-
以Pb(Zr1–xTix)O3 (PZT)为代表的铅基压电陶瓷因为具有良好的压电性能和机电耦合性能已被广泛应用于科技、工业、军事以及日常生活中. 但是, PZT基陶瓷中Pb的含量超过了60% (质量比), 在生产、使用及废弃处理过程中都会给人类生态环境造成严重损害. 因此, 发展无铅压电陶瓷已成为世界压电陶瓷研究的热点之一. 铌酸钾钠 (K0.5Na0.5)NbO3 (KNN)无铅压电陶瓷因为具有较为优异的压电性能以及较高的居里温度, 被认为是最可能取代铅基压电陶瓷的材料体系之一. 经过研究者们的努力工作, 改性后的KNN基无铅压电陶瓷压电性能已经接近或超过了某些铅基压电陶瓷的性能. 本文综合介绍了具有高压电活性的KNN基无铅压电陶瓷国内外的研究进展, 重点阐述了高性能铌酸钾钠基无铅压电陶瓷制备工艺及相关理论基础的研究进展, 并就今后铌酸钾钠基无铅压电陶瓷研究发展的方向及前景提出建议.Due to excellent piezoelectric properties and electromechanical coupling properties, lead-based piezoelectric ceramics represented by lead zirconate titanate Pb(ZrxTi1–x)O3 (PZT) are widely used in science and technology, industry, military and daily life. However, the content of Pb in PZT-based ceramics exceeds 60% (mass ratio), which will cause serious damage to human ecological environment in the process of their production, use and waste treatment. Therefore, the development of lead-free piezoelectric ceramics has become one of the hot research spots. Potassium sodium niobate (K0.5Na0.5)NbO3 (KNN) lead-free piezoelectric ceramics are considered as one of the most promising material systems to substitute for lead-based piezoelectric ceramics because of their good piezoelectric properties and higher Curie temperature. Through many years of researches, the piezoelectric properties of modified KNN based lead-free piezoelectric ceramics have approached to or even exceeded those of some lead-based piezoelectric ceramics. Combining with our relevant work, we comprehensively review the research progress of high piezoelectric activity of KNN based lead-free piezoelectric ceramics, especially focus on the research progress of high-performance potassium sodium niobate lead-free piezoelectric ceramics, preparation technology and related theoretical mechanisms. The future research direction and prospect of KNN-based lead-free piezoelectric ceramics are also presented.
-
Keywords:
- lead-free piezoelectric ceramics /
- potassium sodium niobate /
- origin /
- high piezoelectric property
[1] Xiao D Q 2011 J. Adv. Dielectr. 01 33Google Scholar
[2] Aksel E, Jones J L 2010 Sensors 10 1935Google Scholar
[3] Rödel J, Webber K G, Dittmer R, Jo W, Kimura M, Damjanovic D 2015 J. Eur Ceram. Soc. 35 1659Google Scholar
[4] Vats G, Vaish R 2014 Int. J. Appl. Ceram. Tec. 11 883Google Scholar
[5] Thong H C, Zhao C L, Zhou Z, Wu C F, Liu Y X, Du Z Z, Li J F, Gong W, Wang K 2019 Mater. Today 29 37Google Scholar
[6] Wang K, Malič B, Wu J G 2018 MRS Bull. 43 607Google Scholar
[7] Lv X., Zhu J G, Xiao D Q, Zhang X X, Wu J G 2020 Chem. Soc. Rev. 49 671Google Scholar
[8] Wu J G, Xiao D Q, Zhu J G 2015 Chem. Rev. 115 2559Google Scholar
[9] Gou Q, Wu J G, Li A Q, Wu B, Xiao D Q, Zhu J G 2012 J. Alloy. Comp. 521 4Google Scholar
[10] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar
[11] Li P, Zhai J W, Shen Bo, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 30 1705171Google Scholar
[12] Tao H, Wu H J, Liu Y, Zhang Y, Wu J G, Li F, Lyu X, Zhao C L, Xiao D Q, Zhu J G, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar
[13] Egerton L, Dillond D M 1959 J. Am. Chem. Soc. 42 5Google Scholar
[14] Qin Y L, Zhang J L, Yao W Z, Lu C J, Zhang S J 2016 ACS Appl. Mater. Interfaces 8 7257Google Scholar
[15] Wang Y Y, Wu J G, Xiao D Q, Wu W J, Zhang B, Wu L, Zhu J G 2008 J. Am. Ceram. Soc. 91 2772Google Scholar
[16] Tan C K I, Shannigrahi S, Yao K, Ma J 2015 J. Electroceram. 35 19Google Scholar
[17] Pang X M, Qiu J H, Zhu K J 2014 J. Adv. Ceram. 3 147Google Scholar
[18] Wang Y Y, Wu J G, Xiao D Q, Zhu J M, Jin Y, Zhu J G, Yu P, Wu L, Li X 2007 J. Appl. Phys. 102 054101Google Scholar
[19] Wu W J, Wang Z, Xiao D Q, Ma J, Wu J G, Li J, Liang W F, Zhu J G 2013 Integr. Ferroelectr. 141 82Google Scholar
[20] Wu W J, Xiao D Q, Wu J G, Liang W F, Li J, Zhu J G 2011 J. Alloy. Comp. 509 L284Google Scholar
[21] Wu J G, Xiao D Q, Wang Y Y, Zhu J G, Yu P 2008 J. Appl. Phys. 103 024102Google Scholar
[22] Wu B, Ma J, Wu W J, Chen M, Ding Y C 2018 Ceram. Inter. 44 1172Google Scholar
[23] Wen Y, Fan G F, Hao M M, Wang Y J, Chen X, Zhang Q W, Lv W Z 2019 J. Electron. Mater. 49 931Google Scholar
[24] Xing J, Tan Z, Yuan J, Jiang L M, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2016 RSC Adv. 6 57210Google Scholar
[25] Tang X, Chen T, Liu Y H, Zhang J W, Zhang T, Wang G C, Zhou J F 2016 J. Alloy. Comp. 672 277Google Scholar
