google Scholar

    [65]

    Zhou C M, Zhang J L, Yao W Z, Liu D K, Su W B 2019 Scripta Mater. 162 86Google Scholar

    [66]

    Li P, Huan Y, Yang W W, Zhu F Y, Li X L, Zhang X M, Shen B, Zhai J W 2019 Acta Mater. 165 486Google Scholar

    [67]

    Liu D K, Zhang X C, Su W B, Wang X M, Yao W Z, Zhou C M, Zhang J L 2019 J. Alloy. Comp. 779 800Google Scholar

    [68]

    Lv X, Wu J G 2019 J. Mater. Chem. C 7 2037Google Scholar

    [69]

    Zhang N, Zhao C, Wu J G 2019 Ceram. Inter. 45 24827Google Scholar

    [70]

    Xing J, Tan Z, Xie L X, Jiang L M, Yuan J, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2018 J. Am. Ceram. Soc. 101 1632Google Scholar

    [71]

    Tao H, Wu J G, Wang H 2016 J. Alloy. Comp. 684 217Google Scholar

    [72]

    Wang T, Wu C, Xing J, Wu J G, Li Chen B W, Xu X Y, Wang K, Zhu J G 2019 J. Am. Ceram. Soc. 102 6126Google Scholar

    [73]

    Cen Z Y, Wang X H, Huan Y, Li L T 2018 J. Am. Ceram. Soc. 101 2391Google Scholar

    [74]

    Jiang L M, Tan Z, Xing J, Wu J G, Chen Q, Zhang W, Xiao D Q, Zhu J G 2016 J. Mater. Sci.- Mater. El. 27 9812Google Scholar

    [75]

    Wang X P, Wu J G, Lv X, Tao H, Cheng X J, Zheng T, Zhang B Y, Xiao D Q, Zhu J G 2014 J. Mater. Sci.- Mater. El. 25 3219Google Scholar

    [76]

    Wang Z, Xiao D Q, Wu J G, Xiao M, Li F X, Zhu J G, Damjanovic D 2014 J. Am. Ceram. Soc. 97 688Google Scholar

    [77]

    Feng S S, Xiao D Q, Wu J G, Xiao M, Zhu J G 2015 J. Alloy. Comp. 619 560Google Scholar

    [78]

    Cheng X J, Wu J G, Wang X P, Zhang B Y, Lou X J, Wang X J, Xiao D Q, Zhu J G 2013 ACS Appl. Mater. Interfaces 5 10409Google Scholar

    [79]

    Gou Q, Zhu J G, Wu J G, Li F L, Jiang L M, Xiao D Q 2018 J. Alloy. Comp. 730 311Google Scholar

    [80]

    Cheng X J, Wu J G, Lou X J, Wang X J, Wang X P, Xiao D Q, Zhu J G 2014 ACS Appl. Mater. Interfaces 6 750Google Scholar

    [81]

    Gou Q, Xiao D Q, Wu B, Xiao M, Feng S S, Ma Zhao D D, Wu J G, Zhu J G 2015 RSC Adv. 5 30660Google Scholar

    [82]

    Ma Q, Wan B B, Cheng L J, Liu S J, Liu F S 2016 J. Electroceram. 36 30Google Scholar

    [83]

    Kim J H, Kim J S, Han S H, Kang H W, Lee H G, Cheon C I 2016 Ceram. Inter. 42 5226Google Scholar

    [84]

    Sumang R, Wicheanrat C, Bongkarn T, Maensiri S 2015 Ceram. Inter. 41 S136Google Scholar

    [85]

    Zhang S J, Xia R, Hao H, Liu H X, Shrout T R 2008 Appl. Phys. Lett. 92 152904Google Scholar

    [86]

    Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar

    [87]

    Lv X, Wu J G, Zhu J G, Xiao D Q 2018 Phys. Chem. Chem. Phys. 20 20149Google Scholar

    [88]

    Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C L, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar

    [89]

    Tao H, Zhao C L, Zhang R, Wu J G 2019 J. Alloy. Comp. 795 401Google Scholar

    [90]

    Cen Z Y, Feng W, Zhao P Y, Chen L L, Zhu C Q, Yu Y, Li L T, Wang X H 2018 J. Am. Ceram. Soc. 102 2675Google Scholar

    [91]

    Huang Y L, Zhao C L, Wu B, Wu J G 2019 J. Am. Ceram. Soc. 102 2648Google Scholar

    [92]

    Zheng T, Wu J G 2020 Acta Mater. 182 1Google Scholar

    [93]

    Ramajo L, Rubio-Marcos F, Del Campo A, Fernández J F, Castro M S, Parra R 2015 J. Mater. Sci.- Mater. El. 26 9402Google Scholar

    [94]

    Liu W L, Tan G Q, Xiong P, Xue X, Hao H F, Ren H J 2014 J. Mater. Sci.- Mater. El. 25 2348Google Scholar

    [95]

    Hao H F, Tan G Q, Ren H J, Xia A, Xiong P 2014 Ceram. Inter. 40 9485Google Scholar

    [96]

    Gu Q L, Sun Q M, Zhu K J, Liu J S, Qiu J H 2017 Ceram. Inter. 43 1135Google Scholar

    [97]

    Cheng L Q, Wang K, Li J F 2015 Mater. Lett. 138 128Google Scholar

    [98]

    Li Y M, Wang J S, Liao R H, Huang D, Jiang X P 2010 J. Alloy. Compd. 496 282Google Scholar

    [99]

    Kumar P, Pattanaik M, Sonia 2013 Ceram. Inter. 39 65Google Scholar

    [100]

    Haugen A B, Madaro F, Bjørkeng L-P, Grande T, Einarsrud M A 2015 J. Eur Ceram. Soc. 35 1449Google Scholar

    [101]

    Jiang C Y, Tian X X, Shi G D 2016 Adv. Intell. Sys. Res. 136 7Google Scholar

    [102]

    Yokouchi Y, Maeda T, Bornmann P, Hemsel T, Morita T 2013 Jpn. J. Appl. Phys. 52 07HB03Google Scholar

    [103]

