搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nb5+掺杂钛酸锶结构与性能的第一性原理研究

龚凌云 张萍 陈倩 楼志豪 许杰 高峰

引用本文:
Citation:

Nb5+掺杂钛酸锶结构与性能的第一性原理研究

龚凌云, 张萍, 陈倩, 楼志豪, 许杰, 高峰

First principles study of structure and property of Nb5+-doped SrTiO3

Gong Ling-Yun, Zhang Ping, Chen qian, Lou Zhi-Hao, Xu Jie, Gao Feng
PDF
HTML
导出引用
  • 本文选取SrTiO3材料进行B位Nb5+离子掺杂改性, 采用第一性原理计算了不同含量(0%, 12.5%和25%)Nb5+掺杂SrTiO3的电子结构、光学、力学和热学性质. 结果表明, 当Nb5+掺杂浓度上升, 材料晶胞参数增大; Nb5+掺杂后SrTiO3由间接带隙化合物转变为直接带隙化合物, Nb5+掺杂使材料反射系数、吸收系数、能量损耗下降、脆性降低, 当Nb5+掺杂浓度上升, 材料体弹性模量不变, 剪切模量与杨氏模量减小, 泊松比增大, 德拜温度降低, 晶格热导率与理论最低晶格热导率减小.
    The modification of SrTiO3 materials by doping Nb5+ ions in B-site is studied through using the first-principles method to calculate the electronic structure, optical properties, mechanical properties and thermal properties at different Nb5+ doping concentrations. The calculation results show that as the doping content of Nb5+ increases, the lattice parameters increase. After being doped with Nb5+, SrTiO3 changes from an indirect band gap compound into a direct band gap compound. Doping Nb5+ can reduce the reflection coefficient, absorption coefficient, and energy loss of SrTiO3 material, which can be used to modify its optical properties. Additionally, the brittleness of SrTiO3 material is improved through doping Nb5+. As the doping content of Nb5+ increases, the elastic modulus of the material hardly changes, the shear modulus and Young's modulus decrease, the Poisson's ratio increases, and the Debye temperature decreases, and both the lattice thermal conductivity and the theoretical minimum lattice thermal conductivity decrease as well.
      通信作者: 高峰, gaofeng@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51672219)和陕西省重点研发计划国际合作项目(2020KW-032)资助的课题
      Corresponding author: Gao Feng, gaofeng@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51672219) and International Cooperation Project of Key R&D Plan of Shaanxi Province, China(Grant No. 2020KW-032)
    [1]

    Huang W, Nechache R, Li S, Chaker M, Rosei F 2016 Am. Ceram. Soc. 99 226Google Scholar

    [2]

    李守委 2015 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Li S W 2015 M. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [3]

    Jing P P, Lan W, Su Q, Xie E Q 2015 Beilstein J. Nanotechnol. 6 1281Google Scholar

    [4]

    Zhang T F, Tang X G, Xiang Q, Jiang Y P 2018 J. Alloys Compd. 730 516Google Scholar

    [5]

    Blennow P, Hagen A, HansenK K, Wallenberg L R, Mogensen M 2008 Solid State Ion. 179 2047Google Scholar

    [6]

    Gerblinger J, Meixner H 1991 Sens. Actuators B Chem. 4 99Google Scholar

    [7]

    Ham Y S, Koh J H 2009 Ferroelectrics 382 85Google Scholar

    [8]

    Nakano Y, Ichinose N 1990 J. Mater. Res. 5 2910Google Scholar

    [9]

    Iwashina K, Kudo A 2011 J. Am. Chem. Soc. 133 13272Google Scholar

    [10]

    Rheinheimer W, Bäurer M, Handwerker C A, Blendell J E, Hoffmann M J 2015 Acta Mater. 95 111Google Scholar

    [11]

    王欣 2017 硕士学位论文 (西安: 西安理工大学)

    Wang X 2017 M. S. Thesis (Xi'an: Xi'an University of Technology) (in Chinese)