[26] Yang Y, Wang H, Li Y, Zheng Q J, Liao J, Jie W J, Lin D M 2019 Dalton Trans. 48 10676Google Scholar
[27] Wu W J, Chen M, Wu B, Ding Y C, Liu C Q 2017 J. Alloy. Comp. 695 1175Google Scholar
[28] Lv X, Wu J G, Xiao D Q, Tao H, Yuan Y, Zhu J G, Wang X J, Lou X J 2015 Dalton Trans. 44 4440Google Scholar
[29] Zhong H Y, Xiao HNY, Jiao N, Guo Y P 2019 J. Am. Ceram. Soc. 102 6422Google Scholar
[30] Li F L, Tan Z, Xing J, Jiang L M, Wu B, Wu J G, Xiao D Q, Zhu J G 2017 J. Mater. Sci.- Mater. El. 28 8803Google Scholar
[31] Li F L, Gou Q, Xing J, Tan Z, Jiang L M, Xie L X, Wu J G, Zhang W, Xiao D Q, Zhu J G 2017 J. Mater. Sci.- Mater. El. 28 18090Google Scholar
[32] Lv X, Li Z Y, Wu J G, Xi J W, Gong M, Xiao D Q, Zhu J G 2016 Mater. Design 109 609Google Scholar
[33] Lv X, Wu J G, Yang S, Xiao D Q, Zhu J G 2016 ACS Appl. Mater. Interfaces 8 18943Google Scholar
[34] Zhou C M, Zhang J L, Yao W Z, Liu D K, He G H 2020 J. Alloy. Comp. 820 153411Google Scholar
[35] Wu B, Ma J, Gou Q, Wu W J, Chen M 2019 J. Am. Ceram. Soc. 103 1698Google Scholar
[36] Shi C Y, Ma J, Wu J, Chen K, Wu B 2020 Ceram. Inter. 46 7Google Scholar
[37] Wang X P, Wu J G, Xiao D Q, Zhu J G, Cheng X J, Zheng T, Zhang B Y, Lou X J, Wang X J 2014 J. Am. Chem. Soc. 136 2905Google Scholar
[38] Wang X P, Wu J G, Xiao D Q, Cheng X J, Zheng T, Zhang B Y, Lou X J, Zhu J G 2014 J. Mater. Chem. A 2 4122Google Scholar
[39] Tao H, Wu J G, Zheng T, Wang X J, Lou X J 2015 J. Appl. Phys. 118 044102Google Scholar
[40] Zhou J S, Wang K, Yao F Z, Zheng T, Wu J G, Xiao D Q, Zhu J G, Li J F 2015 J. Mater. Chem. C 3 8780Google Scholar
[41] Xing J, Tan Z, Jiang L M, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2016 J. Appl. Phys. 119 034101Google Scholar
[42] Zheng T, Wu H J, Yuan Y, Lv X, Li Q, Men T L, Zhao C L, Xiao D Q, Wu J G, Wang K, Li J F, Gu Y L, Zhu J G, Pennycook S J 2017 Energy Environ. Sci. 10 528Google Scholar
[43] Wu B, Wu H J, Wu J G, Xiao D Q, Zhu J G, Pennycook S J 2016 J. Am. Chem. Soc. 138 15459Google Scholar
[44] Yang W W, Li P, Li F, Liu X, Shen B, Zhai J W 2019 Ceram. Inter. 45 2275Google Scholar
[45] Xu K, Li J, Lv X, Wu J G, Zhang X X, Xiao D Q, Zhu J G 2016 Adv. Mater. 28 8519Google Scholar
[46] Wu B, Ma J, Wu W J, Chen M 2020 J. Mater. Chem. C 8 2838Google Scholar
[47] Yang W W, Li P, Wu S H, Li F, Shen B, Zhai J W 2020 Ceram. Inter. 46 6Google Scholar
[48] Liu Q, Zhang Y C, Gao J, Zhou Z, Wang H, Wang K, Zhang X W, Li L T, Li J F 2018 Energy Environ. Sci. 11 3531Google Scholar
[49] Feng W, Cen Z Y, Liang S Y, Luo B C, Zhang Y, Zhen Y C, Wang X H, Li L T 2019 J. Alloy. Comp. 786 498Google Scholar
[50] Hreščak J, Dražić G, Deluca M, Arčon I, Kodre A, Dapiaggi M, Rojac T, Malič B, Bencan A 2017 J. Eur Ceram. Soc. 37 2073Google Scholar
[51] Cen Z Y, Yu Y, Zhao P Y, Chen L L, Zhu C Q, Li L T, Wang X H 2019 J. Mater. Chem. C 7 1379Google Scholar
[52] Sun X X, Zhang J W, Lv X, Zhang X X, Liu Y, Li F, Wu J G 2019 J. Mater. Chem. A 7 16803Google Scholar
[53] Qin Y L, Zhang J L, Tan Y Q, Yao W Z, Wang C L, Zhang S J 2014 J. Eur Ceram. Soc. 34 4177Google Scholar
[54] Yao W Z, Zhang J L, Wang X M, Zhou C M, Sun X, Zhan J 2019 J. Eur Ceram. Soc. 39 287Google Scholar
[55] Zhou C M, Zhang J L, Yao W Z, Wang X M, Liu D K, Sun X 2018 J. Appl. Phys. 124 164101Google Scholar
[56] López-Juárez R, Novelo-Peralta O, González-García F, Rubio-Marcos F, Villafuerte-Castrejón M-E 2011 J. Eur Ceram. Soc. 31 1861Google Scholar
[57] Xing J, Tan Z, Chen X Y, Jiang L M, Wang W W, Deng X, Wu B, Wu J G, Xiao D Q, Zhu J G 2019 Inorg. Chem. 58 428Google Scholar
[58] Huan Y, Wei T, Wang Z X, Lei Y C, Chen F L, Wang X H 2019 J. Eur Ceram. Soc. 39 1002Google Scholar
[59] Ding Y, Zheng T, Zhao C L, Wu J G 2019 J. Appl. Phys. 126 124101Google Scholar
[60] Zhao C L, Wu B, Wang K, Li J F, Xiao D Q, Zhu J G, Wu J G 2018 J. Mater. Chem. A 6 23736Google Scholar
[61] Qin Y L, Zhang J L, Gao Y, Tan Y Q, Wang C L 2013 J. Appl. Phys. 113 204107Google Scholar
[62] Liu Q, Zhang Y C, Zhao L, Gao J, Zhou Z, Wang K, Zhang X W, Li L T, Li J F 2018 J. Mater. Chem. C 6 10618Google Scholar
[63] Liu Q, Li J F, Zhao L, Zhang Y C, Gao J, Sun W, Wang K, Li L T 2018 J. Mater. Chem. C 6 1116Google Scholar
[64] Fu J, Zuo R Z, Qi H, Zhang C, Li J F, Li L T 2014 Appl. Phys. Lett. 105 242903Google Scholar