    Wang C, Fang B J, Qu Y H, Chen Z H, Zhang S, Ding J N 2020 J. Alloy. Compd. 832 153043Google Scholar

    [104]

    Jaeger R E, Egerton L 1962 J. Am. Ceram. Soc. 45 5Google Scholar

    [105]

    Li M Y, Chan N Y, Wang D Y 2017 J. Am. Ceram. Soc. 100 2984Google Scholar

    [106]

    Feizpour M, Barzegar Bafrooei H, Hayati R, Ebadzadeh T 2014 Ceram. Inter. 40 871Google Scholar

    [107]

    Ma J Z, Li H Y, Wang H J, Lin C, Wu X, Lin T F, Zheng X H, Yu X 2019 J. Eur Ceram. Soc. 39 986Google Scholar

    [108]

    Chi M S, Ma W B, Guo J D, Wu J Q, Li T T, Wang S H, Zhang P F 2019 J. Mater. Sci.- Mater. El. 39 986Google Scholar

    [109]

    Yu Z D, Chen X M, Su Y L, Lian H L, Lu J B, Zhou J P, Liu P 2019 J. Mater. Sci. 54 13457Google Scholar

    [110]

    Li J F, Wang K, Zhang B P, Zhang L M 2006 J. Am. Ceram. Soc. 89 706Google Scholar

    [111]

    Cen Z Y, Li L T, Wang X H 2019 J. Alloy. Comp. 797 1115Google Scholar

    [112]

    Li H, Gong D W, Yang W L, Zhou Z X 2012 J. Mater. Sci. 48 1396Google Scholar

    [113]

    Liao Y, Wang D M, Wang H, Wang T, Wei X H, Zheng Q J, Jie W J, Lin D M 2019 Ceram. Inter. 45 2644Google Scholar

    [114]

    Wu B, Yin J, Lv X, Xiao D Q, Zhu J G, Wu J G 2019 J. Appl. Phys. 125 082526Google Scholar

    [115]

    Liao Y, Wang D M, Wang H, Zhou L X, Zheng Q J, Lin D M 2020 Dalton Trans. 49 1311Google Scholar

    [116]

    Comes R, Lambert M, Guinier A 1968 Solid State Commun. 6 715Google Scholar

    [117]

    Cohen R E 1992 Nature 358 136Google Scholar

    [118]

    Atern E A, Yacoby Y 1996 J. Phys. Chem. Solids 57 1449Google Scholar

    [119]

    Rytz D, Höchli U T, Bilz H 1980 Phys. Rev. B 22 359Google Scholar

    [120]

    Shuvaeva V A, Yanagi K, Yagi K, Sakaue K, Terauchi H 1998 Solid State Commun 106 335Google Scholar

    [121]

    Devonshire A F 1949 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 40 1040Google Scholar

    [122]

    Devonshire A F 1951 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42 1065Google Scholar

    [123]

    Cochran W 1959 Phys. Rev. Lett. 3 412Google Scholar

    [124]

    Damjanovic D, Demartin 1997 J. Phys.-Condens. Mat. 9 4943Google Scholar

    [125]

    谭智 2019 博士学位论文 (成都: 四川大学)

    Tan Z 2019 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese)

    [126]

    Tellier J, Malic B, Dkhil B, Jenko D, Cilensek J, Kosec M 2009 Solid State Sci. 11 320Google Scholar

    [127]

    Baker D W, Thomas P A, Zhang N, Glazer A M 2009 Appl. Phys. Lett. 95 091903Google Scholar

    [128]

    Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121Google Scholar

    [129]

    Yang D, Wei L L, Chao X L, Yang Z P, Zhou X Y 2016 Phys. Chem. Chem. Phys. 18 7702Google Scholar

    [130]

    Wu Z G, Cohen R E 2005 Phys. Rev. Lett. 95 037601Google Scholar

    [131]

    Shannon R D 1976 Acta Crystallogra. A 32 751Google Scholar

    [132]

    Tan Z, Xing J, Jiang L M, Zhu J G, Wu B 2017 Front. Mater. Sci. 11 344Google Scholar

    [133]

    Ke S M, Huang H T, Fan H Q, Lee H K, Zhou L M, Mai Y M 2012 Appl. Phys. Lett. 101 082901Google Scholar

    [134]

    Fu H X, Cohen R E 2000 Nature 403 281Google Scholar

    [135]

    Suewattana M, Singh D J 2010 Phys. Rev. B 82 014114Google Scholar

    [136]

    Voas B K, Usher T M, Liu X, Li S, Jones J L, Tan X, Cooper V R, Beckman S P 2014 Phys. Rev. B 90 024105Google Scholar

    [137]

    Matsumoto K, Hiruma Y, Nagata H, Takenaka T 2008 Ceram. Inter. 34 787Google Scholar

    [138]

    Tan Z, Peng Y T, An J, Zhang Q M, Zhu J G 2019 J. Am. Ceram. Soc. 102 5262Google Scholar

    [139]

    Peng Y, T Tan Z, An J, Zhu J G, Zhang Q M 2019 J. Eur. Ceram. Soc. 39 5252Google Scholar

    [140]

    Li C W, Xu X, Gao Q, Lu Z L 2019 Ceram. Int. 45 11092Google Scholar

    [141]

    Liu S Y, Liu S, Li D J, Shen Y, Dang H, Liu Y, Xue W, Wang S 2014 J. Am. Ceram. Soc 97 4019Google Scholar

    [142]

    Li Q, Zhang R, Lv T Q, Zheng L M 2015 Chin. Phys. B 24 053101Google Scholar

    [143]

    Yang D, Chai Q Z, Wei L L, Chao X L, Yang Z P 2017 Phys. Chem. Chem. Phys. 19 27368Google Scholar

  • 图 1  (a) KNN基无铅压电陶瓷d33的历史演变图; (b) KNN基无铅压电陶瓷与铅基陶瓷d33对比图[11,12,34,37,43,45]

    Fig. 1.  (a) Historical evolution in d33 values of KNN-based ceramics as a function of time; (b) comparison of d33 values among KNN-based ceramics and PZT materials[11,12,34,37,43,45].

