搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于第一性原理对碱金属钒酸盐AV3O8 (A = Li, Na, K, Rb)大双折射率的机理研究

万俯宏 丁家福 和志豪 王云杰 崔健 李佳郡 苏欣 黄以能

引用本文:
Citation:

基于第一性原理对碱金属钒酸盐AV3O8 (A = Li, Na, K, Rb)大双折射率的机理研究

万俯宏, 丁家福, 和志豪, 王云杰, 崔健, 李佳郡, 苏欣, 黄以能

First-principles study of mechanism of high birefringence in alkali metal vanadates AV3O8 (A = Li, Na, K, Rb)

WAN Fuhong, DING Jiafu, HE Zhihao, WANG Yunjie, CUI Jian, LI Jiajun, SU Xin, HUANG Yineng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 双折射作为光学晶体的基本参数, 在相位调制、分光、偏振等许多光学应用中发挥着重要的作用, 是激光科学与技术中的关键材料, 而钒酸盐多面体较大双折射率为开发双折射材料提供了一条新的途径. 本文采用第一性原理研究4种碱金属钒酸盐AV3O8 (A = Li, Na, K, Rb)晶体的能带结构、态密度、电子局域函数和双折射率. 计算结果表明碱金属钒酸盐AV3O8 (A = Li, Na, K, Rb)均为间接带隙, 带隙值分别为1.695, 1.898, 1.965和1.984 eV. 对态密度分析可知在费米能级附近, 碱金属钒酸盐AV3O8 (A = Li, Na, K, Rb)导带底主要被V原子的最外层轨道所占据, 价带顶的主要贡献者是O-2p轨道, O原子的2p轨道还在费米能级附近表现出较强的局域性, 结合HOMO和LUMO以及布居分析说明在4种晶体中主要由V-3p轨道与O的2p轨道成键, V—O表现为强的共价键. 通过对晶体结构与光学性质关系的分析, 晶体较大的各向异性, 较高水平的响应电子分布各向异性指数, 阴离子基团的特殊排列和V-3d和O-2p轨道形成的d-p轨道杂化都是导致其大双折射率的主要原因, 经计算所得LiV3O8, NaV3O8, KV3O8和RbV3O8在1064 nm处的双折射率分别为0.28, 0.30, 0.28和0.27.
    Birefringence, as a fundamental parameter of optical crystals, plays a vital role in numerous optical applications such as phase modulation, light splitting, and polarization, thereby making them key materials in laser science and technology. The significant birefringence of vanadate polyhedra provides a new approach for developing birefringent materials. In this study, first-principles calculations are used to investigate the band structures, density of states (DOS), electron localization functions (ELFs), and birefringence behaviors of four alkali metal vanadate crystals AV3O8 (A = Li, Na, K, Rb). The computational results show that all AV3O8 crystals have indirect band gaps, whose values are 1.695, 1.898, 1.965, and 1.984 eV for LiV3O8, NaV3O8, KV3O8, and RbV3O8, respectively. The DOS analysis reveals that near the Fermi level, the conduction band minima (CBM) in these vanadates are predominantly occupied by the outermost orbitals of V atoms, while the valence band maxima (VBM) are primarily contributed by O-2p orbitals. The O-2p orbitals also exhibit strong localization near the Fermi level. Combined with highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) analysis and population analysis, the bonding interactions in all four crystals mainly arise from the hybridization between V-3p and O-2p orbitals, indicating strong covalent bonding in V—O bonds. Through the analysis of structure-property relationships, the large birefringence is primarily attributed to the pronounced structural anisotropy, high anisotropy index of responsive electron distribution, unique arrangement of anionic groups, and d-p orbital hybridization between V-3d and O-2p orbitals. The calculated birefringence values at a wavelength of 1064 nm for LiV3O8, NaV3O8, KV3O8, and RbV3O8 are 0.28, 0.30, 0.28, and 0.27, respectively.
  • 图 1  四种物质的晶体结构 (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8

    Fig. 1.  Four types of crystal structures of substances: (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8.

    图 2  四种化合物的能带结构图 (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8

    Fig. 2.  Band structure diagrams of four compounds: (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8.

    图 3  四种化合物的态密度图及HOMO&LUMO (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8

    Fig. 3.  Density of states diagrams for four compounds and HOMO&LUMO: (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8.

    图 4  四种化合物的电子局域函数 (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8

    Fig. 4.  Electron localization function of four compounds: (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8.

    图 5  双折射原理示意图

    Fig. 5.  Schematic diagram of the principle of birefringence.

    图 6  四种化合物的双折射率 (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8

    Fig. 6.  Birefringence of four compounds: (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8.

    图 7  四种化合物的杨氏模量各向异性三维图 (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8

    Fig. 7.  3D plot of Young’s modulus anisotropy for four compounds: (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8.