[65] Zhou C M, Zhang J L, Yao W Z, Liu D K, Su W B 2019 Scripta Mater. 162 86Google Scholar
[66] Li P, Huan Y, Yang W W, Zhu F Y, Li X L, Zhang X M, Shen B, Zhai J W 2019 Acta Mater. 165 486Google Scholar
[67] Liu D K, Zhang X C, Su W B, Wang X M, Yao W Z, Zhou C M, Zhang J L 2019 J. Alloy. Comp. 779 800Google Scholar
[68] Lv X, Wu J G 2019 J. Mater. Chem. C 7 2037Google Scholar
[69] Zhang N, Zhao C, Wu J G 2019 Ceram. Inter. 45 24827Google Scholar
[70] Xing J, Tan Z, Xie L X, Jiang L M, Yuan J, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2018 J. Am. Ceram. Soc. 101 1632Google Scholar
[71] Tao H, Wu J G, Wang H 2016 J. Alloy. Comp. 684 217Google Scholar
[72] Wang T, Wu C, Xing J, Wu J G, Li Chen B W, Xu X Y, Wang K, Zhu J G 2019 J. Am. Ceram. Soc. 102 6126Google Scholar
[73] Cen Z Y, Wang X H, Huan Y, Li L T 2018 J. Am. Ceram. Soc. 101 2391Google Scholar
[74] Jiang L M, Tan Z, Xing J, Wu J G, Chen Q, Zhang W, Xiao D Q, Zhu J G 2016 J. Mater. Sci.- Mater. El. 27 9812Google Scholar
[75] Wang X P, Wu J G, Lv X, Tao H, Cheng X J, Zheng T, Zhang B Y, Xiao D Q, Zhu J G 2014 J. Mater. Sci.- Mater. El. 25 3219Google Scholar
[76] Wang Z, Xiao D Q, Wu J G, Xiao M, Li F X, Zhu J G, Damjanovic D 2014 J. Am. Ceram. Soc. 97 688Google Scholar
[77] Feng S S, Xiao D Q, Wu J G, Xiao M, Zhu J G 2015 J. Alloy. Comp. 619 560Google Scholar
[78] Cheng X J, Wu J G, Wang X P, Zhang B Y, Lou X J, Wang X J, Xiao D Q, Zhu J G 2013 ACS Appl. Mater. Interfaces 5 10409Google Scholar
[79] Gou Q, Zhu J G, Wu J G, Li F L, Jiang L M, Xiao D Q 2018 J. Alloy. Comp. 730 311Google Scholar
[80] Cheng X J, Wu J G, Lou X J, Wang X J, Wang X P, Xiao D Q, Zhu J G 2014 ACS Appl. Mater. Interfaces 6 750Google Scholar
[81] Gou Q, Xiao D Q, Wu B, Xiao M, Feng S S, Ma Zhao D D, Wu J G, Zhu J G 2015 RSC Adv. 5 30660Google Scholar
[82] Ma Q, Wan B B, Cheng L J, Liu S J, Liu F S 2016 J. Electroceram. 36 30Google Scholar
[83] Kim J H, Kim J S, Han S H, Kang H W, Lee H G, Cheon C I 2016 Ceram. Inter. 42 5226Google Scholar
[84] Sumang R, Wicheanrat C, Bongkarn T, Maensiri S 2015 Ceram. Inter. 41 S136Google Scholar
[85] Zhang S J, Xia R, Hao H, Liu H X, Shrout T R 2008 Appl. Phys. Lett. 92 152904Google Scholar
[86] Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar
[87] Lv X, Wu J G, Zhu J G, Xiao D Q 2018 Phys. Chem. Chem. Phys. 20 20149Google Scholar
[88] Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C L, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar
[89] Tao H, Zhao C L, Zhang R, Wu J G 2019 J. Alloy. Comp. 795 401Google Scholar
[90] Cen Z Y, Feng W, Zhao P Y, Chen L L, Zhu C Q, Yu Y, Li L T, Wang X H 2018 J. Am. Ceram. Soc. 102 2675Google Scholar
[91] Huang Y L, Zhao C L, Wu B, Wu J G 2019 J. Am. Ceram. Soc. 102 2648Google Scholar
[92] Zheng T, Wu J G 2020 Acta Mater. 182 1Google Scholar
[93] Ramajo L, Rubio-Marcos F, Del Campo A, Fernández J F, Castro M S, Parra R 2015 J. Mater. Sci.- Mater. El. 26 9402Google Scholar
[94] Liu W L, Tan G Q, Xiong P, Xue X, Hao H F, Ren H J 2014 J. Mater. Sci.- Mater. El. 25 2348Google Scholar
[95] Hao H F, Tan G Q, Ren H J, Xia A, Xiong P 2014 Ceram. Inter. 40 9485Google Scholar
[96] Gu Q L, Sun Q M, Zhu K J, Liu J S, Qiu J H 2017 Ceram. Inter. 43 1135Google Scholar
[97] Cheng L Q, Wang K, Li J F 2015 Mater. Lett. 138 128Google Scholar
[98] Li Y M, Wang J S, Liao R H, Huang D, Jiang X P 2010 J. Alloy. Compd. 496 282Google Scholar
[99] Kumar P, Pattanaik M, Sonia 2013 Ceram. Inter. 39 65Google Scholar
[100] Haugen A B, Madaro F, Bjørkeng L-P, Grande T, Einarsrud M A 2015 J. Eur Ceram. Soc. 35 1449Google Scholar
[101] Jiang C Y, Tian X X, Shi G D 2016 Adv. Intell. Sys. Res. 136 7Google Scholar
[102] Yokouchi Y, Maeda T, Bornmann P, Hemsel T, Morita T 2013 Jpn. J. Appl. Phys. 52 07HB03Google Scholar
[103] Wang C, Fang B J, Qu Y H, Chen Z H, Zhang S, Ding J N 2020 J. Alloy. Compd. 832 153043Google Scholar
[104] Jaeger R E, Egerton L 1962 J. Am. Ceram. Soc. 45 5Google Scholar
[105] Li M Y, Chan N Y, Wang D Y 2017 J. Am. Ceram. Soc. 100 2984Google Scholar
[106] Feizpour M, Barzegar Bafrooei H, Hayati R, Ebadzadeh T 2014 Ceram. Inter. 40 871Google Scholar
[107] Ma J Z, Li H Y, Wang H J, Lin C, Wu X, Lin T F, Zheng X H, Yu X 2019 J. Eur Ceram. Soc. 39 986Google Scholar
[108] Chi M S, Ma W B, Guo J D, Wu J Q, Li T T, Wang S H, Zhang P F 2019 J. Mater. Sci.- Mater. El. 39 986Google Scholar