    图 2  (a)正交相(K0.5Na0.5NbO3陶瓷[56,61]); (b)室温下O-T相界(KNNL-BZ-BNT陶瓷体系[62], KNNSL-BNZ-BZ-MnO2陶瓷体系[63]); (c)室温下R-T/R-O-T相界KNN基陶瓷的畴结构(KNNS-BF-BNZ陶瓷体系[43], KNNS-BNZ-BZ陶瓷体系[34])

    Fig. 2.  Domain structures of KNN-based ceramcis with different phase boundaries at room temperature: (a) Orthorhombic (K0.5Na0.5NbO3 ceramics[56,61]); (b) O-T phase boundaries (KNNL-BZ-BNT ceramics[62], KNNSL-BNZ-BZ-MnO2 ceramics[63]); (c) R-T/R-O-T phase boundaries (KNNS-BF-BNZ ceramics[43], KNNS-BNZ-BZ ceramics[34]).

    图 3  KNN基无铅压电陶瓷d33TC对比图[12,15-47]

    Fig. 3.  Comparison of d33 and TC values of KNN-based ceramics[12,15-47].

    图 4  根据文献[120]重画的KNbO3中Nb原子位置在(001)平面的投影示意图

    Fig. 4.  Projections of real Nb off-center displacements on the (001) plane redrawn from the Ref. [120].

    图 5  B位原子在单四方相与两相共存时沿[$ \overline{1} 01$]方向的能量分布示意图[125]

    Fig. 5.  Energy distribution for B-site atom in single tetragonal phase and two-phase coexistence along [$ \overline{1} 01$] direction[125].

    表 1  室温下具有O-T相界的KNN压电陶瓷性能

    Table 1.  Properties of KNN ceramics with O-T phase boundary at room temperature.

    Material systemd33/pC·N–1kpTC/℃
    KNLANT[15]2520.454438
    KNLN-BCZT[16]1800.34425
    KNN-KLN[17]1210.39
    KNLN-AS[18]2300.39430
    KNLN-BNCT[19]2620.36~400
    KNN-BC[20]1650.40~390
    KNN-LS[21]2800.494364
    KNN-BLZ[22]2650.365364
    KNN-BC-BNH[23]2720.47333
    下载: 导出CSV

    表 2  室温下具有R-O-T相界的KNN压电陶瓷的性能

    Table 2.  Properties of KNN ceramics with R-O-T phase boundary at room temperature.

    Material systemd33/pC·N–1kpTC /℃
    KNN-BNZ-BG[24]3120.44341
    KNN-BZ-BNZ[25]3450.50~260
    KNN-NS-BNKZH[26]4520.63~270
    KNNS-BNCZ[27]4150.46245
    KNNTS-BNKZ[28]4000.46240
    KNN-BNZN[29]318 ± 10360
    KNNS-BKZH[30]4510.52258
    KNNS-BLKZ[31]385245
    KNNS-SZ-BNH[32]470 ± 50.51 ± 0.02244
    KNNS-BS-BNZ[33]~480~225
    KNNS-BNZ-BZ[34]6100.58241
    KNNS-BNKZ-Fe-AS[12]650~180
    下载: 导出CSV

    表 3  室温下具有R-T相界的KNN压电陶瓷的性能

    Table 3.  Properties of KNN ceramics with R-T phase boundary at room temperature.

    Material systemd33 /pC·N–1kpTC/℃
    KNNS-BNZSn[35]4650.51240
    KNNS-BZH[36]410255
    KNNS-BNKZ[37]4900.46227
    KNNTS-BNKZ[38]4600.40~220
    KNNS-BNH[39]4190.45242
    KNNS-BKZS[40]430243
    KNNS-BNLCZ[41]4850.48227
    KNNS-BNKH[42]525~210
    KNNS-BF-BNZ[43]550237
    KNNS-CZ-BKHT-MnO2[44]4250.49215
    KNNS-BZ-BKH[45]570 ± 10~190
    KNNS-BNZ-BF[46]5110.515269
    KNANS-BNZ[47]4400.50250
    下载: 导出CSV

    表 4  KNN基无铅压电陶瓷压电常数与畴结构尺寸

    Table 4.  Piezoelectric constant of KNN ceramics with domain size.

    Material systemd33 or $ {d}_{33}^{*} $Domain size
    KNNS-SZ-BAZ[52]487 pC/N30—65 nm,
    65—160 nm,
    30—45 nm
    KNNS-BZ-BNH[48]600 pm/V10—100 nm
    KNNS-BNKH[42]525 pC/N10—30 nm
    KNNS-BNKZ-Fe-AS[12](650 ± 20) pC/N2 nm
    KNNS-BNZ-BZ[34]610 pC/N50—70 nm
    KNNT-BNKZ-CZ[51]482 pm/V60 nm
    KNNS-BZ-BNZ[65]300 pC/N150 nm—1.0 μm
    KNNS-CZ-BKH[66]550 pC/N30—230 nm
    KNNS-BNH[67]512 pC/N100 nm
    KNNS-SZ-BNZ[68]450 pC/N50—200 nm
    KNLNTS[54]455 pC/N110—310 nm
    KNNS-BNZ-BF[46]510 pC/N< 1 μm
    KNN-BNZ-MnO2-Sb2O3[69]318 pC/N< 1 μm
    KNN-BI-BNZ[57]317 pC/N~200 nm
    KNNdNS-BNZ[70]400 pC/N~ 1 μm
    下载: 导出CSV

    表 5  同时具有高压电性能和高居里温度的KNN陶瓷体系

    Table 5.  The KNN-based ceramics with high piezoelectric constant and high Curie temperature.