    表 1  结构优化前后的AV3O8 (A = Li, Na, K, Rb)晶格参数

    Table 1.  Lattice parameters of AV3O8 (A = Li, Na, K, Rb) before and after geometry optimization.

    Compounds a/nm b/nm c/nm β/(°) b/c Error V/nm3
    LiV3O8 Before 0.668 0.360 1.203 107.830 0.299 1.67% 0.275
    After 0.695 0.358 1.219 108.397 0.294 0.288
    NaV3O8 Before 0.512 0.855 0.744 101.993 1.148 3.92% 0.319
    After 0.531 0.877 0.795 113.173 1.103 0.350
    KV3O8 Before 0.500 0.839 0.767 98.135 1.094 4.84% 0.319
    After 0.516 0.865 0.831 103.812 1.041 0.361
    RbV3O8 Before 0.501 0.842 0.791 96.943 1.064 2.16% 0.331
    After 0.516 0.865 0.831 100.581 1.041 0.365
    下载: 导出CSV

    表 2  AV3O8 (A = Li, Na, K, Rb)的布居数 (Mulliken)

    Table 2.  Population of AV3O8 (A = Li, Na, K, Rb) (Mulliken).

    Substance Species Atomic population Total Charge/e Bond Bond
    population
    Length/Å
    s p d
    LiV3O8 Li –0.20 0.00 0.00 –0.20 1.20 Li—O –0.06 2.16
    V 0.20 0.31 3.20 3.71 1.29 O—V 0.01 2.86
    O 1.90 4.68 0.00 6.59 –0.59 O—V 0.92 1.66
    NaV3O8 Na 2.07 5.95 0.00 8.01 0.99 Na—O 0.02 2.38
    V 0.15 0.33 3.18 3.66 1.34 O—V 0.92 1.64
    O 1.89 4.72 0.00 6.62 –0.62 O—V 0.33 1.99
    KV3O8 K 2.03 5.91 0.00 7.95 1.05 K—O 0.04 2.72
    V 0.15 0.34 3.32 3.72 1.28 O—V 0.97 1.64
    O 1.89 4.74 0.00 6.63 –0.63 O—V 0.33 1.98
    RbV3O8 Rb 2.04 5.86 0.00 7.90 1.10 Rb—O 0.04 2.97
    V 0.16 0.35 3.23 3.74 1.26 O—V 0.98 1.64
    O 1.89 4.74 0.00 6.64 –0.64 O—V 0.34 1.98
    下载: 导出CSV

    表 3  AV3O8 (A = Li, Na, K, Rb)的响应电子分布的REDA

    Table 3.  REDA of AV3O8 (A = Li, Na, K, Rb) of the electron distribution.

    CompoundsGroupsδΔn
    LiV3O8VO40.0110.28
    NaV3O8V3O80.0190.30
    KV3O8V3O80.0130.28
    RbV3O8V3O80.0120.27
    下载: 导出CSV
  • [1]

    Pedrotti F L, Pedrotti L M, Pedrotti L S 2018 Introduction to optics (England: Cambridge University Press) pp333–360

    [2]

    Li X Z, Wang C, Chen X L, Li H, Jia L S, Wu L, Du Y X, Xu Y P 2004 Inorg. Chem. 43 8555Google Scholar

    [3]

    Nomura H, Furutono Y 2008 Microelectron. Eng. 85 1671Google Scholar

    [4]

    Aoki K, Miyazaki H T, Hirayama H 2003 Nat. Mater. 2 117Google Scholar

    [5]

    Lancry M, Desmarchelier R, Cook K, Poumellec B, Canning J 2014 Micromachines-Basel 5 825Google Scholar

    [6]

    Li R 2013 Z. Krist-Cryst. Mater. 228 526

    [7]

    Levy M, Jalali A A, Huang X 2009 J. Mater. Sci. Mater. El. 20 43

    [8]

    Zhang H, Zhang M, Pan S L, Yang Z H, Wang Z, Bian Q, Hou X L, Yu H W, Zhang F F, Wu K, Yang F, Peng Q J, Xu Z Y, Chang K B, Poeppelmeier K R 2015 Cryst. Growth Des. 15 523Google Scholar

    [9]

    Ghosh G 1999 Opt. Commun. 163 95Google Scholar

    [10]

    Luo H, Tkaczyk T, Sampson R, Dereniak E L 2006 Proc. SPIE 6119 136

    [11]

    Guoqing Z, Jun X, Xingda C, Heyu Z, Siting W, Ke X, Fuxi G 1998 J. Cryst. Growth 191 517Google Scholar

    [12]

    Appel R, Dyer C D, Lockwood J N 2002 Appl. Opt. 41 2470Google Scholar

    [13]

    Cyranoski D 2009 Nature 457 953Google Scholar

    [14]