[109] Yu Z D, Chen X M, Su Y L, Lian H L, Lu J B, Zhou J P, Liu P 2019 J. Mater. Sci. 54 13457Google Scholar
[110] Li J F, Wang K, Zhang B P, Zhang L M 2006 J. Am. Ceram. Soc. 89 706Google Scholar
[111] Cen Z Y, Li L T, Wang X H 2019 J. Alloy. Comp. 797 1115Google Scholar
[112] Li H, Gong D W, Yang W L, Zhou Z X 2012 J. Mater. Sci. 48 1396Google Scholar
[113] Liao Y, Wang D M, Wang H, Wang T, Wei X H, Zheng Q J, Jie W J, Lin D M 2019 Ceram. Inter. 45 2644Google Scholar
[114] Wu B, Yin J, Lv X, Xiao D Q, Zhu J G, Wu J G 2019 J. Appl. Phys. 125 082526Google Scholar
[115] Liao Y, Wang D M, Wang H, Zhou L X, Zheng Q J, Lin D M 2020 Dalton Trans. 49 1311Google Scholar
[116] Comes R, Lambert M, Guinier A 1968 Solid State Commun. 6 715Google Scholar
[117] Cohen R E 1992 Nature 358 136Google Scholar
[118] Atern E A, Yacoby Y 1996 J. Phys. Chem. Solids 57 1449Google Scholar
[119] Rytz D, Höchli U T, Bilz H 1980 Phys. Rev. B 22 359Google Scholar
[120] Shuvaeva V A, Yanagi K, Yagi K, Sakaue K, Terauchi H 1998 Solid State Commun 106 335Google Scholar
[121] Devonshire A F 1949 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 40 1040Google Scholar
[122] Devonshire A F 1951 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42 1065Google Scholar
[123] Cochran W 1959 Phys. Rev. Lett. 3 412Google Scholar
[124] Damjanovic D, Demartin 1997 J. Phys.-Condens. Mat. 9 4943Google Scholar
[125] 谭智 2019 博士学位论文 (成都: 四川大学)
Tan Z 2019 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese)
[126] Tellier J, Malic B, Dkhil B, Jenko D, Cilensek J, Kosec M 2009 Solid State Sci. 11 320Google Scholar
[127] Baker D W, Thomas P A, Zhang N, Glazer A M 2009 Appl. Phys. Lett. 95 091903Google Scholar
[128] Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121Google Scholar
[129] Yang D, Wei L L, Chao X L, Yang Z P, Zhou X Y 2016 Phys. Chem. Chem. Phys. 18 7702Google Scholar
[130] Wu Z G, Cohen R E 2005 Phys. Rev. Lett. 95 037601Google Scholar
[131] Shannon R D 1976 Acta Crystallogra. A 32 751Google Scholar
[132] Tan Z, Xing J, Jiang L M, Zhu J G, Wu B 2017 Front. Mater. Sci. 11 344Google Scholar
[133] Ke S M, Huang H T, Fan H Q, Lee H K, Zhou L M, Mai Y M 2012 Appl. Phys. Lett. 101 082901Google Scholar
[134] Fu H X, Cohen R E 2000 Nature 403 281Google Scholar
[135] Suewattana M, Singh D J 2010 Phys. Rev. B 82 014114Google Scholar
[136] Voas B K, Usher T M, Liu X, Li S, Jones J L, Tan X, Cooper V R, Beckman S P 2014 Phys. Rev. B 90 024105Google Scholar
[137] Matsumoto K, Hiruma Y, Nagata H, Takenaka T 2008 Ceram. Inter. 34 787Google Scholar
[138] Tan Z, Peng Y T, An J, Zhang Q M, Zhu J G 2019 J. Am. Ceram. Soc. 102 5262Google Scholar
[139] Peng Y, T Tan Z, An J, Zhu J G, Zhang Q M 2019 J. Eur. Ceram. Soc. 39 5252Google Scholar
[140] Li C W, Xu X, Gao Q, Lu Z L 2019 Ceram. Int. 45 11092Google Scholar
[141] Liu S Y, Liu S, Li D J, Shen Y, Dang H, Liu Y, Xue W, Wang S 2014 J. Am. Ceram. Soc 97 4019Google Scholar
[142] Li Q, Zhang R, Lv T Q, Zheng L M 2015 Chin. Phys. B 24 053101Google Scholar
[143] Yang D, Chai Q Z, Wei L L, Chao X L, Yang Z P 2017 Phys. Chem. Chem. Phys. 19 27368Google Scholar
-
图 2 (a)正交相(K0.5Na0.5NbO3陶瓷[56,61]); (b)室温下O-T相界(KNNL-BZ-BNT陶瓷体系[62], KNNSL-BNZ-BZ-MnO2陶瓷体系[63]); (c)室温下R-T/R-O-T相界KNN基陶瓷的畴结构(KNNS-BF-BNZ陶瓷体系[43], KNNS-BNZ-BZ陶瓷体系[34])
Fig. 2. Domain structures of KNN-based ceramcis with different phase boundaries at room temperature: (a) Orthorhombic (K0.5Na0.5NbO3 ceramics[56,61]); (b) O-T phase boundaries (KNNL-BZ-BNT ceramics[62], KNNSL-BNZ-BZ-MnO2 ceramics[63]); (c) R-T/R-O-T phase boundaries (KNNS-BF-BNZ ceramics[43], KNNS-BNZ-BZ ceramics[34]).
表 1 室温下具有O-T相界的KNN压电陶瓷性能
Table 1. Properties of KNN ceramics with O-T phase boundary at room temperature.
表 2 室温下具有R-O-T相界的KNN压电陶瓷的性能
Table 2. Properties of KNN ceramics with R-O-T phase boundary at room temperature.
Material system d33/pC·N–1 kp TC /℃ KNN-BNZ-BG[24] 312 0.44 341 KNN-BZ-BNZ[25] 345 0.50 ~260 KNN-NS-BNKZH[26] 452 0.63 ~270 KNNS-BNCZ[27] 415 0.46 245 KNNTS-BNKZ[28] 400 0.46 240 KNN-BNZN[29] 318 ± 10 — 360 KNNS-BKZH[30] 451 0.52 258 KNNS-BLKZ[31] 385 — 245 KNNS-SZ-BNH[32] 470 ± 5 0.51 ± 0.02 244 KNNS-BS-BNZ[33] ~480 — ~225 KNNS-BNZ-BZ[34] 610 0.58 241 KNNS-BNKZ-Fe-AS[12] 650 — ~180 表 3 室温下具有R-T相界的KNN压电陶瓷的性能
Table 3. Properties of KNN ceramics with R-T phase boundary at room temperature.