    Material systemd33 /pC·N–1TC/℃
    KNN-BNH[71]385315
    KNN-BNZ-LF[72]345314
    KNN-BNZ-MnO2[73]300345
    KNN-BNZ-BG[24]312341
    KNN-BNZ-BA[74]355335
    KNN-BAZ[75]347318
    KNN-BNZ[76]360329
    KNN-BKZ-BZ[77]305~300
    KNLNS-BS[78]325358
    KNN-BNZS[79]350315
    KNN-BS-BNKLZ[80]366335
    KNN-BNT-BNZ[81]318326
    KNN-BNZ-BI[57]317336
    下载: 导出CSV

    表 6  温度稳定性高的KNN陶瓷体系的压电常数以及变化量

    Table 6.  Comparison of piezoelectric constant and variation among KNN-based ceramics.

    d33/pC·N–1d33 variation/%$ {d}_{33}^{*} $/pm·V–1$ {d}_{33}^{*} $ variation/%
    KNLNT-CZ[86]almost unchanged @140 ℃
    KNN-BNZ-LF[72]3454208%@100 ℃
    KNNT-BNKZ-SZ-MnO2[49]40010%@180 ℃
    KNNT-BNKZ-CZ-MnO2[51]48210%@120 ℃
    KNNS-BNZ-SZ[87]39013%@180 ℃
    KNN-BLT-BZ-MnO2[88]4708.5%@100 ℃, 21.2%@170 ℃
    KNNS-BZ-BNZ[65]30010@100 ℃
    KNNS-(BHo)NHf[89]~386almost unchanged @140 ℃
    KNNT-BNZ-CZ[90]50210%@135 ℃
    KNNS-BNKH[42]52546010%@80 ℃
    KNN-BZ-BNH-MnO2[91]30015@120 ℃540 ± 105%@100 ℃
    KNN-BNH-BF-MnO2[92]45028%@160 ℃
    KNN-BNZ-MnO2-Sb2O3[69]3189%@170 ℃
    KNNS-BZH-BNZ[36]4104412.5%@100 ℃, 16.1%@180 ℃
    注: 16.1%@180 ℃表示到180 ℃性能下降16.1%.
    下载: 导出CSV

    表 7  处于6配位时的离子半径表[131]

    Table 7.  The ionic radii in six-fold coordination[131].

    Nb5+Ta5+Zr4+Hf4+Sn4+Ti4+Sb5+Sb3+Ga3+
    离子半径/Å0.640.640.720.710.690.6050.600.760.62
    下载: 导出CSV

    表 8  不同结构下原子内坐标随应变的梯度, 注意OI位于Bmm2不包含Nb原子的(010)平面, KNN中OI,1和OI,2沿a方向分别靠近K和Na原子[138]

    Table 8.  Internal atomic coordinate gradients as a function of strains in different structure, noted that OI is located at the (010) plane without Nb atoms in Bmm2, OI,1 and OI,2 are close to K and Na along a axis, respectively[139].

    KNbOO
    KNu3/∂η30.1080.166–0.092–0.091
    u1/∂η50.1150.210–0.151–0.024
    KNaNbOOI,1OI,2
    KNNu3/∂η30.1030.5420.125–0.158–0.125–0.135
    u1/∂η50.0940.8280.194–0.235–0.061–0.309
    下载: 导出CSV
  • [1]

    Xiao D Q 2011 J. Adv. Dielectr. 01 33Google Scholar

    [2]

    Aksel E, Jones J L 2010 Sensors 10 1935Google Scholar

    [3]

    Rödel J, Webber K G, Dittmer R, Jo W, Kimura M, Damjanovic D 2015 J. Eur Ceram. Soc. 35 1659Google Scholar

    [4]

    Vats G, Vaish R 2014 Int. J. Appl. Ceram. Tec. 11 883Google Scholar

    [5]

    Thong H C, Zhao C L, Zhou Z, Wu C F, Liu Y X, Du Z Z, Li J F, Gong W, Wang K 2019 Mater. Today 29 37Google Scholar

    [6]

    Wang K, Malič B, Wu J G 2018 MRS Bull. 43 607Google Scholar

    [7]

    Lv X., Zhu J G, Xiao D Q, Zhang X X, Wu J G 2020 Chem. Soc. Rev. 49 671Google Scholar

    [8]

    Wu J G, Xiao D Q, Zhu J G 2015 Chem. Rev. 115 2559Google Scholar

    [9]

    Gou Q, Wu J G, Li A Q, Wu B, Xiao D Q, Zhu J G 2012 J. Alloy. Comp. 521 4Google Scholar

    [10]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar

    [11]

    Li P, Zhai J W, Shen Bo, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 30 1705171Google Scholar

    [12]

    Tao H, Wu H J, Liu Y, Zhang Y, Wu J G, Li F, Lyu X, Zhao C L, Xiao D Q, Zhu J G, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [13]

    Egerton L, Dillond D M 1959 J. Am. Chem. Soc. 42 5Google Scholar

    [14]

    Qin Y L, Zhang J L, Yao W Z, Lu C J, Zhang S J 2016 ACS Appl. Mater. Interfaces 8 7257Google Scholar

    [15]

    Wang Y Y, Wu J G, Xiao D Q, Wu W J, Zhang B, Wu L, Zhu J G 2008 J. Am. Ceram. Soc. 91 2772Google Scholar

    [16]

    Tan C K I, Shannigrahi S, Yao K, Ma J 2015 J. Electroceram. 35 19Google Scholar

    [17]

    Pang X M, Qiu J H, Zhu K J 2014 J. Adv. Ceram. 3 147Google Scholar

    [18]

    Wang Y Y, Wu J G, Xiao D Q, Zhu J M, Jin Y, Zhu J G, Yu P, Wu L, Li X 2007 J. Appl. Phys. 102 054101Google Scholar

    [19]

    Wu W J, Wang Z, Xiao D Q, Ma J, Wu J G, Li J, Liang W F, Zhu J G 2013 Integr. Ferroelectr. 141 82Google Scholar

    [20]

    Wu W J, Xiao D Q, Wu J G, Liang W F, Li J, Zhu J G 2011 J. Alloy. Comp. 509 L284Google Scholar

    [21]

    Wu J G, Xiao D Q, Wang Y Y, Zhu J G, Yu P 2008 J. Appl. Phys. 103 024102Google Scholar

    [22]

    Wu B, Ma J, Wu W J, Chen M, Ding Y C 2018 Ceram. Inter. 44 1172Google Scholar

    [23]