    Krainer L, Paschotta R, Lecomte S, Moser M, Weingarten K J, Keller U 2002 IEEE J. Quantum Electron. 38 1331Google Scholar

    [15]

    Lisinetskii V A, Grabtchiko A S, Demidovich A A, Burakevich V N, Orlovich V A, Titov A N 2007 Appl. Phys. B 88 499Google Scholar

    [16]

    Vodchits A I, Orlovich V A, Apanasevich P A 2012 J. Appl. Spectrosc. 78 918Google Scholar

    [17]

    Yu H, Liu J, Zhang H, Kaminskii A A, Wang Z, Wang J 2014 Laser Photonics Rev. 8 847Google Scholar

    [18]

    Lei B H, Kong Q, Yang Z H, Yang Y, Wang Y J, Pan S L 2016 J. Mater. Chem. C 4 6295Google Scholar

    [19]

    Li K X, Zhang X Y, Chai B Q, Yu H W, Hu Z G, Wang J Y, Wu Y C, Wu H P 2025 Chem. Eur. J. 31 e202403515Google Scholar

    [20]

    Li K X, Wu H P, Yu H W, Hu Z G, Wang J Y, Wu Y C 2024 Chem. Commun. 60 12734Google Scholar

    [21]

    Lei B H, Yang Z H, Pan S L 2017 Chem. Commun. 53 2818Google Scholar

    [22]

    Huang Y, Zhang X Y, Zhao S G, Mao J G, Yang B P 2024 J. Mater. Chem. C 12 7286Google Scholar

    [23]

    Zhang S Z, Dong L F, Xu B H, Chen H G, Huo H, Liang F, Wu R, Gong P F, Lin Z S 2024 Inorg. Chem. Front. 11 5528Google Scholar

    [24]

    Cheng J L, Xu D, Lu J, Zhang F F, Hou X L 2023 Inorg. Chem. 62 20340Google Scholar

    [25]

    Chen Z X, Xu F, Cao S N, Li Z F, Yang HX, Ai X P, Cao Y L 2017 Small 13 1603148Google Scholar

    [26]

    Cao X Y, Yang Q, Zhu L M, Xie L L 2018 Ionics 24 943Google Scholar

    [27]

    Yang H, Li J, Zhang X G, Jin Y L 2008 J. Mater. Process. Technol. 207 265Google Scholar

    [28]

    Zhu L M, Li W X, Xie L L, Yang Q, Cao X Y 2019 Chem. Eng. J. 372 1056Google Scholar

    [29]

    Feng L L, Zhang W, Xu L N, Li D Z, Zhang Y Y 2020 Solid State Sci. 103 106187Google Scholar

    [30]

    Kim H J, Jo J H, Choi J U, Voronina N, Myung S T 2020 J. Power Sources 478 229072Google Scholar

    [31]

    Shchelkanova M, Shekhtman G, Pershina S, Vovkotrub E 2021 Materials 14 6976Google Scholar

    [32]

    Wu W Z, Ding J, Peng H R, Li G C 2011 Mater. Lett. 65 2155Google Scholar

    [33]

    Zhu J Z, Li X L, Chen S Y, Huang C M, Feng J J, Kuang Q, Fan Q H, Dong Y Z, Zhao Y M 2020 Electrochim. Acta 355 136799Google Scholar

    [34]

    Wadsley A D 1957 Acta Crystallogr. 10 261Google Scholar

    [35]

    Bachmann H G, Barnes W H 1962 Can Mineral 7 219

    [36]

    Baddour-Hadjean R, Boudaoud A, Bach S, Emery N, Pereira-Ramos J P 2014 Inorg. Chem. 53 1764Google Scholar

    [37]

    Oka Y, Yao T, Yamamoto N 1997 Mater. Res. Bull. 32 1201Google Scholar

    [38]

    Segall M D, Lindan P J D, Probert M J 2002 J. Phys. : Condens. Matter 14 2717Google Scholar

    [39]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos A J 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [40]

    Srivastava G P, Weaire D 1987 Adv. Phys. 36 463Google Scholar

    [41]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [42]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [43]

    Hamann D R, Schlüter M, Chiang C 1979 Phys. Rev. Lett. 43 1494Google Scholar

    [44]

    Kong Q R, Yang Y, Liu L L, Bian Q, Lei B H, Li L P, Yang Z H, Su Z, Pan S L 2016 J. Mater. Res. 31 488Google Scholar

    [45]

    阎守胜 2011 固体物理基础(北京: 北京大学出版社)

    Yan S S 2011 Fundamentals of Solid-state Physics (Beijing: Peking University Press

    [46]

    Hiscocks J, Frisch M J 2009 Gaussian 09: IOps Reference 9 (USA: Gaussian

    [47]

    Riffet V, Contreras-Garcıa J, Carrasco J, Calatayud M 2016 J. Phys. Chem. C 120 4259Google Scholar

