搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶格匹配In0.17Al0.83N/GaN异质结电容散射机制

任舰 苏丽娜 李文佳

引用本文:
Citation:

晶格匹配In0.17Al0.83N/GaN异质结电容散射机制

任舰, 苏丽娜, 李文佳

Capacitance scattering mechanism in lattice-matched In0.17Al0.83N/GaN heterojunction Schottky diodes

Ren Jian, Su Li-Na, Li Wen-Jia
PDF
导出引用
  • 制备了晶格匹配In0.17Al0.83N/GaN异质结圆形平面结构肖特基二极管,通过测试和拟合器件的电容-频率曲线,研究了电容的频率散射机制.结果表明:在频率高于200 kHz后,积累区电容随频率出现增加现象,而传统的电容模型无法解释该现象.通过考虑漏电流、界面态和串联电阻等影响对传统模型进行修正,修正后的电容频率散射模型与实验结果很好地符合,表明晶格匹配In0.17Al0.83N/GaN异质结电容随频率散射是漏电流、界面态和串联电阻共同作用的结果.
    In order to study the frequency scattering mechanism of capacitance in latticematched In0.17Al0.83N/GaN high electron mobility transistors (HEMTs), the latticematched In0.17Al0.83N/GaN heterojunction Schottky diodes with circular planar structure, which have equivalent capacitance characteristics to those of HEMTs, are fabricated and tested in this paper. The experimental curves of capacitance-voltage characteristics at different frequencies show that the capacitance of the accumulation area decreases gradually with the increase of frequency at low frequency, which accords with the capacitance frequency scattering characteristics of traditional HEMT devices. However, when the frequency is higher than 200 kHz, the capacitance of the accumulation area increases rapidly with frequency increasing, which cannot be explained by the traditional capacitance model. By comparing the reverse current and capacitance characteristics of latticematched In0.17Al0.83N/GaN Schottky diodes, it is observed that the saturation behavior of the reverse leakage current is clearly associated with full depletion of the two-dimensional electron gas at the InAlN/GaN interface, which is indicated by the rapid drop of the diode capacitance. This observation suggests that the large reverse leakage current of the lattice-matched In0.17Al0.83N/GaN Schottky diode, which reaches up to 10-4 A, should has a direct influence on the capacitance scattering. By considering the influence of leakage current, interface state and series resistance comprehensively, the capacitance frequency scattering model is modified based on the traditional model. Using various models to fit the experimental capacitance-frequency data, the results from the modified model agree well with the experimental results. According to the parameters obtained by fitting, the density and the time constant of interface defects in latticematched In0.17Al0.83N/GaN Schottky diodes, determined by equivalent interface capacitance and resistance, are about 1.66×1010 cm-2·eV-1 and 2.65μs, respectively. According to the values reported in the literature, it is suggested that the modified capacitance frequency scattering model should be reasonable for explaining the capacitance scattering phenomenon in accumulation area. In conclusion, we believe that the capacitance of latticematched In0.17Al0.83N/GaN Schottky diode scatters is a joint result of leakage current, interface state and series resistance. The interface defects in In0.17Al0.83N/GaN Schottky diodes usually have a great influence on frequency and power characteristics of devices, a correct explanation for the frequency scattering mechanism of capacitance is the basis for determining the locations and sources of defects in Ⅲ nitride devices.
    • 基金项目: 江苏省高校自然科学研究项目(批准号:17KJB510007,17KJB535001)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant Nos. 17KJB510007, 17KJB535001).
    [1]

    Sun M, Zhang Y, Gao X, Tomas P 2017 IEEE Electron Dev. Lett. 38 509

    [2]

    Xue J S, Hao Y, Zhang J C, Zhou X W, Liu Z Y 2011 Appl. Phys. Lett. 98 113504

    [3]

    Xing W, Liu Z, Ranjan K, Tomas P 2018 IEEE Electron Dev. Lett. 39 947

    [4]

    Kuzmik J, Pozzovivo G, Abermann S, Carlin J F, Gonschorek M, Feltin E 2008 IEEE Trans. Electron Dev. 55 937

    [5]

    Chung J W, Saadat O I, Tirado J M, Gao X 2009 IEEE Electron Dev. Lett. 30 904

    [6]

    Li W, Wang Q, Zhan X 2016 Semicond. Sci. Technol. 31 125003

    [7]

    Yuan Y, Wang L, Yu B, Shin B, Ahn J, Mcintyre P C 2011 IEEE Electron Dev. Lett. 32 485

    [8]

    Lin H C, Yang T, Sharifi H, Kin S K, Xuan Y 2007 Appl. Phys. Lett. 91 212101

    [9]