    Wen Y, Fan G F, Hao M M, Wang Y J, Chen X, Zhang Q W, Lv W Z 2019 J. Electron. Mater. 49 931Google Scholar

    [24]

    Xing J, Tan Z, Yuan J, Jiang L M, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2016 RSC Adv. 6 57210Google Scholar

    [25]

    Tang X, Chen T, Liu Y H, Zhang J W, Zhang T, Wang G C, Zhou J F 2016 J. Alloy. Comp. 672 277Google Scholar

    [26]

    Yang Y, Wang H, Li Y, Zheng Q J, Liao J, Jie W J, Lin D M 2019 Dalton Trans. 48 10676Google Scholar

    [27]

    Wu W J, Chen M, Wu B, Ding Y C, Liu C Q 2017 J. Alloy. Comp. 695 1175Google Scholar

    [28]

    Lv X, Wu J G, Xiao D Q, Tao H, Yuan Y, Zhu J G, Wang X J, Lou X J 2015 Dalton Trans. 44 4440Google Scholar

    [29]

    Zhong H Y, Xiao HNY, Jiao N, Guo Y P 2019 J. Am. Ceram. Soc. 102 6422Google Scholar

    [30]

    Li F L, Tan Z, Xing J, Jiang L M, Wu B, Wu J G, Xiao D Q, Zhu J G 2017 J. Mater. Sci.- Mater. El. 28 8803Google Scholar

    [31]

    Li F L, Gou Q, Xing J, Tan Z, Jiang L M, Xie L X, Wu J G, Zhang W, Xiao D Q, Zhu J G 2017 J. Mater. Sci.- Mater. El. 28 18090Google Scholar

    [32]

    Lv X, Li Z Y, Wu J G, Xi J W, Gong M, Xiao D Q, Zhu J G 2016 Mater. Design 109 609Google Scholar

    [33]

    Lv X, Wu J G, Yang S, Xiao D Q, Zhu J G 2016 ACS Appl. Mater. Interfaces 8 18943Google Scholar

    [34]

    Zhou C M, Zhang J L, Yao W Z, Liu D K, He G H 2020 J. Alloy. Comp. 820 153411Google Scholar

    [35]

    Wu B, Ma J, Gou Q, Wu W J, Chen M 2019 J. Am. Ceram. Soc. 103 1698Google Scholar

    [36]

    Shi C Y, Ma J, Wu J, Chen K, Wu B 2020 Ceram. Inter. 46 7Google Scholar

    [37]

    Wang X P, Wu J G, Xiao D Q, Zhu J G, Cheng X J, Zheng T, Zhang B Y, Lou X J, Wang X J 2014 J. Am. Chem. Soc. 136 2905Google Scholar

    [38]

    Wang X P, Wu J G, Xiao D Q, Cheng X J, Zheng T, Zhang B Y, Lou X J, Zhu J G 2014 J. Mater. Chem. A 2 4122Google Scholar

    [39]

    Tao H, Wu J G, Zheng T, Wang X J, Lou X J 2015 J. Appl. Phys. 118 044102Google Scholar

    [40]

    Zhou J S, Wang K, Yao F Z, Zheng T, Wu J G, Xiao D Q, Zhu J G, Li J F 2015 J. Mater. Chem. C 3 8780Google Scholar

    [41]

    Xing J, Tan Z, Jiang L M, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2016 J. Appl. Phys. 119 034101Google Scholar

    [42]

    Zheng T, Wu H J, Yuan Y, Lv X, Li Q, Men T L, Zhao C L, Xiao D Q, Wu J G, Wang K, Li J F, Gu Y L, Zhu J G, Pennycook S J 2017 Energy Environ. Sci. 10 528Google Scholar

    [43]

    Wu B, Wu H J, Wu J G, Xiao D Q, Zhu J G, Pennycook S J 2016 J. Am. Chem. Soc. 138 15459Google Scholar

    [44]

    Yang W W, Li P, Li F, Liu X, Shen B, Zhai J W 2019 Ceram. Inter. 45 2275Google Scholar

    [45]

    Xu K, Li J, Lv X, Wu J G, Zhang X X, Xiao D Q, Zhu J G 2016 Adv. Mater. 28 8519Google Scholar

    [46]

    Wu B, Ma J, Wu W J, Chen M 2020 J. Mater. Chem. C 8 2838Google Scholar

    [47]

    Yang W W, Li P, Wu S H, Li F, Shen B, Zhai J W 2020 Ceram. Inter. 46 6Google Scholar

    [48]

    Liu Q, Zhang Y C, Gao J, Zhou Z, Wang H, Wang K, Zhang X W, Li L T, Li J F 2018 Energy Environ. Sci. 11 3531Google Scholar

    [49]

    Feng W, Cen Z Y, Liang S Y, Luo B C, Zhang Y, Zhen Y C, Wang X H, Li L T 2019 J. Alloy. Comp. 786 498Google Scholar

    [50]

    Hreščak J, Dražić G, Deluca M, Arčon I, Kodre A, Dapiaggi M, Rojac T, Malič B, Bencan A 2017 J. Eur Ceram. Soc. 37 2073Google Scholar

    [51]

    Cen Z Y, Yu Y, Zhao P Y, Chen L L, Zhu C Q, Li L T, Wang X H 2019 J. Mater. Chem. C 7 1379Google Scholar

    [52]

    Sun X X, Zhang J W, Lv X, Zhang X X, Liu Y, Li F, Wu J G 2019 J. Mater. Chem. A 7 16803Google Scholar

    [53]

    Qin Y L, Zhang J L, Tan Y Q, Yao W Z, Wang C L, Zhang S J 2014 J. Eur Ceram. Soc. 34 4177Google Scholar

    [54]

    Yao W Z, Zhang J L, Wang X M, Zhou C M, Sun X, Zhan J 2019 J. Eur Ceram. Soc. 39 287Google Scholar

    [55]

    Zhou C M, Zhang J L, Yao W Z, Wang X M, Liu D K, Sun X 2018 J. Appl. Phys. 124 164101Google Scholar

    [56]

    López-Juárez R, Novelo-Peralta O, González-García F, Rubio-Marcos F, Villafuerte-Castrejón M-E 2011 J. Eur Ceram. Soc. 31 1861Google Scholar