    [48]

    Mulliken R S 1931 Chem. Rev. 9 347Google Scholar

    [49]

    张博, 王云杰, 齐亚杰, 和志豪, 丁家福, 苏欣 2024 人工晶体学报 53 999

    Zhang B, Wang Y J, Qi Y J, He Z H, Ding J F, Su X 2024 J. Synth. Cryst. 53 999

    [50]

    Su X, Wang Y J, Yang Z H, Huang X C, Pan S L, Li F, Lee M H 2013 J. Phys. Chem. C 117 14149Google Scholar

    [51]

    Tudi A, Han S, Yang Z H, Pan S L 2022 Coord. Chem. Rev. 459 214380Google Scholar

    [52]

    Wang X Y, Zhang B B, Yang D Q, Wang Y 2022 Dalton Trans. 51 14059Google Scholar

    [53]

    Bai S, Yang D Q, Zhang B B, Li L, Wang Y 2022 Dalton Trans. 51 3421Google Scholar

    [54]

    Chu Y, Wang H S, Chen Q, Su X, Chen Z X, Yang Z H, Li J J, Pan S L 2024 Adv. Funct. Mater. 34 2314933Google Scholar

    [55]

    Ding Y Y, Zhu M M, Wang J B, Li B, Qi H X, Liu L L, Chu Y Q 2024 Inorg. Chem. 63 20003Google Scholar

    [56]

    Lin L, Jiang X X, Wu C, Lin Z S, Huang Z P, Humphrey M G, Zhang C 2021 Dalton Trans. 50 7238Google Scholar

    [57]

    Lei B H, Yang Z H, Pan S L 2017 Chem. Commun. 53 2818Google Scholar

    [58]

    Su X, Chu Y, Yang Z H, Lei B H, Cao C, Wang Y, Pan S L 2020 J. Phys. Chem. C 124 24949Google Scholar

    [59]

    Bai S, Zhang X, Zhang B B, Li L, Wang Y J 2021 Inorg. Chem. 60 10006Google Scholar

    [60]

    Li S, Dou D, Chen C, Shi Q, Zhang B B, Wang Y J 2024 Inorg. Chem. 63 24076Google Scholar

    [61]

    Chu Y, Wang H S, Abutukadi T, Li Z, Mutailipu M, Su X, Yang Z H, Li J J, Pan S L 2023 Small 19 2305074Google Scholar

    [62]

    Liu H J, Liang C W, Liang W I, Chen H J, Yang J C, Peng C Y, Chu Y H 2012 Phys. Rev. B Condens. Matter Mater. Phys. 85 014104Google Scholar

    [63]

    王云杰, 和志豪, 丁家福, 苏欣 2025 人工晶体学报 54 85

    Wang Y J, He Z H, Ding J F, Su X 2025 J. Synth. Cryst. 54 85

    [64]

    丁家福, 和志豪, 王云杰, 苏欣 2025 人工晶体学报 54 95

    Ding J F, He Z H, Wang Y J, Su X 2025 J. Synth. Cryst. 54 95

    [65]

    储冬冬, 杨志华, 潘世烈 2024 人工晶体学报 53 1475

    Chu D D, Yang Z H, Pan S L 2024 J. Synth. Cryst. 53 1475

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.73.20231979
    [2] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算. 物理学报, doi: 10.7498/aps.68.20191246
    [3] 姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军. 第一性原理研究half-Heusler合金VLiBi和CrLiBi的半金属铁磁性. 物理学报, doi: 10.7498/aps.67.20181129
    [4] 姚仲瑜, 孙丽, 潘孟美, 孙书娟. 第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性. 物理学报, doi: 10.7498/aps.65.127501
    [5] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.64.147102
    [6] 杨彪, 王丽阁, 易勇, 王恩泽, 彭丽霞. C, N, O原子在金属V中扩散行为的第一性原理计算. 物理学报, doi: 10.7498/aps.64.026602
    [7] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 物理学报, doi: 10.7498/aps.64.187102
    [8] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.163102
    [9] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, doi: 10.7498/aps.62.167502
    [10] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, doi: 10.7498/aps.62.087104
    [11] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.62.037103
    [12] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究. 物理学报, doi: 10.7498/aps.62.247102
    [13] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.107102
    [14] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.60.047110
    [15] 程志梅, 王新强, 王风, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀. 三元化合物ZnCrS2电子结构和半金属铁磁性的第一性原理研究. 物理学报, doi: 10.7498/aps.60.096301
    [16] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, doi: 10.7498/aps.60.037102
    [17] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.58.4883
    [18] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, doi: 10.7498/aps.57.4434
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.56.5359
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, doi: 10.7498/aps.54.328
计量
  • 文章访问数:  310
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-24
  • 修回日期:  2025-03-06
  • 上网日期:  2025-03-26

/

返回文章
返回