Material system d33 /pC·N–1 kp TC/℃ KNNS-BNZSn[35] 465 0.51 240 KNNS-BZH[36] 410 — 255 KNNS-BNKZ[37] 490 0.46 227 KNNTS-BNKZ[38] 460 0.40 ~220 KNNS-BNH[39] 419 0.45 242 KNNS-BKZS[40] 430 — 243 KNNS-BNLCZ[41] 485 0.48 227 KNNS-BNKH[42] 525 — ~210 KNNS-BF-BNZ[43] 550 — 237 KNNS-CZ-BKHT-MnO2[44] 425 0.49 215 KNNS-BZ-BKH[45] 570 ± 10 — ~190 KNNS-BNZ-BF[46] 511 0.515 269 KNANS-BNZ[47] 440 0.50 250 表 4 KNN基无铅压电陶瓷压电常数与畴结构尺寸
Table 4. Piezoelectric constant of KNN ceramics with domain size.
Material system d33 or $ {d}_{33}^{*} $ Domain size KNNS-SZ-BAZ[52] 487 pC/N 30—65 nm,
65—160 nm,
30—45 nmKNNS-BZ-BNH[48] 600 pm/V 10—100 nm KNNS-BNKH[42] 525 pC/N 10—30 nm KNNS-BNKZ-Fe-AS[12] (650 ± 20) pC/N 2 nm KNNS-BNZ-BZ[34] 610 pC/N 50—70 nm KNNT-BNKZ-CZ[51] 482 pm/V 60 nm KNNS-BZ-BNZ[65] 300 pC/N 150 nm—1.0 μm KNNS-CZ-BKH[66] 550 pC/N 30—230 nm KNNS-BNH[67] 512 pC/N 100 nm KNNS-SZ-BNZ[68] 450 pC/N 50—200 nm KNLNTS[54] 455 pC/N 110—310 nm KNNS-BNZ-BF[46] 510 pC/N < 1 μm KNN-BNZ-MnO2-Sb2O3[69] 318 pC/N < 1 μm KNN-BI-BNZ[57] 317 pC/N ~200 nm KNNdNS-BNZ[70] 400 pC/N ~ 1 μm 表 5 同时具有高压电性能和高居里温度的KNN陶瓷体系
Table 5. The KNN-based ceramics with high piezoelectric constant and high Curie temperature.
表 6 温度稳定性高的KNN陶瓷体系的压电常数以及变化量
Table 6. Comparison of piezoelectric constant and variation among KNN-based ceramics.
d33/pC·N–1 d33 variation/% $ {d}_{33}^{*} $/pm·V–1 $ {d}_{33}^{*} $ variation/% KNLNT-CZ[86] — — — almost unchanged @140 ℃ KNN-BNZ-LF[72] 345 — 420 8%@100 ℃ KNNT-BNKZ-SZ-MnO2[49] — — 400 10%@180 ℃ KNNT-BNKZ-CZ-MnO2[51] — — 482 10%@120 ℃ KNNS-BNZ-SZ[87] 390 — — 13%@180 ℃ KNN-BLT-BZ-MnO2[88] — — 470 8.5%@100 ℃, 21.2%@170 ℃ KNNS-BZ-BNZ[65] 300 10@100 ℃ — — KNNS-(BHo)NHf[89] — — ~386 almost unchanged @140 ℃ KNNT-BNZ-CZ[90] — — 502 10%@135 ℃ KNNS-BNKH[42] 525 — 460 10%@80 ℃ KNN-BZ-BNH-MnO2[91] 300 15@120 ℃ 540 ± 10 5%@100 ℃ KNN-BNH-BF-MnO2[92] 450 — — 28%@160 ℃ KNN-BNZ-MnO2-Sb2O3[69] 318 — — 9%@170 ℃ KNNS-BZH-BNZ[36] 410 — 441 2.5%@100 ℃, 16.1%@180 ℃ 注: 16.1%@180 ℃表示到180 ℃性能下降16.1%. Nb5+ Ta5+ Zr4+ Hf4+ Sn4+ Ti4+ Sb5+ Sb3+ Ga3+ 离子半径/Å 0.64 0.64 0.72 0.71 0.69 0.605 0.60 0.76 0.62 表 8 不同结构下原子内坐标随应变的梯度, 注意OI位于Bmm2不包含Nb原子的(010)平面, KNN中OI,1和OI,2沿a方向分别靠近K和Na原子[138]
Table 8. Internal atomic coordinate gradients as a function of strains in different structure, noted that OI is located at the (010) plane without Nb atoms in Bmm2, OI,1 and OI,2 are close to K and Na along a axis, respectively[139].
K Nb OⅡ OⅠ KN ∂u3/∂η3 0.108 0.166 –0.092 –0.091 ∂u1/∂η5 0.115 0.210 –0.151 –0.024 K Na Nb OⅡ OI,1 OI,2 KNN ∂u3/∂η3 0.103 0.542 0.125 –0.158 –0.125 –0.135 ∂u1/∂η5 0.094 0.828 0.194 –0.235 –0.061 –0.309 -
[1] Xiao D Q 2011 J. Adv. Dielectr. 01 33Google Scholar
[2] Aksel E, Jones J L 2010 Sensors 10 1935Google Scholar
[3] Rödel J, Webber K G, Dittmer R, Jo W, Kimura M, Damjanovic D 2015 J. Eur Ceram. Soc. 35 1659Google Scholar
[4] Vats G, Vaish R 2014 Int. J. Appl. Ceram. Tec. 11 883Google Scholar
[5] Thong H C, Zhao C L, Zhou Z, Wu C F, Liu Y X, Du Z Z, Li J F, Gong W, Wang K 2019 Mater. Today 29 37Google Scholar
[6] Wang K, Malič B, Wu J G 2018 MRS Bull. 43 607Google Scholar
[7] Lv X., Zhu J G, Xiao D Q, Zhang X X, Wu J G 2020 Chem. Soc. Rev. 49 671Google Scholar
[8] Wu J G, Xiao D Q, Zhu J G 2015 Chem. Rev. 115 2559Google Scholar
[9] Gou Q, Wu J G, Li A Q, Wu B, Xiao D Q, Zhu J G 2012 J. Alloy. Comp. 521 4Google Scholar
[10] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar
[11] Li P, Zhai J W, Shen Bo, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 30 1705171Google Scholar
[12] Tao H, Wu H J, Liu Y, Zhang Y, Wu J G, Li F, Lyu X, Zhao C L, Xiao D Q, Zhu J G, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar
[13] Egerton L, Dillond D M 1959 J. Am. Chem. Soc. 42 5Google Scholar
[14] Qin Y L, Zhang J L, Yao W Z, Lu C J, Zhang S J 2016 ACS Appl. Mater. Interfaces 8 7257Google Scholar
[15] Wang Y Y, Wu J G, Xiao D Q, Wu W J, Zhang B, Wu L, Zhu J G 2008 J. Am. Ceram. Soc. 91 2772Google Scholar
[16] Tan C K I, Shannigrahi S, Yao K, Ma J 2015 J. Electroceram. 35 19Google Scholar
[17] Pang X M, Qiu J H, Zhu K J 2014 J. Adv. Ceram. 3 147Google Scholar
[18] Wang Y Y, Wu J G, Xiao D Q, Zhu J M, Jin Y, Zhu J G, Yu P, Wu L, Li X 2007 J. Appl. Phys. 102 054101Google Scholar