    [57]

    Xing J, Tan Z, Chen X Y, Jiang L M, Wang W W, Deng X, Wu B, Wu J G, Xiao D Q, Zhu J G 2019 Inorg. Chem. 58 428Google Scholar

    [58]

    Huan Y, Wei T, Wang Z X, Lei Y C, Chen F L, Wang X H 2019 J. Eur Ceram. Soc. 39 1002Google Scholar

    [59]

    Ding Y, Zheng T, Zhao C L, Wu J G 2019 J. Appl. Phys. 126 124101Google Scholar

    [60]

    Zhao C L, Wu B, Wang K, Li J F, Xiao D Q, Zhu J G, Wu J G 2018 J. Mater. Chem. A 6 23736Google Scholar

    [61]

    Qin Y L, Zhang J L, Gao Y, Tan Y Q, Wang C L 2013 J. Appl. Phys. 113 204107Google Scholar

    [62]

    Liu Q, Zhang Y C, Zhao L, Gao J, Zhou Z, Wang K, Zhang X W, Li L T, Li J F 2018 J. Mater. Chem. C 6 10618Google Scholar

    [63]

    Liu Q, Li J F, Zhao L, Zhang Y C, Gao J, Sun W, Wang K, Li L T 2018 J. Mater. Chem. C 6 1116Google Scholar

    [64]

    Fu J, Zuo R Z, Qi H, Zhang C, Li J F, Li L T 2014 Appl. Phys. Lett. 105 242903Google Scholar

    [65]

    Zhou C M, Zhang J L, Yao W Z, Liu D K, Su W B 2019 Scripta Mater. 162 86Google Scholar

    [66]

    Li P, Huan Y, Yang W W, Zhu F Y, Li X L, Zhang X M, Shen B, Zhai J W 2019 Acta Mater. 165 486Google Scholar

    [67]

    Liu D K, Zhang X C, Su W B, Wang X M, Yao W Z, Zhou C M, Zhang J L 2019 J. Alloy. Comp. 779 800Google Scholar

    [68]

    Lv X, Wu J G 2019 J. Mater. Chem. C 7 2037Google Scholar

    [69]

    Zhang N, Zhao C, Wu J G 2019 Ceram. Inter. 45 24827Google Scholar

    [70]

    Xing J, Tan Z, Xie L X, Jiang L M, Yuan J, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2018 J. Am. Ceram. Soc. 101 1632Google Scholar

    [71]

    Tao H, Wu J G, Wang H 2016 J. Alloy. Comp. 684 217Google Scholar

    [72]

    Wang T, Wu C, Xing J, Wu J G, Li Chen B W, Xu X Y, Wang K, Zhu J G 2019 J. Am. Ceram. Soc. 102 6126Google Scholar

    [73]

    Cen Z Y, Wang X H, Huan Y, Li L T 2018 J. Am. Ceram. Soc. 101 2391Google Scholar

    [74]

    Jiang L M, Tan Z, Xing J, Wu J G, Chen Q, Zhang W, Xiao D Q, Zhu J G 2016 J. Mater. Sci.- Mater. El. 27 9812Google Scholar

    [75]

    Wang X P, Wu J G, Lv X, Tao H, Cheng X J, Zheng T, Zhang B Y, Xiao D Q, Zhu J G 2014 J. Mater. Sci.- Mater. El. 25 3219Google Scholar

    [76]

    Wang Z, Xiao D Q, Wu J G, Xiao M, Li F X, Zhu J G, Damjanovic D 2014 J. Am. Ceram. Soc. 97 688Google Scholar

    [77]

    Feng S S, Xiao D Q, Wu J G, Xiao M, Zhu J G 2015 J. Alloy. Comp. 619 560Google Scholar

    [78]

    Cheng X J, Wu J G, Wang X P, Zhang B Y, Lou X J, Wang X J, Xiao D Q, Zhu J G 2013 ACS Appl. Mater. Interfaces 5 10409Google Scholar

    [79]

    Gou Q, Zhu J G, Wu J G, Li F L, Jiang L M, Xiao D Q 2018 J. Alloy. Comp. 730 311Google Scholar

    [80]

    Cheng X J, Wu J G, Lou X J, Wang X J, Wang X P, Xiao D Q, Zhu J G 2014 ACS Appl. Mater. Interfaces 6 750Google Scholar

    [81]

    Gou Q, Xiao D Q, Wu B, Xiao M, Feng S S, Ma Zhao D D, Wu J G, Zhu J G 2015 RSC Adv. 5 30660Google Scholar

    [82]

    Ma Q, Wan B B, Cheng L J, Liu S J, Liu F S 2016 J. Electroceram. 36 30Google Scholar

    [83]

    Kim J H, Kim J S, Han S H, Kang H W, Lee H G, Cheon C I 2016 Ceram. Inter. 42 5226Google Scholar

    [84]

    Sumang R, Wicheanrat C, Bongkarn T, Maensiri S 2015 Ceram. Inter. 41 S136Google Scholar

    [85]

    Zhang S J, Xia R, Hao H, Liu H X, Shrout T R 2008 Appl. Phys. Lett. 92 152904Google Scholar

    [86]

    Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar

    [87]

    Lv X, Wu J G, Zhu J G, Xiao D Q 2018 Phys. Chem. Chem. Phys. 20 20149Google Scholar

    [88]

    Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C L, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar

    [89]

    Tao H, Zhao C L, Zhang R, Wu J G 2019 J. Alloy. Comp. 795 401Google Scholar

    [90]

    Cen Z Y, Feng W, Zhao P Y, Chen L L, Zhu C Q, Yu Y, Li L T, Wang X H 2018 J. Am. Ceram. Soc. 102 2675Google Scholar

    [91]

    Huang Y L, Zhao C L, Wu B, Wu J G 2019 J. Am. Ceram. Soc. 102 2648Google Scholar

    [92]

    Zheng T, Wu J G 2020 Acta Mater. 182 1Google Scholar

    [93]

