-
双折射作为光学晶体的基本参数, 在相位调制、分光、偏振等许多光学应用中发挥着重要的作用, 是激光科学与技术中的关键材料, 而钒酸盐多面体较大双折射率为开发双折射材料提供了一条新的途径. 本文采用第一性原理研究4种碱金属钒酸盐AV3O8 (A = Li, Na, K, Rb)晶体的能带结构、态密度、电子局域函数和双折射率. 计算结果表明碱金属钒酸盐AV3O8 (A = Li, Na, K, Rb)均为间接带隙, 带隙值分别为1.695, 1.898, 1.965和1.984 eV. 对态密度分析可知在费米能级附近, 碱金属钒酸盐AV3O8 (A = Li, Na, K, Rb)导带底主要被V原子的最外层轨道所占据, 价带顶的主要贡献者是O-2p轨道, O原子的2p轨道还在费米能级附近表现出较强的局域性, 结合HOMO和LUMO以及布居分析说明在4种晶体中主要由V-3p轨道与O的2p轨道成键, V—O表现为强的共价键. 通过对晶体结构与光学性质关系的分析, 晶体较大的各向异性, 较高水平的响应电子分布各向异性指数, 阴离子基团的特殊排列和V-3d和O-2p轨道形成的d-p轨道杂化都是导致其大双折射率的主要原因, 经计算所得LiV3O8, NaV3O8, KV3O8和RbV3O8在1064 nm处的双折射率分别为0.28, 0.30, 0.28和0.27.Birefringence, as a fundamental parameter of optical crystals, plays a vital role in numerous optical applications such as phase modulation, light splitting, and polarization, thereby making them key materials in laser science and technology. The significant birefringence of vanadate polyhedra provides a new approach for developing birefringent materials. In this study, first-principles calculations are used to investigate the band structures, density of states (DOS), electron localization functions (ELFs), and birefringence behaviors of four alkali metal vanadate crystals AV3O8 (A = Li, Na, K, Rb). The computational results show that all AV3O8 crystals have indirect band gaps, whose values are 1.695, 1.898, 1.965, and 1.984 eV for LiV3O8, NaV3O8, KV3O8, and RbV3O8, respectively. The DOS analysis reveals that near the Fermi level, the conduction band minima (CBM) in these vanadates are predominantly occupied by the outermost orbitals of V atoms, while the valence band maxima (VBM) are primarily contributed by O-2p orbitals. The O-2p orbitals also exhibit strong localization near the Fermi level. Combined with highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) analysis and population analysis, the bonding interactions in all four crystals mainly arise from the hybridization between V-3p and O-2p orbitals, indicating strong covalent bonding in V—O bonds. Through the analysis of structure-property relationships, the large birefringence is primarily attributed to the pronounced structural anisotropy, high anisotropy index of responsive electron distribution, unique arrangement of anionic groups, and d-p orbital hybridization between V-3d and O-2p orbitals. The calculated birefringence values at a wavelength of 1064 nm for LiV3O8, NaV3O8, KV3O8, and RbV3O8 are 0.28, 0.30, 0.28, and 0.27, respectively.
-
Keywords:
- alkali metal vanadate /
- first principles /
- electronic structure /
- birefringence
-
表 1 结构优化前后的AV3O8 (A = Li, Na, K, Rb)晶格参数
Table 1. Lattice parameters of AV3O8 (A = Li, Na, K, Rb) before and after geometry optimization.
Compounds a/nm b/nm c/nm β/(°) b/c Error V/nm3 LiV3O8 Before 0.668 0.360 1.203 107.830 0.299 1.67% 0.275 After 0.695 0.358 1.219 108.397 0.294 0.288 NaV3O8 Before 0.512 0.855 0.744 101.993 1.148 3.92% 0.319 After 0.531 0.877 0.795 113.173 1.103 0.350 KV3O8 Before 0.500 0.839 0.767 98.135 1.094 4.84% 0.319 After 0.516 0.865 0.831 103.812 1.041 0.361 RbV3O8 Before 0.501 0.842 0.791 96.943 1.064 2.16% 0.331 After 0.516 0.865 0.831 100.581 1.041 0.365 表 2 AV3O8 (A = Li, Na, K, Rb)的布居数 (Mulliken)
Table 2. Population of AV3O8 (A = Li, Na, K, Rb) (Mulliken).