    [12]

    常亮亮 2014 材料开发与应用 29 89

    Chang L L 2014 Development and Application of Materials 29 89

    [13]

    Ohta S, Ohta H, Koumoto K 2006 J. Ceram. Soc. Japan 114 102Google Scholar

    [14]

    Tomio T, Miki H, Tabata H, Kawai T, Kawai S 1994 J. Appl. Phys. 76 5886Google Scholar

    [15]

    Bakhshi H, Sarraf M R, Yourdkhania A, AbdelNabi A A, Mozharivskyj Y 2020 Ceram. Int. 46 3224Google Scholar

    [16]

    Benrekia A R, Benkhettou N, Nassour A, Driz M, Sahnoun M, Lebèguec S 2012 Phys. Rev., B Condens. Matter 407 2632Google Scholar

    [17]

    Ghebouli B, Ghebouli M A, Chihi T, Fatmi M, Boucetta S, Reffas M 2009 Solid State Commun. 149 2244Google Scholar

    [18]

    贠江妮 2010 博士学位论文 (西安: 西北大学)

    Yun J N 2010 Ph. D. Dissertation (Xi'an: Northwest University) (in Chinese)

    [19]

    Guo X G, Chen X S, Lu W 2003 Solid State Commun. 126 441Google Scholar

    [20]

    Eglitis R I, Kotomin E A 2010 Phys. B:Condens. Matter 405 3164Google Scholar

    [21]

    Nishiyama J, Kanehara K, Takeda H, Tsurumi T, Hoshina T 2019 J. Ceram. Soc. Japan 127 357Google Scholar

    [22]

    Guo X G, Chen X, Sun Y L, Sun L Z, Zhou X H, Lu W 2003 Phys. Lett. A 317 501Google Scholar

    [23]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B:Condens. Matter 49 16223Google Scholar

    [24]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 A1133Google Scholar

    [25]

    Benthem K V, Elsässer C, French R H 2001 J. Appl. Phys. 90 6156Google Scholar

    [26]

    陈敏强, 李廷鱼, 王开鹰, 胡杰, 李朋伟, 胡文秀, 李刚 2017 固体电子学研究与进展 37 316

    Chen M Q, Li Y Y, Wang K Y, Hu J, Li P W, Hu W X, Li G 2017 Res. Prog. Solid State Electron. 37 316

    [27]

    Chen Q, Gao F, Xu J, Cao S Y, Guo Y T, Cheng G H 2019 Ceram. Int. 45 9967Google Scholar

    [28]

    Kato H, Kudo A 2002 J. Phys. Chem. B 106 5029Google Scholar

    [29]

    侯清玉, 吕致远, 赵春旺 2015 物理学报 64 017201Google Scholar

    Hou Q Y, Lv Z Y, Zhao C W 2015 Acta Phys. Sin. 64 017201Google Scholar

    [30]

    Kumar A, Dho J 2013 Curr. Appl. Phys. 13 768Google Scholar

    [31]

    刘娜娜, 宋仁伯, 孙翰英, 杜大伟 2008 物理学报 57 7145Google Scholar

    Liu N N, Song R B, Sun H Y, Du D W 2008 Acta Phys. Sin. 57 7145Google Scholar

    [32]

    Piskunov S, Heifets E, Eglitis R I, Borstel G 2004 Comput. Mater. Sci. 29 165

    [33]

    项建英, 黄继华, 陈树海, 梁文建, 赵兴科, 张华 2012 航空材料学报 32 1Google Scholar

    Xiang J Y, Huang J H, Chen H S, Liang W J, Zhao X K, Zhang H 2012 J Aeron. Mater. 32 1Google Scholar

    [34]

    Pugh S F 1954 Philos. Mag. 45 823Google Scholar

    [35]

    Xiang H M, Feng Z H, Li Z P, Zhou Y C 2017 J. Eur. Ceram. Soc. 37 2491

    [36]

