搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿超晶格SrTiO3/BaTiO3的挠曲电效应

陈许敏 叶盼 王继光 霍德璇 曹东兴

引用本文:
Citation:

钙钛矿超晶格SrTiO3/BaTiO3的挠曲电效应

陈许敏, 叶盼, 王继光, 霍德璇, 曹东兴

Flexoelectric effect of perovskite superlattice SrTiO3/BaTiO3

Chen Xu-Min, Ye Pan, Wang Ji-Guang, Huo De-Xuan, Cao Dong-Xing
PDF
HTML
导出引用
  • 挠曲电效应是应变梯度与电极化之间的机电耦合, 存在尺寸效应, 在许多微纳米尺寸结构中起着非常重要的作用. 本文采用密度泛函理论, 对交错层SrTiO3/BaTiO3超晶格进行了系统的挠曲电效应研究, 通过探究超晶格在给定的应变梯度下的力电响应, 独立得到其纵向挠曲电系数、横向挠曲电系数和剪切挠曲电系数. 结果表明: 超晶格的横向、剪切挠曲电系数和纵向挠曲电系数较其组分材料有不同的变化, 其中超晶格的横向和剪切挠曲电系数分量分别较块体BaTiO3提升约6倍, 较块体SrTiO3提升4.2倍和1.3倍; 纵向挠曲电系数较其组成材料基本不变; 这种挠曲电系数分量不同程度提升的综合效果能够使超晶格SrTiO3/BaTiO3较其单一组分材料的挠曲电效应产生数倍提升. 本文对寻找性能优异的复合挠曲电材料具有一定理论指导意义.
    The flexoelectric effect describes the coupling of polarization to strain gradient, which has increasingly attracted interest in perovskite oxide materials. The perovskite oxide superlattice containing epitaxial relaxation or intrinsic surface tension or curvature, together with its high dielectric constant, is a highly desirable candidate for high flexoelectricity. In this work, the flexoelectric coefficients of 1SrTiO3/1BaTiO3 superlattice, which is composed of alternating single atomic layers of SrTiO3 and BaTiO3, are systematically investigated with first principle density functional theory calculations. Various supercell sizes are used to minimize the discrepancy between the gradient values of the fixed atoms and relaxed atoms. It is found that the strain gradients of the constrained A-site atoms and the relaxed B-site atoms are almost the same when the supercell sizes are 1×1×24 for longitudinal flexoelectric coefficient, 7×1×16 for transverse flexoelectric coefficient and 3×1×28 for shear flexoelectric coefficient. Calculation results demonstrate that the transverse flexoelectric coefficient and shear flexoelectric coefficient of 1SrTiO3/1BaTiO3 superlattice are about one order of magnitude larger than its longitudinal flexoelectric coefficient. Even though its longitudinal flexoelectric coefficient decreases slightly compared with its constituent compounds, both transverse coefficient and shear flexoelectric coefficient are about several times higher than the counterparts of its constituent compounds, respectively. Hence, the overall flexoelectric coefficient of 1SrTiO3/1BaTiO3 superlattice is enhanced several times in magnitude. There exist a large number of interfaces inside the perovskite oxide superlattice with alternating single atomic layers of SrTiO3 and BaTiO3, which potentially stimulate the redistribution of charge carriers, orbitals and spins of the atoms at the interface and promote the interfacial strain gradient. The stacking order of the superlattice atoms has a profound influence on the flexoelectric properties. These studies present an alternative approach to fabricating better flexoelectric materials for the applications of electromechanical equipment.
      通信作者: 陈许敏, 41790@hdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874011, 11972051)资助的课题.
      Corresponding author: Chen Xu-Min, 41790@hdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874011, 11972051).
    [1]

    Narvaez J, Catalan G 2014 Appl. Phys. Lett. 104 162903Google Scholar

    [2]

    Ma W, Cross L E 2002 Appl. Phys. Lett. 81 3440Google Scholar

    [3]

    Cross L E 2006 J. Mater. Sci. 41 53Google Scholar

    [4]

    Zhu W Y, Fu J Y, Li N, Cross L E 2006 Appl. Phys. Lett. 89 192904Google Scholar

    [5]