Substance Species Atomic population Total Charge/e Bond Bond
populationLength/Å s p d LiV3O8 Li –0.20 0.00 0.00 –0.20 1.20 Li—O –0.06 2.16 V 0.20 0.31 3.20 3.71 1.29 O—V 0.01 2.86 O 1.90 4.68 0.00 6.59 –0.59 O—V 0.92 1.66 NaV3O8 Na 2.07 5.95 0.00 8.01 0.99 Na—O 0.02 2.38 V 0.15 0.33 3.18 3.66 1.34 O—V 0.92 1.64 O 1.89 4.72 0.00 6.62 –0.62 O—V 0.33 1.99 KV3O8 K 2.03 5.91 0.00 7.95 1.05 K—O 0.04 2.72 V 0.15 0.34 3.32 3.72 1.28 O—V 0.97 1.64 O 1.89 4.74 0.00 6.63 –0.63 O—V 0.33 1.98 RbV3O8 Rb 2.04 5.86 0.00 7.90 1.10 Rb—O 0.04 2.97 V 0.16 0.35 3.23 3.74 1.26 O—V 0.98 1.64 O 1.89 4.74 0.00 6.64 –0.64 O—V 0.34 1.98 表 3 AV3O8 (A = Li, Na, K, Rb)的响应电子分布的REDA
Table 3. REDA of AV3O8 (A = Li, Na, K, Rb) of the electron distribution.
Compounds Groups δ Δn LiV3O8 VO4 0.011 0.28 NaV3O8 V3O8 0.019 0.30 KV3O8 V3O8 0.013 0.28 RbV3O8 V3O8 0.012 0.27 -
[1] Pedrotti F L, Pedrotti L M, Pedrotti L S 2018 Introduction to optics (England: Cambridge University Press) pp333–360
[2] Li X Z, Wang C, Chen X L, Li H, Jia L S, Wu L, Du Y X, Xu Y P 2004 Inorg. Chem. 43 8555
Google Scholar
[3] Nomura H, Furutono Y 2008 Microelectron. Eng. 85 1671
Google Scholar
[4] Aoki K, Miyazaki H T, Hirayama H 2003 Nat. Mater. 2 117
Google Scholar
[5] Lancry M, Desmarchelier R, Cook K, Poumellec B, Canning J 2014 Micromachines-Basel 5 825
Google Scholar
[6] Li R 2013 Z. Krist-Cryst. Mater. 228 526
[7] Levy M, Jalali A A, Huang X 2009 J. Mater. Sci. Mater. El. 20 43
[8] Zhang H, Zhang M, Pan S L, Yang Z H, Wang Z, Bian Q, Hou X L, Yu H W, Zhang F F, Wu K, Yang F, Peng Q J, Xu Z Y, Chang K B, Poeppelmeier K R 2015 Cryst. Growth Des. 15 523
Google Scholar
[9] Ghosh G 1999 Opt. Commun. 163 95
Google Scholar
[10] Luo H, Tkaczyk T, Sampson R, Dereniak E L 2006 Proc. SPIE 6119 136
[11] Guoqing Z, Jun X, Xingda C, Heyu Z, Siting W, Ke X, Fuxi G 1998 J. Cryst. Growth 191 517
Google Scholar
[12] Appel R, Dyer C D, Lockwood J N 2002 Appl. Opt. 41 2470
Google Scholar
[13] Cyranoski D 2009 Nature 457 953
Google Scholar
[14] Krainer L, Paschotta R, Lecomte S, Moser M, Weingarten K J, Keller U 2002 IEEE J. Quantum Electron. 38 1331
Google Scholar
[15] Lisinetskii V A, Grabtchiko A S, Demidovich A A, Burakevich V N, Orlovich V A, Titov A N 2007 Appl. Phys. B 88 499
Google Scholar
[16] Vodchits A I, Orlovich V A, Apanasevich P A 2012 J. Appl. Spectrosc. 78 918
Google Scholar