[19] Wu W J, Wang Z, Xiao D Q, Ma J, Wu J G, Li J, Liang W F, Zhu J G 2013 Integr. Ferroelectr. 141 82Google Scholar
[20] Wu W J, Xiao D Q, Wu J G, Liang W F, Li J, Zhu J G 2011 J. Alloy. Comp. 509 L284Google Scholar
[21] Wu J G, Xiao D Q, Wang Y Y, Zhu J G, Yu P 2008 J. Appl. Phys. 103 024102Google Scholar
[22] Wu B, Ma J, Wu W J, Chen M, Ding Y C 2018 Ceram. Inter. 44 1172Google Scholar
[23] Wen Y, Fan G F, Hao M M, Wang Y J, Chen X, Zhang Q W, Lv W Z 2019 J. Electron. Mater. 49 931Google Scholar
[24] Xing J, Tan Z, Yuan J, Jiang L M, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2016 RSC Adv. 6 57210Google Scholar
[25] Tang X, Chen T, Liu Y H, Zhang J W, Zhang T, Wang G C, Zhou J F 2016 J. Alloy. Comp. 672 277Google Scholar
[26] Yang Y, Wang H, Li Y, Zheng Q J, Liao J, Jie W J, Lin D M 2019 Dalton Trans. 48 10676Google Scholar
[27] Wu W J, Chen M, Wu B, Ding Y C, Liu C Q 2017 J. Alloy. Comp. 695 1175Google Scholar
[28] Lv X, Wu J G, Xiao D Q, Tao H, Yuan Y, Zhu J G, Wang X J, Lou X J 2015 Dalton Trans. 44 4440Google Scholar
[29] Zhong H Y, Xiao HNY, Jiao N, Guo Y P 2019 J. Am. Ceram. Soc. 102 6422Google Scholar
[30] Li F L, Tan Z, Xing J, Jiang L M, Wu B, Wu J G, Xiao D Q, Zhu J G 2017 J. Mater. Sci.- Mater. El. 28 8803Google Scholar
[31] Li F L, Gou Q, Xing J, Tan Z, Jiang L M, Xie L X, Wu J G, Zhang W, Xiao D Q, Zhu J G 2017 J. Mater. Sci.- Mater. El. 28 18090Google Scholar
[32] Lv X, Li Z Y, Wu J G, Xi J W, Gong M, Xiao D Q, Zhu J G 2016 Mater. Design 109 609Google Scholar
[33] Lv X, Wu J G, Yang S, Xiao D Q, Zhu J G 2016 ACS Appl. Mater. Interfaces 8 18943Google Scholar
[34] Zhou C M, Zhang J L, Yao W Z, Liu D K, He G H 2020 J. Alloy. Comp. 820 153411Google Scholar
[35] Wu B, Ma J, Gou Q, Wu W J, Chen M 2019 J. Am. Ceram. Soc. 103 1698Google Scholar
[36] Shi C Y, Ma J, Wu J, Chen K, Wu B 2020 Ceram. Inter. 46 7Google Scholar
[37] Wang X P, Wu J G, Xiao D Q, Zhu J G, Cheng X J, Zheng T, Zhang B Y, Lou X J, Wang X J 2014 J. Am. Chem. Soc. 136 2905Google Scholar
[38] Wang X P, Wu J G, Xiao D Q, Cheng X J, Zheng T, Zhang B Y, Lou X J, Zhu J G 2014 J. Mater. Chem. A 2 4122Google Scholar
[39] Tao H, Wu J G, Zheng T, Wang X J, Lou X J 2015 J. Appl. Phys. 118 044102Google Scholar
[40] Zhou J S, Wang K, Yao F Z, Zheng T, Wu J G, Xiao D Q, Zhu J G, Li J F 2015 J. Mater. Chem. C 3 8780Google Scholar
[41] Xing J, Tan Z, Jiang L M, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2016 J. Appl. Phys. 119 034101Google Scholar
[42] Zheng T, Wu H J, Yuan Y, Lv X, Li Q, Men T L, Zhao C L, Xiao D Q, Wu J G, Wang K, Li J F, Gu Y L, Zhu J G, Pennycook S J 2017 Energy Environ. Sci. 10 528Google Scholar
[43] Wu B, Wu H J, Wu J G, Xiao D Q, Zhu J G, Pennycook S J 2016 J. Am. Chem. Soc. 138 15459Google Scholar
[44] Yang W W, Li P, Li F, Liu X, Shen B, Zhai J W 2019 Ceram. Inter. 45 2275Google Scholar
[45] Xu K, Li J, Lv X, Wu J G, Zhang X X, Xiao D Q, Zhu J G 2016 Adv. Mater. 28 8519Google Scholar
[46] Wu B, Ma J, Wu W J, Chen M 2020 J. Mater. Chem. C 8 2838Google Scholar
[47] Yang W W, Li P, Wu S H, Li F, Shen B, Zhai J W 2020 Ceram. Inter. 46 6Google Scholar
[48] Liu Q, Zhang Y C, Gao J, Zhou Z, Wang H, Wang K, Zhang X W, Li L T, Li J F 2018 Energy Environ. Sci. 11 3531Google Scholar
[49] Feng W, Cen Z Y, Liang S Y, Luo B C, Zhang Y, Zhen Y C, Wang X H, Li L T 2019 J. Alloy. Comp. 786 498Google Scholar
[50] Hreščak J, Dražić G, Deluca M, Arčon I, Kodre A, Dapiaggi M, Rojac T, Malič B, Bencan A 2017 J. Eur Ceram. Soc. 37 2073Google Scholar
[51] Cen Z Y, Yu Y, Zhao P Y, Chen L L, Zhu C Q, Li L T, Wang X H 2019 J. Mater. Chem. C 7 1379Google Scholar
[52] Sun X X, Zhang J W, Lv X, Zhang X X, Liu Y, Li F, Wu J G 2019 J. Mater. Chem. A 7 16803Google Scholar
[53] Qin Y L, Zhang J L, Tan Y Q, Yao W Z, Wang C L, Zhang S J 2014 J. Eur Ceram. Soc. 34 4177Google Scholar
[54] Yao W Z, Zhang J L, Wang X M, Zhou C M, Sun X, Zhan J 2019 J. Eur Ceram. Soc. 39 287Google Scholar
[55] Zhou C M, Zhang J L, Yao W Z, Wang X M, Liu D K, Sun X 2018 J. Appl. Phys. 124 164101Google Scholar
[56] López-Juárez R, Novelo-Peralta O, González-García F, Rubio-Marcos F, Villafuerte-Castrejón M-E 2011 J. Eur Ceram. Soc. 31 1861Google Scholar
