-
本文利用一维耦合腔光子晶体, 提出了一种声光可调谐平顶滤波器. 该滤波器利用声光效应, 通过改变超声波频率使一维耦合腔光子晶体透射谱的平顶滤波器的中心波长产生漂移, 从而实现可调谐的滤波功能. 基于传输矩阵法和声光效应理论, 建立了这种平顶滤波器的理论模型; 利用COMSOL软件, 对平顶滤波器的矩形度、通带带宽、插入损耗、可调谐特性、加工精度进行仿真研究. 研究结果表明, 通过施加频率为6—11 MHz的超声波, 可实现通带带宽为5—6 nm及中心波长在1514—1562 nm范围内可调谐的平顶滤波器; 在可调谐范围内通带带宽内插入损耗不超过2.23 dB, 最低仅为0.78 dB, 矩形度最低可达1.4; 加工误差在
$ \pm 10\;{\rm{nm}}$ 内平顶滤波器的中心波长、矩形度、插入损耗、通带带宽出现的偏差很小. 该平顶滤波器具有易于设计和集成、通带平坦、可调谐范围宽、通带带宽稳定、插入损耗低、品质因素高的特点, 在光开关、可调谐光纤激光器、光纤传感等光通信领域有重要应用.In this paper, an acousto-optic tunable flat top filter is proposed by using one-dimensional coupled-cavity photonic crystal, and two kinds of materials, i.e. magnesium fluoride and tellurium dioxide, are selected. Based on the theory of acousto-optic effect, the thickness and refractive index of one-dimensional coupled cavity photonic crystal acousto-optic medium are changed by varying the ultrasonic frequency. After the parameters of acousto-optic medium are changed, the central wavelength of flat top filter of transmission spectrum shifts toward the short wave direction, thus realizing tunable filtering function. Based on the transfer matrix method and the theory of acousto-optic effect, the theoretical model of the flat top filter is established. The rectangularity, passband bandwidth, insertion loss and tunability of flat top filter are simulated by COMSOL software. The results show that the tuning effect can be achieved by applying a certain frequency of ultrasound in the case of different ultrasonic amplitudes. The decreasing trends of transmittance are basically identical in the process of changing ultrasonic frequency in the case of different amplitudes. When the central wavelength of the flat top filter increases from 1510 nm to 1514 nm, the transmissivity corresponding to the central wavelength increases sharply from 37% to 90%; when the central wavelength of the flat top filter continuously increases to 1562 nm, the transmittance corresponding to the central wavelength increasing gently from 90% to 97% in the case of different amplitudes. Considering the transmissivity required to exceed 90% in the passband of flat top filter and the cost of ultrasonic generator, the ultrasonic wave with an amplitude of 0.4 nm is selected as the research object. The flat top filter with 5–6 nm central wavelength and 1514–1562 nm tunable flat top filter can be realized by applying ultrasonic wave with the frequency in a range of 6–11 MHz. In the tunable range, the highest insertion loss is only 2.23 dB, the lowest is only 0.78 dB, and the lowest rectangularity is 1.4. In a practical flat top filter with machining error within 5 cm, the deviation of center wavelength, rectangularity, insertion loss and passband bandwidth of flat top filter are all very small. The flat top filter has the characteristics of easy design and integration, flat passband, wide tunable range, stable passband bandwidth, low insertion loss and high quality factor. It has important applications in optical communication fields such as optical switch, tunable fiber laser and fiber sensing.-
Keywords:
- flat top filter /
- acousto-optic effect /
- one-dimensional coupled-cavity photonic crystals /
- tunable
[1] 林洪榕, 迟晓玲, 李利军 2001 激光与光电子学进展 11 31
Lin H R, Chi X L, Li L J 2001 Las. Optoelect. Prog. 11 31
[2] Liu J, Tao L 2019 Opt. Commun. 459 125038Google Scholar