    Shu L L, Wei X Y, Pang T, Yao X, Wang C L 2011 J. Appl. Phys. 110 104106Google Scholar

    [6]

    Majdoub M S, Sharma P, Cagin T 2009 Phys. Rev. B 79 119904Google Scholar

    [7]

    Nguyen T D, Mao S, Yeh Y W, Purohit P K, McAlpine M C 2013 Adv. Mater 25 946Google Scholar

    [8]

    Lu H, Bark C W, Ojos D E D I, Alcala J, Eom C B, Catalan G, Gruverman A 2012 Science 336 59Google Scholar

    [9]

    Wen X, Li D F, Tan K, Deng Q, Shen S P 2019 Phys. Rev. Lett. 122 148001Google Scholar

    [10]

    Abdollahi A, Vasquez-Sancho F, Catalan G 2018 Phys. Rev. Lett. 121 205502Google Scholar

    [11]

    Biancoli A, Fancher C M, Jones J L, Damjanovic D 2014 Nat. Mater 14 2Google Scholar

    [12]

    Stengel M 2014 Phys. Rev. B 90 201112Google Scholar

    [13]

    Zhang X T, Pan Q, Tian D X, Zhou W F, Chen P, Zhang H F, Chu B J 2018 Phys. Rev. Lett. 121 057602Google Scholar

    [14]

    Zhang F, Lv P, Zhang Y, Huang S, Wong C M, Yau H M, Chen X, Wen Z, Jiang X, Zeng C 2019 Phys. Rev. Lett. 122 257601Google Scholar

    [15]

    Plymill A, Xu H 2018 J. Appl. Phys. 123 144101Google Scholar

    [16]

    Shu L, Liang R, Rao Z, Fei L, Ke S, Wang Y 2019 J. Adv. Ceram. 8 153Google Scholar

    [17]

    Lee H N, Christen H M, Chisholm M F, Rouleau C M, Lowndes D H 2005 Nature 433 395Google Scholar

    [18]

    Hong J, Catalan G, Scott J F, Artacho E 2010 J. Phys. Condens. Matter 22 112201Google Scholar

    [19]

    Taib M F M, Yaakob M K, Hassan O H, Yahya M Z A 2013 Ceram. Inter. 39 S297Google Scholar

    [20]

    Xu T, Wang J, Shimada T, Kitamura T 2013 J. Phys. Condens. Matter 25 415901Google Scholar

    [21]

    Wu Z G, Cohen R E 2006 Phys. Rev. B 73 235116Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993Google Scholar

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [25]

    Guo R, Shen L, Wang H, Lim Z, Lu W, Yang P, Ariando, Gruverman A, Venkatesan T, Feng Y P, Chen J 2016 Adv. Mater. Inter. 3 1600737Google Scholar

  • 图 1  1×1×N纵向挠曲电超晶胞模型 (a) 无应变; (b) 施加纵向应变

    Fig. 1.  1×1×N supercell model for longitudinal flexoelectricity: (a) Strain-free supercell; (b) supercell with longitudinal strain.

    图 2  1×1×N超晶胞中A位原子和Ti, O原子Z方向的位移 (a) N = 12; (b) N = 16; (c) N = 20; (d) N = 24

    Fig. 2.  Atomic displacement along $ z $ direction in 1×1×N supercell: (a) N =12; (b) N = 16; (c) N = 20; (d) N = 24.

    图 3  M×1×N的横向挠曲电超晶胞模型 (a) 无应变; (b) 施加横向应变

    Fig. 3.  M×1×N supercell model for transverse flexoelectricity: (a) Strain-free supercell; (b) supercell with transverse strain.

    图 4  7 ×1×N超晶胞中A位原子和O原子的Z方向位移 (a) N = 8; (b) N = 12; (c) N = 16; (d) N = 16超晶胞中的挠曲电极化分布和纵向应变分布

    Fig. 4.  Z displacement of A-atoms and O-atoms in 7 ×1×N supercell: (a) N = 8; (b) N = 12; (c) N =16; (d) the polarization and longitudinal strain along z direction with N =16.