[57] Xing J, Tan Z, Chen X Y, Jiang L M, Wang W W, Deng X, Wu B, Wu J G, Xiao D Q, Zhu J G 2019 Inorg. Chem. 58 428Google Scholar
[58] Huan Y, Wei T, Wang Z X, Lei Y C, Chen F L, Wang X H 2019 J. Eur Ceram. Soc. 39 1002Google Scholar
[59] Ding Y, Zheng T, Zhao C L, Wu J G 2019 J. Appl. Phys. 126 124101Google Scholar
[60] Zhao C L, Wu B, Wang K, Li J F, Xiao D Q, Zhu J G, Wu J G 2018 J. Mater. Chem. A 6 23736Google Scholar
[61] Qin Y L, Zhang J L, Gao Y, Tan Y Q, Wang C L 2013 J. Appl. Phys. 113 204107Google Scholar
[62] Liu Q, Zhang Y C, Zhao L, Gao J, Zhou Z, Wang K, Zhang X W, Li L T, Li J F 2018 J. Mater. Chem. C 6 10618Google Scholar
[63] Liu Q, Li J F, Zhao L, Zhang Y C, Gao J, Sun W, Wang K, Li L T 2018 J. Mater. Chem. C 6 1116Google Scholar
[64] Fu J, Zuo R Z, Qi H, Zhang C, Li J F, Li L T 2014 Appl. Phys. Lett. 105 242903Google Scholar
[65] Zhou C M, Zhang J L, Yao W Z, Liu D K, Su W B 2019 Scripta Mater. 162 86Google Scholar
[66] Li P, Huan Y, Yang W W, Zhu F Y, Li X L, Zhang X M, Shen B, Zhai J W 2019 Acta Mater. 165 486Google Scholar
[67] Liu D K, Zhang X C, Su W B, Wang X M, Yao W Z, Zhou C M, Zhang J L 2019 J. Alloy. Comp. 779 800Google Scholar
[68] Lv X, Wu J G 2019 J. Mater. Chem. C 7 2037Google Scholar
[69] Zhang N, Zhao C, Wu J G 2019 Ceram. Inter. 45 24827Google Scholar
[70] Xing J, Tan Z, Xie L X, Jiang L M, Yuan J, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2018 J. Am. Ceram. Soc. 101 1632Google Scholar
[71] Tao H, Wu J G, Wang H 2016 J. Alloy. Comp. 684 217Google Scholar
[72] Wang T, Wu C, Xing J, Wu J G, Li Chen B W, Xu X Y, Wang K, Zhu J G 2019 J. Am. Ceram. Soc. 102 6126Google Scholar
[73] Cen Z Y, Wang X H, Huan Y, Li L T 2018 J. Am. Ceram. Soc. 101 2391Google Scholar
[74] Jiang L M, Tan Z, Xing J, Wu J G, Chen Q, Zhang W, Xiao D Q, Zhu J G 2016 J. Mater. Sci.- Mater. El. 27 9812Google Scholar
[75] Wang X P, Wu J G, Lv X, Tao H, Cheng X J, Zheng T, Zhang B Y, Xiao D Q, Zhu J G 2014 J. Mater. Sci.- Mater. El. 25 3219Google Scholar
[76] Wang Z, Xiao D Q, Wu J G, Xiao M, Li F X, Zhu J G, Damjanovic D 2014 J. Am. Ceram. Soc. 97 688Google Scholar
[77] Feng S S, Xiao D Q, Wu J G, Xiao M, Zhu J G 2015 J. Alloy. Comp. 619 560Google Scholar
[78] Cheng X J, Wu J G, Wang X P, Zhang B Y, Lou X J, Wang X J, Xiao D Q, Zhu J G 2013 ACS Appl. Mater. Interfaces 5 10409Google Scholar
[79] Gou Q, Zhu J G, Wu J G, Li F L, Jiang L M, Xiao D Q 2018 J. Alloy. Comp. 730 311Google Scholar
[80] Cheng X J, Wu J G, Lou X J, Wang X J, Wang X P, Xiao D Q, Zhu J G 2014 ACS Appl. Mater. Interfaces 6 750Google Scholar
[81] Gou Q, Xiao D Q, Wu B, Xiao M, Feng S S, Ma Zhao D D, Wu J G, Zhu J G 2015 RSC Adv. 5 30660Google Scholar
[82] Ma Q, Wan B B, Cheng L J, Liu S J, Liu F S 2016 J. Electroceram. 36 30Google Scholar
[83] Kim J H, Kim J S, Han S H, Kang H W, Lee H G, Cheon C I 2016 Ceram. Inter. 42 5226Google Scholar
[84] Sumang R, Wicheanrat C, Bongkarn T, Maensiri S 2015 Ceram. Inter. 41 S136Google Scholar
[85] Zhang S J, Xia R, Hao H, Liu H X, Shrout T R 2008 Appl. Phys. Lett. 92 152904Google Scholar
[86] Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar
[87] Lv X, Wu J G, Zhu J G, Xiao D Q 2018 Phys. Chem. Chem. Phys. 20 20149Google Scholar
[88] Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C L, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar
[89] Tao H, Zhao C L, Zhang R, Wu J G 2019 J. Alloy. Comp. 795 401Google Scholar
[90] Cen Z Y, Feng W, Zhao P Y, Chen L L, Zhu C Q, Yu Y, Li L T, Wang X H 2018 J. Am. Ceram. Soc. 102 2675Google Scholar
[91] Huang Y L, Zhao C L, Wu B, Wu J G 2019 J. Am. Ceram. Soc. 102 2648Google Scholar
[92] Zheng T, Wu J G 2020 Acta Mater. 182 1Google Scholar
[93] Ramajo L, Rubio-Marcos F, Del Campo A, Fernández J F, Castro M S, Parra R 2015 J. Mater. Sci.- Mater. El. 26 9402Google Scholar
[94] Liu W L, Tan G Q, Xiong P, Xue X, Hao H F, Ren H J 2014 J. Mater. Sci.- Mater. El. 25 2348Google Scholar
[95] Hao H F, Tan G Q, Ren H J, Xia A, Xiong P 2014 Ceram. Inter. 40 9485Google Scholar
[96] Gu Q L, Sun Q M, Zhu K J, Liu J S, Qiu J H 2017 Ceram. Inter. 43 1135Google Scholar
[97] Cheng L Q, Wang K, Li J F 2015 Mater. Lett. 138 128Google Scholar