[3] 顾培夫, 陈海星, 秦小芸, 刘旭 2005 物理学报 54 773Google Scholar
Gu P F, Chen H X, Qin X Y, Liu X 2005 Acta Phys. Sin. 54 773Google Scholar
[4] 常凌颖, 郑爱国, 宋晶晶 2018 应用光学 39 359Google Scholar
Chang L Y, Zheng A G, Song J J 2018 JAO 39 359Google Scholar
[5] Magdich L, Chamorovskii A, Shidlovskii V, Yakubovich S 2020 IEEE J. Quantum Electron 50 136Google Scholar
[6] 左涛, 赵新杰, 岳宏卫, 方兰, 阎少林, 王小坤 2009 物理学报 58 4194Google Scholar
Zuo T, Zhao X J, Yue H W, Fang L, Yan S L, Wang X K 2009 Acta Phys. Sin. 58 4194Google Scholar
[7] 张娟, 于帅, 郭森, 李雪 2011 中国激光 1 0105005Google Scholar
Juan Z, Shuai Y, Sen G, Xue L 2011 Chin J Las 1 0105005Google Scholar
[8] 赵辉 2009 硕士学位论文 (北京: 北京化工大学)
Zhao H 2009 M. S. Thesis (Beijing: Beijing University of Chemical Technology) (in Chinese)
[9] Suh W, Fan S 2003 Opt. Lett. 28 1763Google Scholar
[10] Rossi K, Baletto F 2017 Phys. Chem. Chem. Phys. 19 11057Google Scholar
[11] Okayama H, Onawa Y, Shimura D, Takahashi H, Yaegashi H, Sasaki H 2019 Electron. Lett. 55 107Google Scholar
[12] 戚志明, 梁文耀 2016 物理学报 65 074201Google Scholar
Qi Z M, Liang W Y 2016 Acta Phys. Sin. 65 074201Google Scholar
[13] Xiao L, Liu Y, Wang W, Geng F 2006 Chin. Phys. Lett. 23 645Google Scholar
[14] 李培丽, 高辉, 栾开智, 陆云清 2020 光谱学与光谱分析 40 650Google Scholar
Li P L, Gao H, Luan K Z, Lu Y Q 2020 Spectrosc. Spect. Anal. 40 650Google Scholar
[15] 李乾利, 温廷敦, 许丽萍 2013 物理学报 62 184212Google Scholar
Li Q L, Wen T D, Xu L P 2013 Acta Phys. Sin. 62 184212Google Scholar
[16] Bandyopadhyay R, Chakraborty R 2015 Opt. Eng. 54 117105Google Scholar
[17] 刘菲, 金杰, 李可佳 2011 光学学报 10 1023003Google Scholar
Liu F, Jin J, Li K J 2011 Acta Optic. Sin. 10 1023003Google Scholar
[18] Bai J, Li X, Zhou Q, Ni K, Wang X 2019 Opt. Express 27 10961Google Scholar
[19] Chung M, Wang S 2006 Jpn. J. Appl. Phys. 45 841Google Scholar
[20] Yang L, Zhou Y, Zhang C, Xiao Q 2017 Sci. Rep. 7 14237Google Scholar
[21] Inoue G, Wang P, Li H 2016 Opt. Express 24 5442Google Scholar
[22] 周婷婷, 谢卉, 孙莉萍, 胡强高 2011 光通信研究 37 23Google Scholar
Zhou T T, Xie H, Sun L P, Hu Q G 2011 Stud. Opt. Commun. 37 23Google Scholar
[23] Jiang F, Yu Y, Cao T, Tang H, Dong J, Zhang X 2016 Opt. Express 41 3301Google Scholar
-
图 3 不同超声波振幅下一维耦合腔光子晶体透射谱中心波长随超声波频率的改变 (a)平顶滤波器中心波长与超声波频率的关系图; (b)平顶滤波器中心波长与透射率的关系图
Fig. 3. Variation of the central wavelength of transmission spectrum of one-dimensional coupled-cavity photonic crystals with different ultrasonic amplitudes: (a) Relationship between the center wavelength of flat top filter and ultrasonic frequency; (b) relationship between the center wavelength of flat top filter and transmissivity.
图 8 一维光子晶体几何尺寸偏差与相关参数的关系 (a) 一维光子晶体几何尺寸偏差与平顶滤波器中心波长和通带带宽的关系图; (b) 一维光子晶体几何尺寸偏差与平顶滤波器矩形度的关系图; (c) 一维光子晶体几何尺寸偏差与平顶滤波器插入损耗的关系图
Fig. 8. Relationship between geometric size deviation and related parameters of one-dimensional photonic crystal: (a) Relationship between geometric dimension deviation of one dimensional photonic crystal and central wavelength or passband bandwidth of flat top filter; (b) relationship between the geometric size deviation of one-dimensional photonic crystal and rectangularity of flat top filter; (c) relationship between the geometric size deviation of one-dimensional photonic crystal and the insert loss of flat top filter
表 1 不同平顶滤波器性能参数比较
Table 1. Comparison of performance parameters of different flat top filters.