    Ramajo L, Rubio-Marcos F, Del Campo A, Fernández J F, Castro M S, Parra R 2015 J. Mater. Sci.- Mater. El. 26 9402Google Scholar

    [94]

    Liu W L, Tan G Q, Xiong P, Xue X, Hao H F, Ren H J 2014 J. Mater. Sci.- Mater. El. 25 2348Google Scholar

    [95]

    Hao H F, Tan G Q, Ren H J, Xia A, Xiong P 2014 Ceram. Inter. 40 9485Google Scholar

    [96]

    Gu Q L, Sun Q M, Zhu K J, Liu J S, Qiu J H 2017 Ceram. Inter. 43 1135Google Scholar

    [97]

    Cheng L Q, Wang K, Li J F 2015 Mater. Lett. 138 128Google Scholar

    [98]

    Li Y M, Wang J S, Liao R H, Huang D, Jiang X P 2010 J. Alloy. Compd. 496 282Google Scholar

    [99]

    Kumar P, Pattanaik M, Sonia 2013 Ceram. Inter. 39 65Google Scholar

    [100]

    Haugen A B, Madaro F, Bjørkeng L-P, Grande T, Einarsrud M A 2015 J. Eur Ceram. Soc. 35 1449Google Scholar

    [101]

    Jiang C Y, Tian X X, Shi G D 2016 Adv. Intell. Sys. Res. 136 7Google Scholar

    [102]

    Yokouchi Y, Maeda T, Bornmann P, Hemsel T, Morita T 2013 Jpn. J. Appl. Phys. 52 07HB03Google Scholar

    [103]

    Wang C, Fang B J, Qu Y H, Chen Z H, Zhang S, Ding J N 2020 J. Alloy. Compd. 832 153043Google Scholar

    [104]

    Jaeger R E, Egerton L 1962 J. Am. Ceram. Soc. 45 5Google Scholar

    [105]

    Li M Y, Chan N Y, Wang D Y 2017 J. Am. Ceram. Soc. 100 2984Google Scholar

    [106]

    Feizpour M, Barzegar Bafrooei H, Hayati R, Ebadzadeh T 2014 Ceram. Inter. 40 871Google Scholar

    [107]

    Ma J Z, Li H Y, Wang H J, Lin C, Wu X, Lin T F, Zheng X H, Yu X 2019 J. Eur Ceram. Soc. 39 986Google Scholar

    [108]

    Chi M S, Ma W B, Guo J D, Wu J Q, Li T T, Wang S H, Zhang P F 2019 J. Mater. Sci.- Mater. El. 39 986Google Scholar

    [109]

    Yu Z D, Chen X M, Su Y L, Lian H L, Lu J B, Zhou J P, Liu P 2019 J. Mater. Sci. 54 13457Google Scholar

    [110]

    Li J F, Wang K, Zhang B P, Zhang L M 2006 J. Am. Ceram. Soc. 89 706Google Scholar

    [111]

    Cen Z Y, Li L T, Wang X H 2019 J. Alloy. Comp. 797 1115Google Scholar

    [112]

    Li H, Gong D W, Yang W L, Zhou Z X 2012 J. Mater. Sci. 48 1396Google Scholar

    [113]

    Liao Y, Wang D M, Wang H, Wang T, Wei X H, Zheng Q J, Jie W J, Lin D M 2019 Ceram. Inter. 45 2644Google Scholar

    [114]

    Wu B, Yin J, Lv X, Xiao D Q, Zhu J G, Wu J G 2019 J. Appl. Phys. 125 082526Google Scholar

    [115]

    Liao Y, Wang D M, Wang H, Zhou L X, Zheng Q J, Lin D M 2020 Dalton Trans. 49 1311Google Scholar

    [116]

    Comes R, Lambert M, Guinier A 1968 Solid State Commun. 6 715Google Scholar

    [117]

    Cohen R E 1992 Nature 358 136Google Scholar

    [118]

    Atern E A, Yacoby Y 1996 J. Phys. Chem. Solids 57 1449Google Scholar

    [119]

    Rytz D, Höchli U T, Bilz H 1980 Phys. Rev. B 22 359Google Scholar

    [120]

    Shuvaeva V A, Yanagi K, Yagi K, Sakaue K, Terauchi H 1998 Solid State Commun 106 335Google Scholar

    [121]

    Devonshire A F 1949 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 40 1040Google Scholar

    [122]

    Devonshire A F 1951 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42 1065Google Scholar

    [123]

    Cochran W 1959 Phys. Rev. Lett. 3 412Google Scholar

    [124]

    Damjanovic D, Demartin 1997 J. Phys.-Condens. Mat. 9 4943Google Scholar

    [125]

    谭智 2019 博士学位论文 (成都: 四川大学)

    Tan Z 2019 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese)

    [126]

    Tellier J, Malic B, Dkhil B, Jenko D, Cilensek J, Kosec M 2009 Solid State Sci. 11 320Google Scholar

    [127]

    Baker D W, Thomas P A, Zhang N, Glazer A M 2009 Appl. Phys. Lett. 95 091903Google Scholar

    [128]

    Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121Google Scholar

    [129]

    Yang D, Wei L L, Chao X L, Yang Z P, Zhou X Y 2016 Phys. Chem. Chem. Phys. 18 7702Google Scholar

    [130]

    Wu Z G, Cohen R E 2005 Phys. Rev. Lett. 95 037601Google Scholar

    [131]

    Shannon R D 1976 Acta Crystallogra. A 32 751Google Scholar

    [132]

    Tan Z, Xing J, Jiang L M, Zhu J G, Wu B 2017 Front. Mater. Sci. 11 344Google Scholar

    [133]

    Ke S M, Huang H T, Fan H Q, Lee H K, Zhou L M, Mai Y M 2012 Appl. Phys. Lett. 101 082901Google Scholar

    [134]

    Fu H X, Cohen R E 2000 Nature 403 281Google Scholar

    [135]

    Suewattana M, Singh D J 2010 Phys. Rev. B 82 014114Google Scholar

    [136]

    Voas B K, Usher T M, Liu X, Li S, Jones J L, Tan X, Cooper V R, Beckman S P 2014 Phys. Rev. B 90 024105Google Scholar