    Wan C L, Pan W, Xu Q, Qin Y X, Wang J D, Qu Z X, Fang M H 2006 Phys. Rev. B 74 144

    [37]

    Slack G A 1973 J. Phys. Chem. Solids. 34 321Google Scholar

    [38]

    Clarke D R 2003 Surf. Coat. Technol. 163-164 67

    [39]

    Zhang B Y, Wang J, Zou T, Zhang S, Yaer X B, Ding N, Liu C Y, Miao L, Li Y, Wu Y 2015 J. Mater. Chem. C 3 11406Google Scholar

    [40]

    Okhay O, Zlotnik S, Xie W, Orlinski K, Gallo M J, Otero G, Fernandes A, Pawlak D, Weidenkaff A, Tkach A 2019 Carbon 143 215Google Scholar

    [41]

    Wang K, Wang J, Li Y, Zou T, Wang X H, Li J B, Cao Z, Shi W J, Year X 2018 Chin. Phys. B 27 121

    [42]

    Liu D, Zhang Y, Kang H, Li J L, Chen Z N, Wang T M 2018 J. Eur. Ceram. Soc. 38 807Google Scholar

  • 图 1  晶胞结构 (a) SrTiO3; (b) SrTi0.875Nb0.125O3; (c) SrTi0.75Nb0.25O3

    Fig. 1.  Cell structure: (a) SrTiO3; (b) SrTi0.875Nb0.125O3; (c) SrTi0.75Nb0.25O3.

    图 2  能带结构图 (a) SrTiO3; (b) SrTi0.875Nb0.125O3; (c) SrTi0.75Nb0.25O3

    Fig. 2.  Band structure: (a) SrTiO3; (b) SrTi0.875Nb0.125O3; (c) SrTi0.75Nb0.25O3.

    图 3  态密度图 (a) SrTiO3; (b) SrTi0.875Nb0.125O3; (c) SrTi0.75Nb0.25O3

    Fig. 3.  Density of states: (a) SrTiO3; (b) SrTi0.875Nb0.125O3; (c) SrTi0.75Nb0.25O3.

    图 4  SrTiO3, SrTi0.875Nb0.125O3, SrTi0.75Nb0.25O3的光学性质 (a) 介电常数实部与虚部; (b)折射系数与消光系数

    Fig. 4.  Optical properties of SrTiO3, SrTi0.875Nb0.125O3, SrTi0.75Nb0.25O3: (a) Real and imaginary part of the dielectric function; (b) refraction coefficient and extinction coefficient.

    图 5  SrTiO3, SrTi0.875Nb0.125O3, SrTi0.75Nb0.25O3的吸收系数与 (a)能量和 (b)波长的关系图

    Fig. 5.  Relationship between absorption coefficients of SrTiO3, SrTi0.875Nb0.125O3, SrTi0.75Nb0.25O3 and (a) energy; (b) wavelength.

    图 6  SrTiO3, SrTi0.875Nb0.125O3, SrTi0.75Nb0.25O3的光学性质 (a)反射系数; (b)能量损失谱

    Fig. 6.  Optical properties of SrTiO3, SrTi0.875Nb0.125O3 and SrTi0.75Nb0.25O3 (a) Reflection coefficient; (b) energy loss spectrum.

    图 7  SrTiO3, SrTi0.875Nb0.125O3, SrTi0.75Nb0.25O3的热导率 (a) κslack; (b) κmin

    Fig. 7.  Thermal conductivity of SrTiO3, SrTi0.875Nb0.125O3, SrTi0.75Nb0.25O3: (a) κslack; (b) κmin.

    表 1  SrTi1–xNbxO3晶胞参数(a = b = c, 单位: nm)

    Table 1.  Cell parameters of SrTi1–xNbxO3 (a = b = c, unit: nm).