    Stemmer S, Chobpattana V, Rajan S 2012 Appl. Phys. Lett. 100 233510

    [10]

    Zhao J Z, Lin Z J, Corrigan T D, Wang Z, You Z D, Wang Z G 2007 Appl. Phys. Lett. 91 173507

    [11]

    Stoklas R, Gregušová D, Novák J, Vescan A, Kordoš P 2008 Appl. Phys. Lett. 93 124103

    [12]

    Xie S, Yin J, Zhang S, Liu B, Zhou W, Feng Z 2009 Solid-State Electron. 53 1183

    [13]

    Shealy J R, Brown R J 2008 Appl. Phys. Lett. 92 032101

    [14]

    Miller E J, Dang X Z, Wieder H H, Asbeck P M, Yu E T, Sullivan G J 2000 J. Appl. Phys. 87 8070

    [15]

    Yang K J, Hu C 1999 IEEE Trans. Electron Dev. 46 1500

    [16]

    Turuvekere S, Karumuri N, Rahman A A 2013 IEEE Trans. Electron Dev. 60 3157

    [17]

    Nsele S D, Escotte L, Tartarin J, Piotrowicz S, Delage S L 2013 IEEE Trans. Electron Dev. 60 1372

    [18]

    Semra L, Telia A, Soltani A 2010 Surf. Interface Anal. 42 799

  • [1]

    Sun M, Zhang Y, Gao X, Tomas P 2017 IEEE Electron Dev. Lett. 38 509

    [2]

    Xue J S, Hao Y, Zhang J C, Zhou X W, Liu Z Y 2011 Appl. Phys. Lett. 98 113504

    [3]

    Xing W, Liu Z, Ranjan K, Tomas P 2018 IEEE Electron Dev. Lett. 39 947

    [4]

    Kuzmik J, Pozzovivo G, Abermann S, Carlin J F, Gonschorek M, Feltin E 2008 IEEE Trans. Electron Dev. 55 937

    [5]

    Chung J W, Saadat O I, Tirado J M, Gao X 2009 IEEE Electron Dev. Lett. 30 904

    [6]

    Li W, Wang Q, Zhan X 2016 Semicond. Sci. Technol. 31 125003

    [7]

    Yuan Y, Wang L, Yu B, Shin B, Ahn J, Mcintyre P C 2011 IEEE Electron Dev. Lett. 32 485

    [8]

    Lin H C, Yang T, Sharifi H, Kin S K, Xuan Y 2007 Appl. Phys. Lett. 91 212101

    [9]

    Stemmer S, Chobpattana V, Rajan S 2012 Appl. Phys. Lett. 100 233510

    [10]

    Zhao J Z, Lin Z J, Corrigan T D, Wang Z, You Z D, Wang Z G 2007 Appl. Phys. Lett. 91 173507

    [11]

    Stoklas R, Gregušová D, Novák J, Vescan A, Kordoš P 2008 Appl. Phys. Lett. 93 124103

    [12]

    Xie S, Yin J, Zhang S, Liu B, Zhou W, Feng Z 2009 Solid-State Electron. 53 1183

    [13]

    Shealy J R, Brown R J 2008 Appl. Phys. Lett. 92 032101

    [14]

    Miller E J, Dang X Z, Wieder H H, Asbeck P M, Yu E T, Sullivan G J 2000 J. Appl. Phys. 87 8070

    [15]

    Yang K J, Hu C 1999 IEEE Trans. Electron Dev. 46 1500

    [16]

    Turuvekere S, Karumuri N, Rahman A A 2013 IEEE Trans. Electron Dev. 60 3157

    [17]

    Nsele S D, Escotte L, Tartarin J, Piotrowicz S, Delage S L 2013 IEEE Trans. Electron Dev. 60 1372

    [18]