    图 5  M×1×N的剪切超晶胞模型 (a) 无应变模型; (b) 施加剪切应变

    Fig. 5.  M×1×N supercell mode for shear flexoelectricity: (a) Strain-free supercell; (b) supercell with shear strain.

    图 6  3×1×N超晶胞中A位原子和O原子的X方向位移情况 (a) N = 12; (b) N = 16; (c) N = 28; (d) N = 28超晶胞中不同高度的X方向极化

    Fig. 6.  X displacement of A-atoms and O-atoms in 3 ×1×N supercell: (a) N = 12; (b) N = 16; (c) N = 28; (d) X-polarization at various height inside supercell with N = 28.

    表 1  结构晶格常数

    Table 1.  Structural lattice constant.

    结构abc
    SrTiO3 [17]3.8983.8983.898
    BaTiO3 [17]3.9853.9853.985
    SBT3.8983.8984.034
    下载: 导出CSV

    表 2  挠曲电系数汇总

    Table 2.  Summary of flexoelectric coefficient.

    结构$ {\mu }_{3333} $/
    (nC·m–1)
    $ {\mu }_{3311} $/
    (nC·m–1)
    $ {\mu }_{1313} $/
    (nC·m–1)
    BaTiO3[16,20]–0.361.6–1.5
    SrTiO3[16,20]–0.892.3–6.6
    PbTiO3[15]–0.417
    SPT[15]–2.405
    SBT–0.3089.87–9.02
    下载: 导出CSV
  • [1]

    Narvaez J, Catalan G 2014 Appl. Phys. Lett. 104 162903Google Scholar

    [2]

    Ma W, Cross L E 2002 Appl. Phys. Lett. 81 3440Google Scholar

    [3]

    Cross L E 2006 J. Mater. Sci. 41 53Google Scholar

    [4]

    Zhu W Y, Fu J Y, Li N, Cross L E 2006 Appl. Phys. Lett. 89 192904Google Scholar

    [5]

    Shu L L, Wei X Y, Pang T, Yao X, Wang C L 2011 J. Appl. Phys. 110 104106Google Scholar

    [6]

    Majdoub M S, Sharma P, Cagin T 2009 Phys. Rev. B 79 119904Google Scholar

    [7]

    Nguyen T D, Mao S, Yeh Y W, Purohit P K, McAlpine M C 2013 Adv. Mater 25 946Google Scholar

    [8]

    Lu H, Bark C W, Ojos D E D I, Alcala J, Eom C B, Catalan G, Gruverman A 2012 Science 336 59Google Scholar

    [9]

    Wen X, Li D F, Tan K, Deng Q, Shen S P 2019 Phys. Rev. Lett. 122 148001Google Scholar

    [10]

    Abdollahi A, Vasquez-Sancho F, Catalan G 2018 Phys. Rev. Lett. 121 205502Google Scholar

    [11]

    Biancoli A, Fancher C M, Jones J L, Damjanovic D 2014 Nat. Mater 14 2Google Scholar

    [12]

    Stengel M 2014 Phys. Rev. B 90 201112Google Scholar

    [13]

    Zhang X T, Pan Q, Tian D X, Zhou W F, Chen P, Zhang H F, Chu B J 2018 Phys. Rev. Lett. 121 057602Google Scholar

    [14]

    Zhang F, Lv P, Zhang Y, Huang S, Wong C M, Yau H M, Chen X, Wen Z, Jiang X, Zeng C 2019 Phys. Rev. Lett. 122 257601Google Scholar

    [15]

    Plymill A, Xu H 2018 J. Appl. Phys. 123 144101Google Scholar

    [16]

    Shu L, Liang R, Rao Z, Fei L, Ke S, Wang Y 2019 J. Adv. Ceram. 8 153Google Scholar

    [17]

    Lee H N, Christen H M, Chisholm M F, Rouleau C M, Lowndes D H 2005 Nature 433 395Google Scholar

    [18]

    Hong J, Catalan G, Scott J F, Artacho E 2010 J. Phys. Condens. Matter 22 112201Google Scholar

    [19]

    Taib M F M, Yaakob M K, Hassan O H, Yahya M Z A 2013 Ceram. Inter. 39 S297Google Scholar