    GGA(380 V)Experimental resultsError
    (380 eV)/%
    SrTiO30.39390.3905 (PDF 84-0444)0.87
    SrTi0.875Nb0.125O30.39570.3950[14]0.18
    SrTi0.75Nb0.25O30.39720.3980[14]–0.20
    下载: 导出CSV

    表 2  SrTi1–xNbxO3弹性刚度张量 (单位: GPa)

    Table 2.  Elastic constants (Unit: GPa) of SrTi1–xNbxO3.

    SrTiO3 (Caculation)[16]SrTiO3 (Experiment)[32]SrTiO3SrTi0.875Nb0.125O3SrTi0.75Nb0.25O3
    C11318.6317.0311.1299.1306.3
    C1299.3102.597.2105.9122.9
    C44109.8123.5109.499.479.3
    下载: 导出CSV

    表 3  SrTi1–xNbxO3力学性能参数

    Table 3.  Mechanical property parameters of SrTi1–xNbxO3.

    ParametersSymbelSrTiO3SrTi0.875Nb0.125O3SrTi0.75Nb0.25O3
    Bulk elastic modulus/GPaB168.8169.7166.0
    Shear modulus/GPaG108.3100.878.3
    G/B/0.640.590.47
    Young's modulus/GPaE267.7252.4202.9
    Poisson's ratio/(m·s–1)σ0.2360.2520.296
    下载: 导出CSV

    表 4  SrTi1–xNbxO3的声速和德拜温度

    Table 4.  Calculated sound velocity and Debye temperature of SrTi1–xNbxO3.

    ParametersSymbelSrTiO3SrTi0.875Nb0.125O3SrTi0.75Nb0.25O3
    Compression wave velocity/(m·s–1)vp7916.57745.67241.4
    Shear wave velocity/(m·s–1)vs4655.34460.23897.8
    Average wave velocity/(m·s–1)vm4876.24694.34351.6
    Debye temperature/KΘD630.7603.9557.7
    下载: 导出CSV
  • [1]

    Huang W, Nechache R, Li S, Chaker M, Rosei F 2016 Am. Ceram. Soc. 99 226Google Scholar

    [2]

    李守委 2015 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Li S W 2015 M. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [3]

    Jing P P, Lan W, Su Q, Xie E Q 2015 Beilstein J. Nanotechnol. 6 1281Google Scholar

    [4]

    Zhang T F, Tang X G, Xiang Q, Jiang Y P 2018 J. Alloys Compd. 730 516Google Scholar

    [5]

    Blennow P, Hagen A, HansenK K, Wallenberg L R, Mogensen M 2008 Solid State Ion. 179 2047Google Scholar

    [6]

    Gerblinger J, Meixner H 1991 Sens. Actuators B Chem. 4 99Google Scholar

    [7]

    Ham Y S, Koh J H 2009 Ferroelectrics 382 85Google Scholar

    [8]

    Nakano Y, Ichinose N 1990 J. Mater. Res. 5 2910Google Scholar

    [9]

    Iwashina K, Kudo A 2011 J. Am. Chem. Soc. 133 13272Google Scholar

    [10]

    Rheinheimer W, Bäurer M, Handwerker C A, Blendell J E, Hoffmann M J 2015 Acta Mater. 95 111Google Scholar

    [11]

    王欣 2017 硕士学位论文 (西安: 西安理工大学)

    Wang X 2017 M. S. Thesis (Xi'an: Xi'an University of Technology) (in Chinese)

    [12]

    常亮亮 2014 材料开发与应用 29 89

    Chang L L 2014 Development and Application of Materials 29 89

    [13]

    Ohta S, Ohta H, Koumoto K 2006 J. Ceram. Soc. Japan 114 102Google Scholar

    [14]

    Tomio T, Miki H, Tabata H, Kawai T, Kawai S 1994 J. Appl. Phys. 76 5886Google Scholar

    [15]

    Bakhshi H, Sarraf M R, Yourdkhania A, AbdelNabi A A, Mozharivskyj Y 2020 Ceram. Int. 46 3224Google Scholar

    [16]

    Benrekia A R, Benkhettou N, Nassour A, Driz M, Sahnoun M, Lebèguec S 2012 Phys. Rev., B Condens. Matter 407 2632Google Scholar