    Semra L, Telia A, Soltani A 2010 Surf. Interface Anal. 42 799

  • [1] 姜舟, 蒋雪, 赵纪军. 二维kagome晶格过渡金属酞菁基异质结的电子性质. 物理学报, 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [2] 尤明慧, 李雪, 李士军, 刘国军. 晶格匹配InAs/AlSb超晶格材料的分子束外延生长研究. 物理学报, 2023, 72(1): 014203. doi: 10.7498/aps.72.20221383
    [3] 闫大为, 吴静, 闫晓红, 李伟然, 俞道欣, 曹艳荣, 顾晓峰. 晶格匹配InAlN/GaN异质结肖特基接触反向电流的电压与温度依赖关系. 物理学报, 2021, 70(7): 077201. doi: 10.7498/aps.70.20201355
    [4] 陈谦, 李群, 杨莺. AlGaN插入层对InAlN/AlGaN/GaN异质结散射机制的影响. 物理学报, 2019, 68(1): 017301. doi: 10.7498/aps.68.20181663
    [5] 黄诗浩, 谢文明, 汪涵聪, 林光杨, 王佳琪, 黄巍, 李成. 双能谷效应对N型掺杂Si基Ge材料载流子晶格散射的影响. 物理学报, 2018, 67(4): 040501. doi: 10.7498/aps.67.20171413
    [6] 王一, 杨晨, 郭祥, 王继红, 刘雪飞, 魏节敏, 郎啟智, 罗子江, 丁召. Al0.17Ga0.83As/GaAs(001)薄膜退火过程的热力学分析. 物理学报, 2018, 67(8): 080503. doi: 10.7498/aps.67.20172718
    [7] 林蔺, 焦利光, 陈博, 康庄庄, 马玉刚, 汪宏年. 用数值模式匹配算法高效仿真轴对称型散射体海洋可控源电磁响应. 物理学报, 2017, 66(13): 139102. doi: 10.7498/aps.66.139102
    [8] 王现彬, 赵正平, 冯志红. N极性GaN/AlGaN异质结二维电子气模拟. 物理学报, 2014, 63(8): 080202. doi: 10.7498/aps.63.080202
    [9] 闫大为, 李丽莎, 焦晋平, 黄红娟, 任舰, 顾晓峰. 原子层沉积Al2O3/n-GaN MOS结构的电容特性. 物理学报, 2013, 62(19): 197203. doi: 10.7498/aps.62.197203
    [10] 王巍, 罗小彬, 杨丽洁, 张宁. 层状磁电复合材料谐振频率下的巨磁电容效应. 物理学报, 2011, 60(10): 107702. doi: 10.7498/aps.60.107702
    [11] 陈剑辉, 刘保亭, 赵庆勋, 崔永亮, 赵冬月, 郭哲. 含铜铁电电容器SrRuO3/Pb(Zr0.4Ti0.6)O3/SrRuO3/Ni-Al/Cu/Ni-Al/SiO2/Si异质结的研究. 物理学报, 2011, 60(11): 117701. doi: 10.7498/aps.60.117701
    [12] 王平亚, 张金风, 薛军帅, 周勇波, 张进成, 郝跃. 晶格匹配InAlN/GaN和InAlN/AlN/GaN材料二维电子气输运特性研究. 物理学报, 2011, 60(11): 117304. doi: 10.7498/aps.60.117304
    [13] 张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃. 高电子迁移率晶格匹配InAlN/GaN材料研究. 物理学报, 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [14] 丁国建, 郭丽伟, 邢志刚, 陈耀, 徐培强, 贾海强, 周均铭, 陈弘. 使用AlN/GaN超晶格势垒层生长高Al组分AlGaN/GaN HEMT结构. 物理学报, 2010, 59(8): 5724-5729. doi: 10.7498/aps.59.5724
    [15] 邢艳辉, 邓军, 韩军, 李建军, 沈光地. 引入n型InGaN/GaN超晶格层提高量子阱特性研究. 物理学报, 2009, 58(1): 590-595. doi: 10.7498/aps.58.590
    [16] 林 敏, 毛谦敏, 郑永军, 李东升. 随机共振控制的频率匹配方法. 物理学报, 2007, 56(9): 5021-5025. doi: 10.7498/aps.56.5021
    [17] 张开骁, 陈敦军, 沈 波, 陶亚奇, 吴小山, 徐 金, 张 荣, 郑有炓. 表面钝化前后Al0.22Ga0.78N/GaN异质结势垒层应变的高温特性. 物理学报, 2006, 55(3): 1402-1406. doi: 10.7498/aps.55.1402
    [18] 刘江涛, 周云松, 王福合, 顾本源. 不同晶格光子晶体异质结的界面传导模. 物理学报, 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
    [19] 周玉刚, 沈波, 刘杰, 周慧梅, 俞慧强, 张荣, 施毅, 郑有炓. 用肖特基电容电压特性数值模拟法确定调制掺杂AlxGa1-xN/GaN异质结中的极化电荷. 物理学报, 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
    [20] 朱莳通. 拍波激光加速器中的频率匹配. 物理学报, 1989, 38(7): 1167-1171. doi: 10.7498/aps.38.1167
计量
  • 文章访问数:  5893
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-29
  • 修回日期:  2018-11-01
  • 刊出日期:  2019-12-20

/

返回文章
返回