[98] Li Y M, Wang J S, Liao R H, Huang D, Jiang X P 2010 J. Alloy. Compd. 496 282Google Scholar
[99] Kumar P, Pattanaik M, Sonia 2013 Ceram. Inter. 39 65Google Scholar
[100] Haugen A B, Madaro F, Bjørkeng L-P, Grande T, Einarsrud M A 2015 J. Eur Ceram. Soc. 35 1449Google Scholar
[101] Jiang C Y, Tian X X, Shi G D 2016 Adv. Intell. Sys. Res. 136 7Google Scholar
[102] Yokouchi Y, Maeda T, Bornmann P, Hemsel T, Morita T 2013 Jpn. J. Appl. Phys. 52 07HB03Google Scholar
[103] Wang C, Fang B J, Qu Y H, Chen Z H, Zhang S, Ding J N 2020 J. Alloy. Compd. 832 153043Google Scholar
[104] Jaeger R E, Egerton L 1962 J. Am. Ceram. Soc. 45 5Google Scholar
[105] Li M Y, Chan N Y, Wang D Y 2017 J. Am. Ceram. Soc. 100 2984Google Scholar
[106] Feizpour M, Barzegar Bafrooei H, Hayati R, Ebadzadeh T 2014 Ceram. Inter. 40 871Google Scholar
[107] Ma J Z, Li H Y, Wang H J, Lin C, Wu X, Lin T F, Zheng X H, Yu X 2019 J. Eur Ceram. Soc. 39 986Google Scholar
[108] Chi M S, Ma W B, Guo J D, Wu J Q, Li T T, Wang S H, Zhang P F 2019 J. Mater. Sci.- Mater. El. 39 986Google Scholar
[109] Yu Z D, Chen X M, Su Y L, Lian H L, Lu J B, Zhou J P, Liu P 2019 J. Mater. Sci. 54 13457Google Scholar
[110] Li J F, Wang K, Zhang B P, Zhang L M 2006 J. Am. Ceram. Soc. 89 706Google Scholar
[111] Cen Z Y, Li L T, Wang X H 2019 J. Alloy. Comp. 797 1115Google Scholar
[112] Li H, Gong D W, Yang W L, Zhou Z X 2012 J. Mater. Sci. 48 1396Google Scholar
[113] Liao Y, Wang D M, Wang H, Wang T, Wei X H, Zheng Q J, Jie W J, Lin D M 2019 Ceram. Inter. 45 2644Google Scholar
[114] Wu B, Yin J, Lv X, Xiao D Q, Zhu J G, Wu J G 2019 J. Appl. Phys. 125 082526Google Scholar
[115] Liao Y, Wang D M, Wang H, Zhou L X, Zheng Q J, Lin D M 2020 Dalton Trans. 49 1311Google Scholar
[116] Comes R, Lambert M, Guinier A 1968 Solid State Commun. 6 715Google Scholar
[117] Cohen R E 1992 Nature 358 136Google Scholar
[118] Atern E A, Yacoby Y 1996 J. Phys. Chem. Solids 57 1449Google Scholar
[119] Rytz D, Höchli U T, Bilz H 1980 Phys. Rev. B 22 359Google Scholar
[120] Shuvaeva V A, Yanagi K, Yagi K, Sakaue K, Terauchi H 1998 Solid State Commun 106 335Google Scholar
[121] Devonshire A F 1949 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 40 1040Google Scholar
[122] Devonshire A F 1951 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42 1065Google Scholar
[123] Cochran W 1959 Phys. Rev. Lett. 3 412Google Scholar
[124] Damjanovic D, Demartin 1997 J. Phys.-Condens. Mat. 9 4943Google Scholar
[125] 谭智 2019 博士学位论文 (成都: 四川大学)
Tan Z 2019 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese)
[126] Tellier J, Malic B, Dkhil B, Jenko D, Cilensek J, Kosec M 2009 Solid State Sci. 11 320Google Scholar
[127] Baker D W, Thomas P A, Zhang N, Glazer A M 2009 Appl. Phys. Lett. 95 091903Google Scholar
[128] Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121Google Scholar
[129] Yang D, Wei L L, Chao X L, Yang Z P, Zhou X Y 2016 Phys. Chem. Chem. Phys. 18 7702Google Scholar
[130] Wu Z G, Cohen R E 2005 Phys. Rev. Lett. 95 037601Google Scholar
[131] Shannon R D 1976 Acta Crystallogra. A 32 751Google Scholar
[132] Tan Z, Xing J, Jiang L M, Zhu J G, Wu B 2017 Front. Mater. Sci. 11 344Google Scholar
[133] Ke S M, Huang H T, Fan H Q, Lee H K, Zhou L M, Mai Y M 2012 Appl. Phys. Lett. 101 082901Google Scholar
[134] Fu H X, Cohen R E 2000 Nature 403 281Google Scholar
[135] Suewattana M, Singh D J 2010 Phys. Rev. B 82 014114Google Scholar
[136] Voas B K, Usher T M, Liu X, Li S, Jones J L, Tan X, Cooper V R, Beckman S P 2014 Phys. Rev. B 90 024105Google Scholar
[137] Matsumoto K, Hiruma Y, Nagata H, Takenaka T 2008 Ceram. Inter. 34 787Google Scholar
[138] Tan Z, Peng Y T, An J, Zhang Q M, Zhu J G 2019 J. Am. Ceram. Soc. 102 5262Google Scholar
[139] Peng Y, T Tan Z, An J, Zhu J G, Zhang Q M 2019 J. Eur. Ceram. Soc. 39 5252Google Scholar
[140] Li C W, Xu X, Gao Q, Lu Z L 2019 Ceram. Int. 45 11092Google Scholar
[141] Liu S Y, Liu S, Li D J, Shen Y, Dang H, Liu Y, Xue W, Wang S 2014 J. Am. Ceram. Soc 97 4019Google Scholar
[142] Li Q, Zhang R, Lv T Q, Zheng L M 2015 Chin. Phys. B 24 053101Google Scholar
[143] Yang D, Chai Q Z, Wei L L, Chao X L, Yang Z P 2017 Phys. Chem. Chem. Phys. 19 27368Google Scholar
计量
- 文章访问数: 20537
- PDF下载量: 881
- 被引次数: 0