    [17]

    Ghebouli B, Ghebouli M A, Chihi T, Fatmi M, Boucetta S, Reffas M 2009 Solid State Commun. 149 2244Google Scholar

    [18]

    贠江妮 2010 博士学位论文 (西安: 西北大学)

    Yun J N 2010 Ph. D. Dissertation (Xi'an: Northwest University) (in Chinese)

    [19]

    Guo X G, Chen X S, Lu W 2003 Solid State Commun. 126 441Google Scholar

    [20]

    Eglitis R I, Kotomin E A 2010 Phys. B:Condens. Matter 405 3164Google Scholar

    [21]

    Nishiyama J, Kanehara K, Takeda H, Tsurumi T, Hoshina T 2019 J. Ceram. Soc. Japan 127 357Google Scholar

    [22]

    Guo X G, Chen X, Sun Y L, Sun L Z, Zhou X H, Lu W 2003 Phys. Lett. A 317 501Google Scholar

    [23]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B:Condens. Matter 49 16223Google Scholar

    [24]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 A1133Google Scholar

    [25]

    Benthem K V, Elsässer C, French R H 2001 J. Appl. Phys. 90 6156Google Scholar

    [26]

    陈敏强, 李廷鱼, 王开鹰, 胡杰, 李朋伟, 胡文秀, 李刚 2017 固体电子学研究与进展 37 316

    Chen M Q, Li Y Y, Wang K Y, Hu J, Li P W, Hu W X, Li G 2017 Res. Prog. Solid State Electron. 37 316

    [27]

    Chen Q, Gao F, Xu J, Cao S Y, Guo Y T, Cheng G H 2019 Ceram. Int. 45 9967Google Scholar

    [28]

    Kato H, Kudo A 2002 J. Phys. Chem. B 106 5029Google Scholar

    [29]

    侯清玉, 吕致远, 赵春旺 2015 物理学报 64 017201Google Scholar

    Hou Q Y, Lv Z Y, Zhao C W 2015 Acta Phys. Sin. 64 017201Google Scholar

    [30]

    Kumar A, Dho J 2013 Curr. Appl. Phys. 13 768Google Scholar

    [31]

    刘娜娜, 宋仁伯, 孙翰英, 杜大伟 2008 物理学报 57 7145Google Scholar

    Liu N N, Song R B, Sun H Y, Du D W 2008 Acta Phys. Sin. 57 7145Google Scholar

    [32]

    Piskunov S, Heifets E, Eglitis R I, Borstel G 2004 Comput. Mater. Sci. 29 165

    [33]

    项建英, 黄继华, 陈树海, 梁文建, 赵兴科, 张华 2012 航空材料学报 32 1Google Scholar

    Xiang J Y, Huang J H, Chen H S, Liang W J, Zhao X K, Zhang H 2012 J Aeron. Mater. 32 1Google Scholar

    [34]

    Pugh S F 1954 Philos. Mag. 45 823Google Scholar

    [35]

    Xiang H M, Feng Z H, Li Z P, Zhou Y C 2017 J. Eur. Ceram. Soc. 37 2491

    [36]

    Wan C L, Pan W, Xu Q, Qin Y X, Wang J D, Qu Z X, Fang M H 2006 Phys. Rev. B 74 144

    [37]

    Slack G A 1973 J. Phys. Chem. Solids. 34 321Google Scholar

    [38]

    Clarke D R 2003 Surf. Coat. Technol. 163-164 67

    [39]

    Zhang B Y, Wang J, Zou T, Zhang S, Yaer X B, Ding N, Liu C Y, Miao L, Li Y, Wu Y 2015 J. Mater. Chem. C 3 11406Google Scholar

    [40]

    Okhay O, Zlotnik S, Xie W, Orlinski K, Gallo M J, Otero G, Fernandes A, Pawlak D, Weidenkaff A, Tkach A 2019 Carbon 143 215Google Scholar