-
[1] 林洪榕, 迟晓玲, 李利军 2001 激光与光电子学进展 11 31
Lin H R, Chi X L, Li L J 2001 Las. Optoelect. Prog. 11 31
[2] Liu J, Tao L 2019 Opt. Commun. 459 125038Google Scholar
[3] 顾培夫, 陈海星, 秦小芸, 刘旭 2005 物理学报 54 773Google Scholar
Gu P F, Chen H X, Qin X Y, Liu X 2005 Acta Phys. Sin. 54 773Google Scholar
[4] 常凌颖, 郑爱国, 宋晶晶 2018 应用光学 39 359Google Scholar
Chang L Y, Zheng A G, Song J J 2018 JAO 39 359Google Scholar
[5] Magdich L, Chamorovskii A, Shidlovskii V, Yakubovich S 2020 IEEE J. Quantum Electron 50 136Google Scholar
[6] 左涛, 赵新杰, 岳宏卫, 方兰, 阎少林, 王小坤 2009 物理学报 58 4194Google Scholar
Zuo T, Zhao X J, Yue H W, Fang L, Yan S L, Wang X K 2009 Acta Phys. Sin. 58 4194Google Scholar
[7] 张娟, 于帅, 郭森, 李雪 2011 中国激光 1 0105005Google Scholar
Juan Z, Shuai Y, Sen G, Xue L 2011 Chin J Las 1 0105005Google Scholar
[8] 赵辉 2009 硕士学位论文 (北京: 北京化工大学)
Zhao H 2009 M. S. Thesis (Beijing: Beijing University of Chemical Technology) (in Chinese)
[9] Suh W, Fan S 2003 Opt. Lett. 28 1763Google Scholar
[10] Rossi K, Baletto F 2017 Phys. Chem. Chem. Phys. 19 11057Google Scholar
[11] Okayama H, Onawa Y, Shimura D, Takahashi H, Yaegashi H, Sasaki H 2019 Electron. Lett. 55 107Google Scholar
[12] 戚志明, 梁文耀 2016 物理学报 65 074201Google Scholar
Qi Z M, Liang W Y 2016 Acta Phys. Sin. 65 074201Google Scholar
[13] Xiao L, Liu Y, Wang W, Geng F 2006 Chin. Phys. Lett. 23 645Google Scholar
[14] 李培丽, 高辉, 栾开智, 陆云清 2020 光谱学与光谱分析 40 650Google Scholar
Li P L, Gao H, Luan K Z, Lu Y Q 2020 Spectrosc. Spect. Anal. 40 650Google Scholar
[15] 李乾利, 温廷敦, 许丽萍 2013 物理学报 62 184212Google Scholar
Li Q L, Wen T D, Xu L P 2013 Acta Phys. Sin. 62 184212Google Scholar
[16] Bandyopadhyay R, Chakraborty R 2015 Opt. Eng. 54 117105Google Scholar
[17] 刘菲, 金杰, 李可佳 2011 光学学报 10 1023003Google Scholar
Liu F, Jin J, Li K J 2011 Acta Optic. Sin. 10 1023003Google Scholar
[18] Bai J, Li X, Zhou Q, Ni K, Wang X 2019 Opt. Express 27 10961Google Scholar
[19] Chung M, Wang S 2006 Jpn. J. Appl. Phys. 45 841Google Scholar
[20] Yang L, Zhou Y, Zhang C, Xiao Q 2017 Sci. Rep. 7 14237Google Scholar
[21] Inoue G, Wang P, Li H 2016 Opt. Express 24 5442Google Scholar
[22] 周婷婷, 谢卉, 孙莉萍, 胡强高 2011 光通信研究 37 23Google Scholar
Zhou T T, Xie H, Sun L P, Hu Q G 2011 Stud. Opt. Commun. 37 23Google Scholar
[23] Jiang F, