搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究

颜送灵 唐黎明 赵宇清

引用本文:
Citation:

不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究

颜送灵, 唐黎明, 赵宇清

First-principles study of the electronic properties and magnetism of LaMnO3/SrTiO3 heterointerface with the different component thickness ratios

Yan Song-Ling, Tang Li-Ming, Zhao Yu-Qing
PDF
导出引用
  • 基于密度泛函理论的第一性原理计算, 研究了(LaMnO3)n/(SrTiO3)m(LMO/STO)异质界面的离子弛豫、电子结构和磁性质. 研究表明, 不同组分厚度比及界面类型时, 离子弛豫程度各不相同, 并且界面处的电子性质受此影响较大. 对于n型界面, 当LMO的厚度达到6个单胞层后, 电子会从LMO转移到STO, 转移的电子占据界面层Ti原子的3d电子轨道, 界面处出现二维电子气. 对于n型界面(LMO)n/(STO)2, 随着LMO厚度数n的增加, 由离子弛豫造成的结构畸变减小, 而界面处Ti原子周围电子的态密度和自旋极化却增大, 表明高厚度比的n型界面有利于产生高迁移率的二维电子气和自旋极化. 而对于p型(LMO)2/(STO)8界面, 在STO一侧基本没有结构畸变, 界面处无电子转移和自旋极化现象. 通过计算平均静电势发现n型和p型界面处的势差大小相差2 eV, 解释了p型界面不容易发生电荷转移的原因.
    Using first-principles calculations based on density functional theory and projector augmented wave method, we investigate the thickness ratio dependences of the ionic relaxation, electronic structure, and magnetism of (LaMnO3)n/(SrTiO3)m heterostructure. Polar and nonpolar oxide interfaces have become a hot point of research in condensed matter physics; in this system, polar discontinuity at the interface may cause charge transfer to occur at interfaces between Mott and band insulating perovskites. Here, we consider two types of interfaces, namely n-type (LaO)+/(TiO2)0 and p-type (MnO2)-/(SrO)0 interfaces. The results show that the different thickness ratios and interface-types lead to different degrees of ionic relaxation, inducing charges of different concentrations to transfer. The distortions of the oxygen octahedra are found to vary distinctly with the component thickness ratio (n:m), which is consistent with recent experimental results. Furthermore, both n and m are found to strongly affect the charge transfer. When the thickness of LaMnO3 reaches a thickness of critical layers of 6 unit cells, the Mn-eg electrons are transferred to the Ti-dxy orbitals of SrTiO3, which is caused by the interface polar discontinuity. Two-dimensional electron gas with high mobility is formed in an n-type (LaMnO3)n/(SrTiO3)2 interface region. Meanwhile, spin polarization of interface-layer Ti atoms becomes more obvious, which induces Ti magnetic moment to be close to 0.05B. We find that Mn magnetic moment of 3.9B is a larger value at the n-type interface than at the p-type interface. The above studied heterostructure favours ferromagnetic spin ordering rather than the A-type antiferromagnetic spin ordering of bulk LaMnO3. Whether n-type or p-type (LaMnO3)2/(SrTiO3)8 interfaces consist of ultrathin LaMnO3 layer and thicker SrTiO3 layer, there is no structure distortion at the side of SrTiO3 basically, which is in agreement with experimental results. Stronger interface-layer polar distortions for p-type interface prevent the electron transfer from occurring, and spin polarization of Ti cannot occur either. In addition, it is found that the two types of interfaces possess 2 eV potential difference by comparing the average electrostatic potential, thus charge transfer is more difficult to occur in the p-type interface than in the n-type interface.
      通信作者: 唐黎明, lmtang@semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11347022)资助的课题.
      Corresponding author: Tang Li-Ming, lmtang@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11347022).
    [1]

    Jilili J, Cossu F, Schwingenschlögl U 2015 Sci. Rep. 5 13762

    [2]

    Yamada H, Ogawa Y, Ishii Y 2004 Science 305 646

    [3]

    Wang Z G, Xiang J Y, Xu B, Wan S L, Lu Y, Zhang X F 2015 Acta Phys. Sin. 64 067501 (in Chinese) [王志国, 向俊尤, 徐宝, 万素磊, 鲁毅, 张雪峰 2015 物理学报 64 067501]

    [4]

    Ohtomo A, Muller D A, Grazul J L 2002 Nature 419 378

    [5]

    Li L M, Ning F, Tang L M 2015 Acta Phys. Sin. 64 227303 (in Chinese) [李立明, 宁锋, 唐黎明 2015 物理学报 64 227303]

    [6]

    Tokura Y, Hwang H Y 2008 Nat. Mater. 7 694

    [7]

    Oja R, Tyunina M, Yao L, Pinomaa T, Kocourek T, Dejneka A, Stupakov O 2012 Phys. Rev. Lett. 109 127207

    [8]

    Reiner J W, Wallker F J, Ahn C H 2009 Science 323 1018

    [9]

    Okamoto S, Millis A J 2005 Phys. Rev. B 72 235108

    [10]

    Li D F, Wang Y, Dai J Y 2011 Appl. Phys. Lett. 98 122108

    [11]

    Ohtomo A, Hwang H Y, Bjorkholm J E 2004 Nature 427 423

    [12]

    Wang Y, Niranjan M K, Jaswal S S 2009 Phys. Rev. Lett. 103 016804

    [13]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [14]

    Pentcheva R, Pickett W E 2009 Phys. Rev. Lett. 102 107602

    [15]

    Jang H W, Felker D A, Bark C W, Wang Y, Niranjan M K 2011 Science 331 886

    [16]

    Gabriel S S, Mariona C, Maria V, Garcia-Barriocanal J, Stephen J 2014 Microsc. Microanal. 20 825

    [17]

    Shah A B, Ramasse Q M, Zhai X F, Wen J G 2010 Adv. Mater. 22 1156

    [18]

    Garcia-Barriocanal J, Cezar J C, Bruno F Y, Thakur P, Brookes N B, Utfeld C, Rivera-Calzada A 2010 Nat. Commun. 1 1080

    [19]

    Cossu F, Singh N, Schwingenschlögl U 2013 Appl. Phys. Lett. 102 042401

    [20]

    Liu H M, Ma C Y, Zhou P X, Dong S, Liu J M 2013 J. Appl. Phys. 113 17D902

    [21]

    Zhai X F, Cheng L, Liu Y, Schlepz C M, Dong S, Li H, Zhang X Q, Chu S Q, Zheng L R, Zhang J, Zhao A D, Hong H, Zheng C G 2014 Nat. Commun. 5 4283

    [22]

    Du Y L, Wang C L, Li J C 2015 Chin. Phys. B 24 037301

    [23]

    Du Y L, Wang C L, Li J C 2014 Chin. Phys. B 23 087302

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. B 77 3865

    [26]

    Blöchl P E, Ashkin A 1994 Phys. Rev. B 50 17953

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Yang Z, Huang Z, Ye L 1999 Phys. Rev. B 60 15674

    [29]

    Yamamoto R, Bell C, Hikita Y 2011 Phys. Rev. Lett. 107 036104

    [30]

    Pauli S A, Leake S J, Delley B 2011 Phys. Rev. Lett. 106 036101

    [31]

    Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106

    [32]

    Aezami A, Abolhassani M, Elahi M 2014 J. Alloys. Compd. 587 778

    [33]

    Garcia-Barriocanal J, Bruno F Y, Rivera-Calzada A, Sefrioui Z, Nemes N M, Garcia-Hernandez M, Rubio-Zuazo J 2010 Adv. Mater. 22 627

    [34]

    Woo S C, Jeong D W, Seo S S A, Lee Y S 2011 Phys. Rev. B 83 195113

    [35]

    Hou F, Cai T Y, Ju S 2012 ACS Nano 6 8552

    [36]

    Nanda B R K, Satpathy S 2009 Phys. Rev. B 79 054428

  • [1]

    Jilili J, Cossu F, Schwingenschlögl U 2015 Sci. Rep. 5 13762

    [2]

    Yamada H, Ogawa Y, Ishii Y 2004 Science 305 646

    [3]

    Wang Z G, Xiang J Y, Xu B, Wan S L, Lu Y, Zhang X F 2015 Acta Phys. Sin. 64 067501 (in Chinese) [王志国, 向俊尤, 徐宝, 万素磊, 鲁毅, 张雪峰 2015 物理学报 64 067501]

    [4]

    Ohtomo A, Muller D A, Grazul J L 2002 Nature 419 378

    [5]

    Li L M, Ning F, Tang L M 2015 Acta Phys. Sin. 64 227303 (in Chinese) [李立明, 宁锋, 唐黎明 2015 物理学报 64 227303]

    [6]

    Tokura Y, Hwang H Y 2008 Nat. Mater. 7 694

    [7]

    Oja R, Tyunina M, Yao L, Pinomaa T, Kocourek T, Dejneka A, Stupakov O 2012 Phys. Rev. Lett. 109 127207

    [8]

    Reiner J W, Wallker F J, Ahn C H 2009 Science 323 1018

    [9]

    Okamoto S, Millis A J 2005 Phys. Rev. B 72 235108

    [10]

    Li D F, Wang Y, Dai J Y 2011 Appl. Phys. Lett. 98 122108

    [11]

    Ohtomo A, Hwang H Y, Bjorkholm J E 2004 Nature 427 423

    [12]

    Wang Y, Niranjan M K, Jaswal S S 2009 Phys. Rev. Lett. 103 016804

    [13]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [14]

    Pentcheva R, Pickett W E 2009 Phys. Rev. Lett. 102 107602

    [15]

    Jang H W, Felker D A, Bark C W, Wang Y, Niranjan M K 2011 Science 331 886

    [16]

    Gabriel S S, Mariona C, Maria V, Garcia-Barriocanal J, Stephen J 2014 Microsc. Microanal. 20 825

    [17]

    Shah A B, Ramasse Q M, Zhai X F, Wen J G 2010 Adv. Mater. 22 1156

    [18]

    Garcia-Barriocanal J, Cezar J C, Bruno F Y, Thakur P, Brookes N B, Utfeld C, Rivera-Calzada A 2010 Nat. Commun. 1 1080

    [19]

    Cossu F, Singh N, Schwingenschlögl U 2013 Appl. Phys. Lett. 102 042401

    [20]

    Liu H M, Ma C Y, Zhou P X, Dong S, Liu J M 2013 J. Appl. Phys. 113 17D902

    [21]

    Zhai X F, Cheng L, Liu Y, Schlepz C M, Dong S, Li H, Zhang X Q, Chu S Q, Zheng L R, Zhang J, Zhao A D, Hong H, Zheng C G 2014 Nat. Commun. 5 4283

    [22]

    Du Y L, Wang C L, Li J C 2015 Chin. Phys. B 24 037301

    [23]

    Du Y L, Wang C L, Li J C 2014 Chin. Phys. B 23 087302

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. B 77 3865

    [26]

    Blöchl P E, Ashkin A 1994 Phys. Rev. B 50 17953

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Yang Z, Huang Z, Ye L 1999 Phys. Rev. B 60 15674

    [29]

    Yamamoto R, Bell C, Hikita Y 2011 Phys. Rev. Lett. 107 036104

    [30]

    Pauli S A, Leake S J, Delley B 2011 Phys. Rev. Lett. 106 036101

    [31]

    Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106

    [32]

    Aezami A, Abolhassani M, Elahi M 2014 J. Alloys. Compd. 587 778

    [33]

    Garcia-Barriocanal J, Bruno F Y, Rivera-Calzada A, Sefrioui Z, Nemes N M, Garcia-Hernandez M, Rubio-Zuazo J 2010 Adv. Mater. 22 627

    [34]

    Woo S C, Jeong D W, Seo S S A, Lee Y S 2011 Phys. Rev. B 83 195113

    [35]

    Hou F, Cai T Y, Ju S 2012 ACS Nano 6 8552

    [36]

    Nanda B R K, Satpathy S 2009 Phys. Rev. B 79 054428

  • [1] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [2] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [3] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [4] 沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文. Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究. 物理学报, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [5] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究. 物理学报, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [6] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [7] 周树兰, 赵显, 江向平, 韩晓东. 立方相Na1/2Bi1/2TiO3和K1/2Bi1/2TiO3的电子结构和结构不稳定性的第一性原理比较研究. 物理学报, 2014, 63(16): 167101. doi: 10.7498/aps.63.167101
    [8] 邓娇娇, 刘波, 顾牡. LuI3 闪烁晶体的第一性原理研究. 物理学报, 2013, 62(6): 063101. doi: 10.7498/aps.62.063101
    [9] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算. 物理学报, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [10] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [11] 周静, 刘存金, 李儒, 陈文. 异质界面对Ca(Mg1/3Nb2/3)O3/CaTiO3叠层薄膜结构和介电性能的影响. 物理学报, 2012, 61(6): 067401. doi: 10.7498/aps.61.067401
    [12] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [13] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [14] 赵宇宏, 黄志伟, 李爱红, 穆彦青, 杨伟明, 侯华, 韩培德, 张素英. Nb在Ni3Al中取代行为及合金化效应的第一性原理研究. 物理学报, 2011, 60(4): 047103. doi: 10.7498/aps.60.047103
    [15] 刘凤丽, 蒋刚, 白丽娜, 孔凡杰. Bi2Te3-xSex(x≤3)同晶化合物电子结构的第一性原理研究. 物理学报, 2011, 60(3): 037104. doi: 10.7498/aps.60.037104
    [16] 朱兴华, 张海波, 杨定宇, 王治国, 祖小涛. C/SiC纳米管异质结电子结构的第一性原理研究. 物理学报, 2010, 59(11): 7961-7965. doi: 10.7498/aps.59.7961
    [17] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究. 物理学报, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [18] 祝国梁, 疏达, 戴永兵, 王俊, 孙宝德. Si在TiAl3中取代行为的第一性原理研究. 物理学报, 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
    [19] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
计量
  • 文章访问数:  5633
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-23
  • 修回日期:  2016-01-21
  • 刊出日期:  2016-04-05

/

返回文章
返回