    [137]

    Matsumoto K, Hiruma Y, Nagata H, Takenaka T 2008 Ceram. Inter. 34 787Google Scholar

    [138]

    Tan Z, Peng Y T, An J, Zhang Q M, Zhu J G 2019 J. Am. Ceram. Soc. 102 5262Google Scholar

    [139]

    Peng Y, T Tan Z, An J, Zhu J G, Zhang Q M 2019 J. Eur. Ceram. Soc. 39 5252Google Scholar

    [140]

    Li C W, Xu X, Gao Q, Lu Z L 2019 Ceram. Int. 45 11092Google Scholar

    [141]

    Liu S Y, Liu S, Li D J, Shen Y, Dang H, Liu Y, Xue W, Wang S 2014 J. Am. Ceram. Soc 97 4019Google Scholar

    [142]

    Li Q, Zhang R, Lv T Q, Zheng L M 2015 Chin. Phys. B 24 053101Google Scholar

    [143]

    Yang D, Chai Q Z, Wei L L, Chao X L, Yang Z P 2017 Phys. Chem. Chem. Phys. 19 27368Google Scholar

  • [1] 陈小明, 王明焱, 唐木智明, 李国荣. CaZrO3改性(Na, K)NbO3基无铅陶瓷电学性能的温度稳定性. 物理学报, 2021, 70(19): 197701. doi: 10.7498/aps.70.20210440
    [2] 张冠杰, 杨豪, 张楠. 利用X射线衍射技术对压电材料本征与非本征起源探究的研究进展. 物理学报, 2020, 69(12): 127711. doi: 10.7498/aps.69.20200301
    [3] 刘亦轩, 李昭, 汤浩正, 逯景桐, 李敬锋, 龚文, 王轲. 晶粒尺寸对钙钛矿型压电陶瓷压电性能的影响. 物理学报, 2020, 69(21): 217704. doi: 10.7498/aps.69.20201079
    [4] 徐泽, 娄路遥, 赵纯林, 汤浩正, 刘亦轩, 李昭, 齐晓梅, 张波萍, 李敬锋, 龚文, 王轲. Mn掺杂对KNbO3和(K0.5Na0.5)NbO3无铅钙钛矿陶瓷铁电压电性能的影响. 物理学报, 2020, 69(12): 127705. doi: 10.7498/aps.69.20200277
    [5] 刘泳, 徐志军, 范立群, 伊文涛, 闫春燕, 马杰, 王坤鹏. 多效应铌酸钾钠基透明铁电陶瓷的制备及性能. 物理学报, 2020, 69(24): 247702. doi: 10.7498/aps.69.20201317
    [6] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [7] 景奇, 李晓娟. 多孔钛酸钡陶瓷制备及其增强的压电灵敏性. 物理学报, 2019, 68(5): 057701. doi: 10.7498/aps.68.20181790
    [8] 吴宝嘉, 李燕, 彭刚, 高春晓. InSe的高压电输运性质研究. 物理学报, 2013, 62(14): 140702. doi: 10.7498/aps.62.140702
    [9] 刘士余, 余大书, 吕跃凯, 李德军, 曹茂盛. 四方和正交以及单斜相K0.5Na0.5NbO3的结构稳定性和电子结构的第一性原理研究. 物理学报, 2013, 62(17): 177102. doi: 10.7498/aps.62.177102
    [10] 王斌科, 田晓霞, 徐卓, 屈绍波, 李振荣. 铌酸钾钠基无铅透明陶瓷制备及性能. 物理学报, 2012, 61(19): 197703. doi: 10.7498/aps.61.197703
    [11] 赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓. A位等价与非等价取代对(K0.5Na0.5)NbO3陶瓷极化的影响. 物理学报, 2011, 60(10): 107701. doi: 10.7498/aps.60.107701
    [12] 明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜 鹃, 郑立梅. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析. 物理学报, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [13] 赵苏串, 李国荣, 张丽娜, 王天宝, 丁爱丽. Na0.25K0.25Bi0.5TiO3无铅压电陶瓷的介电特性研究. 物理学报, 2006, 55(7): 3711-3715. doi: 10.7498/aps.55.3711
    [14] 康祥喆, 叶 辉. 铁电钾钠铌酸锶钡薄膜电光性能的研究. 物理学报, 2006, 55(9): 4928-4933. doi: 10.7498/aps.55.4928
    [15] 初瑞清, 徐志军, 李国荣, 曾华荣, 余寒峰, 邵 鑫, 罗豪甦, 殷庆瑞. 钛酸钡单晶沿垂直解理面方向的超高压电响应的研究. 物理学报, 2005, 54(2): 935-938. doi: 10.7498/aps.54.935
    [16] 赵明磊, 王春雷, 王矜奉, 陈洪存, 钟维烈. 溶胶-凝胶法制备的高压电常数(Bi0.5Na0.5)1-xBaxTiO3系无铅压电陶瓷. 物理学报, 2004, 53(7): 2357-2362. doi: 10.7498/aps.53.2357
    [17] 初宝进, 李国荣, 殷庆瑞, 张望重, 陈大任. 非化学计量和掺杂对(Na1/2Bi1/2)0.92Ba0.08TiO3陶瓷电性能的影响. 物理学报, 2001, 50(10): 2012-2016. doi: 10.7498/aps.50.2012
    [18] 尹鑫, 吕孟凯, 李福奇. NH4IO3晶体的压电性能. 物理学报, 1989, 38(1): 124-127. doi: 10.7498/aps.38.124
    [19] 朱镛, 张道范. 铌酸锶钠锂单晶电光、热电、介电和压电性能. 物理学报, 1979, 28(2): 234-239. doi: 10.7498/aps.28.234
    [20] 黄肇明, 庄培其, 姜祖涛, 于桂芳. ADP晶体压电性能的动态测量. 物理学报, 1966, 22(8): 911-918. doi: 10.7498/aps.22.911
计量
  • 文章访问数:  20537
  • PDF下载量:  881
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-25
  • 修回日期:  2020-03-20
  • 刊出日期:  2020-06-20

/

返回文章
返回