    [20]

    Xu T, Wang J, Shimada T, Kitamura T 2013 J. Phys. Condens. Matter 25 415901Google Scholar

    [21]

    Wu Z G, Cohen R E 2006 Phys. Rev. B 73 235116Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993Google Scholar

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [25]

    Guo R, Shen L, Wang H, Lim Z, Lu W, Yang P, Ariando, Gruverman A, Venkatesan T, Feng Y P, Chen J 2016 Adv. Mater. Inter. 3 1600737Google Scholar

  • [1] 龚凌云, 张萍, 陈倩, 楼志豪, 许杰, 高峰. Nb5+掺杂钛酸锶结构与性能的第一性原理研究. 物理学报, 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [2] 潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭. 非掺杂锐钛矿相TiO2铁磁性的第一性原理研究. 物理学报, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [3] 饶雪, 王如志, 曹觉先, 严辉. 掺杂GaN/AlN超晶格第一性原理计算研究. 物理学报, 2015, 64(10): 107303. doi: 10.7498/aps.64.107303
    [4] 侯清玉, 赵春旺. 第一性原理研究钨掺杂对锐钛矿物性的影响. 物理学报, 2015, 64(24): 247201. doi: 10.7498/aps.64.247201
    [5] 周鹏力, 郑树凯, 田言, 张朔铭, 史茹倩, 何静芳, 闫小兵. Al-N共掺杂3C-SiC介电性质的第一性原理计算. 物理学报, 2014, 63(5): 053102. doi: 10.7498/aps.63.053102
    [6] 王江舵, 代建清, 宋玉敏, 张虎, 牛之慧. BaTiO3/SrTiO3(1:1)超晶格的晶格动力学、介电和压电性能的第一性原理研究. 物理学报, 2014, 63(12): 126301. doi: 10.7498/aps.63.126301
    [7] 郑树凯, 吴国浩, 刘磊. P掺杂锐钛矿相TiO2的第一性原理计算. 物理学报, 2013, 62(4): 043102. doi: 10.7498/aps.62.043102
    [8] 李宗宝, 王霞, 贾礼超. N/Fe共掺杂锐钛矿TiO2(101)面协同作用的第一性原理研究. 物理学报, 2013, 62(20): 203103. doi: 10.7498/aps.62.203103
    [9] 唐冬华, 薛林, 孙立忠, 钟建新. B在Hg0.75Cd0.25Te中掺杂效应的第一性原理研究. 物理学报, 2012, 61(2): 027102. doi: 10.7498/aps.61.027102
    [10] 李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃. 掺铝3C-SiC电子结构的第一性原理计算及其微波介电性能. 物理学报, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [11] 卢金炼, 曹觉先. 单个钛原子储氢能力和储氢机制的第一性原理研究. 物理学报, 2012, 61(14): 148801. doi: 10.7498/aps.61.148801
    [12] 赵宇宏, 黄志伟, 李爱红, 穆彦青, 杨伟明, 侯华, 韩培德, 张素英. Nb在Ni3Al中取代行为及合金化效应的第一性原理研究. 物理学报, 2011, 60(4): 047103. doi: 10.7498/aps.60.047103
    [13] 孙伟峰, 李美成, 赵连城. 窄带隙超晶格中载流子俄歇寿命和碰撞电离率的第一性原理研究. 物理学报, 2010, 59(8): 5661-5666. doi: 10.7498/aps.59.5661
    [14] 侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军. ZnO高掺杂Ga的浓度对导电性能和红移效应影响的第一性原理研究. 物理学报, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [15] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测. 物理学报, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [16] 孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗. BiFeO3中各离子在铁电相变中作用本质的第一性原理研究. 物理学报, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [17] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [18] 侯清玉, 张 跃, 张 涛. 高氧空位简并锐钛矿TiO2半导体电子寿命的第一性原理研究. 物理学报, 2008, 57(5): 3155-3159. doi: 10.7498/aps.57.3155
    [19] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [20] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
计量
  • 文章访问数:  5250
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-18
  • 修回日期:  2022-06-17
  • 上网日期:  2022-10-03
  • 刊出日期:  2022-10-20

/

返回文章
返回