[17] Yu H, Liu J, Zhang H, Kaminskii A A, Wang Z, Wang J 2014 Laser Photonics Rev. 8 847
Google Scholar
[18] Lei B H, Kong Q, Yang Z H, Yang Y, Wang Y J, Pan S L 2016 J. Mater. Chem. C 4 6295
Google Scholar
[19] Li K X, Zhang X Y, Chai B Q, Yu H W, Hu Z G, Wang J Y, Wu Y C, Wu H P 2025 Chem. Eur. J. 31 e202403515
Google Scholar
[20] Li K X, Wu H P, Yu H W, Hu Z G, Wang J Y, Wu Y C 2024 Chem. Commun. 60 12734
Google Scholar
[21] Lei B H, Yang Z H, Pan S L 2017 Chem. Commun. 53 2818
Google Scholar
[22] Huang Y, Zhang X Y, Zhao S G, Mao J G, Yang B P 2024 J. Mater. Chem. C 12 7286
Google Scholar
[23] Zhang S Z, Dong L F, Xu B H, Chen H G, Huo H, Liang F, Wu R, Gong P F, Lin Z S 2024 Inorg. Chem. Front. 11 5528
Google Scholar
[24] Cheng J L, Xu D, Lu J, Zhang F F, Hou X L 2023 Inorg. Chem. 62 20340
Google Scholar
[25] Chen Z X, Xu F, Cao S N, Li Z F, Yang HX, Ai X P, Cao Y L 2017 Small 13 1603148
Google Scholar
[26] Cao X Y, Yang Q, Zhu L M, Xie L L 2018 Ionics 24 943
Google Scholar
[27] Yang H, Li J, Zhang X G, Jin Y L 2008 J. Mater. Process. Technol. 207 265
Google Scholar
[28] Zhu L M, Li W X, Xie L L, Yang Q, Cao X Y 2019 Chem. Eng. J. 372 1056
Google Scholar
[29] Feng L L, Zhang W, Xu L N, Li D Z, Zhang Y Y 2020 Solid State Sci. 103 106187
Google Scholar
[30] Kim H J, Jo J H, Choi J U, Voronina N, Myung S T 2020 J. Power Sources 478 229072
Google Scholar
[31] Shchelkanova M, Shekhtman G, Pershina S, Vovkotrub E 2021 Materials 14 6976
Google Scholar
[32] Wu W Z, Ding J, Peng H R, Li G C 2011 Mater. Lett. 65 2155
Google Scholar
[33] Zhu J Z, Li X L, Chen S Y, Huang C M, Feng J J, Kuang Q, Fan Q H, Dong Y Z, Zhao Y M 2020 Electrochim. Acta 355 136799
Google Scholar
[34] Wadsley A D 1957 Acta Crystallogr. 10 261
Google Scholar
[35] Bachmann H G, Barnes W H 1962 Can Mineral 7 219
[36] Baddour-Hadjean R, Boudaoud A, Bach S, Emery N, Pereira-Ramos J P 2014 Inorg. Chem. 53 1764
Google Scholar
[37] Oka Y, Yao T, Yamamoto N 1997 Mater. Res. Bull. 32 1201
Google Scholar
[38] Segall M D, Lindan P J D, Probert M J 2002 J. Phys. : Condens. Matter 14 2717
Google Scholar
[39] Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos A J 1992 Rev. Mod. Phys. 64 1045
Google Scholar
[40] Srivastava G P, Weaire D 1987 Adv. Phys. 36 463
Google Scholar
[41] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
Google Scholar