    [41]

    Wang K, Wang J, Li Y, Zou T, Wang X H, Li J B, Cao Z, Shi W J, Year X 2018 Chin. Phys. B 27 121

    [42]

    Liu D, Zhang Y, Kang H, Li J L, Chen Z N, Wang T M 2018 J. Eur. Ceram. Soc. 38 807Google Scholar

  • [1] 曾凡菊, 谭永前, 胡伟, 唐孝生, 张小梅, 尹海峰. 超小晶粒锡掺杂CsPbBr3蓝光量子点的合成及其光学性能研究. 物理学报, 2022, 71(4): 047401. doi: 10.7498/aps.71.20211895
    [2] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算. 物理学报, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [3] 曾凡菊, 谭永前, Wei Hu, 唐孝生, 张小梅, 尹海峰. 超小晶粒锡掺杂CsPbBr3蓝光量子点的合成及其光学性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211895
    [4] 秦京运, 舒群威, 袁艺, 仇伟, 肖立华, 彭平, 卢国松. Tl0.33WO3电子结构和太阳辐射屏蔽性能第一性原理研究. 物理学报, 2020, 69(4): 047102. doi: 10.7498/aps.69.20191577
    [5] 曲灵丰, 侯清玉, 许镇潮, 赵春旺. Ti掺杂ZnO光电性能的第一性原理研究. 物理学报, 2016, 65(15): 157201. doi: 10.7498/aps.65.157201
    [6] 姜艳, 刘贵立. 剪切形变对硼氮掺杂碳纳米管超晶格电子结构和光学性能的影响. 物理学报, 2015, 64(14): 147304. doi: 10.7498/aps.64.147304
    [7] 沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文. Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究. 物理学报, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [8] 王永贞, 徐朝鹏, 张文秀, 张欣, 王倩, 张磊. Ge掺杂对InI导电性能影响的第一性原理研究. 物理学报, 2014, 63(23): 237101. doi: 10.7498/aps.63.237101
    [9] 王江舵, 代建清, 宋玉敏, 张虎, 牛之慧. BaTiO3/SrTiO3(1:1)超晶格的晶格动力学、介电和压电性能的第一性原理研究. 物理学报, 2014, 63(12): 126301. doi: 10.7498/aps.63.126301
    [10] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [11] 李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃. 掺铝3C-SiC电子结构的第一性原理计算及其微波介电性能. 物理学报, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [12] 汝强, 李燕玲, 胡社军, 彭薇, 张志文. Sn3InSb4合金嵌Li性能的第一性原理研究. 物理学报, 2012, 61(3): 038210. doi: 10.7498/aps.61.038210
    [13] 章瑞铄, 刘涌, 滕繁, 宋晨路, 韩高荣. 锐钛矿相和金红石相TiO2:Nb的光电性能研究. 物理学报, 2012, 61(1): 017101. doi: 10.7498/aps.61.017101
    [14] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究. 物理学报, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [15] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [16] 侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军. ZnO高掺杂Ga的浓度对导电性能和红移效应影响的第一性原理研究. 物理学报, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [17] 吴雪炜, 吴大建, 刘晓峻. 硼(氮、氟)掺杂对TiO2纳米颗粒光学性能的影响. 物理学报, 2010, 59(7): 4788-4793. doi: 10.7498/aps.59.4788
    [18] 张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤. 硼掺杂单壁碳纳米管吸附甲醛的电子结构和光学性能研究. 物理学报, 2010, 59(1): 527-531. doi: 10.7498/aps.59.527
    [19] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [20] 刘爱云, 孟祥建, 薛建强, 孙璟兰, 马建华, 汪 琳, 褚君浩. 化学溶液法制备的Pb(Mg1/3Nb2/3)O3-PbTiO3薄膜的光学性能. 物理学报, 2006, 55(6): 3128-3131. doi: 10.7498/aps.55.3128
计量
  • 文章访问数:  9143
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-03
  • 修回日期:  2021-08-02
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回