[42] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[43] Hamann D R, Schlüter M, Chiang C 1979 Phys. Rev. Lett. 43 1494
Google Scholar
[44] Kong Q R, Yang Y, Liu L L, Bian Q, Lei B H, Li L P, Yang Z H, Su Z, Pan S L 2016 J. Mater. Res. 31 488
Google Scholar
[45] 阎守胜 2011 固体物理基础(北京: 北京大学出版社)
Yan S S 2011 Fundamentals of Solid-state Physics (Beijing: Peking University Press
[46] Hiscocks J, Frisch M J 2009 Gaussian 09: IOps Reference 9 (USA: Gaussian
[47] Riffet V, Contreras-Garcıa J, Carrasco J, Calatayud M 2016 J. Phys. Chem. C 120 4259
Google Scholar
[48] Mulliken R S 1931 Chem. Rev. 9 347
Google Scholar
[49] 张博, 王云杰, 齐亚杰, 和志豪, 丁家福, 苏欣 2024 人工晶体学报 53 999
Zhang B, Wang Y J, Qi Y J, He Z H, Ding J F, Su X 2024 J. Synth. Cryst. 53 999
[50] Su X, Wang Y J, Yang Z H, Huang X C, Pan S L, Li F, Lee M H 2013 J. Phys. Chem. C 117 14149
Google Scholar
[51] Tudi A, Han S, Yang Z H, Pan S L 2022 Coord. Chem. Rev. 459 214380
Google Scholar
[52] Wang X Y, Zhang B B, Yang D Q, Wang Y 2022 Dalton Trans. 51 14059
Google Scholar
[53] Bai S, Yang D Q, Zhang B B, Li L, Wang Y 2022 Dalton Trans. 51 3421
Google Scholar
[54] Chu Y, Wang H S, Chen Q, Su X, Chen Z X, Yang Z H, Li J J, Pan S L 2024 Adv. Funct. Mater. 34 2314933
Google Scholar
[55] Ding Y Y, Zhu M M, Wang J B, Li B, Qi H X, Liu L L, Chu Y Q 2024 Inorg. Chem. 63 20003
Google Scholar
[56] Lin L, Jiang X X, Wu C, Lin Z S, Huang Z P, Humphrey M G, Zhang C 2021 Dalton Trans. 50 7238
Google Scholar
[57] Lei B H, Yang Z H, Pan S L 2017 Chem. Commun. 53 2818
Google Scholar
[58] Su X, Chu Y, Yang Z H, Lei B H, Cao C, Wang Y, Pan S L 2020 J. Phys. Chem. C 124 24949
Google Scholar
[59] Bai S, Zhang X, Zhang B B, Li L, Wang Y J 2021 Inorg. Chem. 60 10006
Google Scholar
[60] Li S, Dou D, Chen C, Shi Q, Zhang B B, Wang Y J 2024 Inorg. Chem. 63 24076
Google Scholar
[61] Chu Y, Wang H S, Abutukadi T, Li Z, Mutailipu M, Su X, Yang Z H, Li J J, Pan S L 2023 Small 19 2305074
Google Scholar
[62] Liu H J, Liang C W, Liang W I, Chen H J, Yang J C, Peng C Y, Chu Y H 2012 Phys. Rev. B Condens. Matter Mater. Phys. 85 014104
Google Scholar
[63] 王云杰, 和志豪, 丁家福, 苏欣 2025 人工晶体学报 54 85
Wang Y J, He Z H, Ding J F, Su X 2025 J. Synth. Cryst. 54 85
[64] 丁家福, 和志豪, 王云杰, 苏欣 2025 人工晶体学报 54 95
Ding J F, He Z H, Wang Y J, Su X 2025 J. Synth. Cryst. 54 95
[65] 储冬冬, 杨志华, 潘世烈 2024 人工晶体学报 53 1475
Chu D D, Yang Z H, Pan S L 2024 J. Synth. Cryst. 53 1475
计量
- 文章访问数: 310
- PDF下载量: 3
- 被引次数: 0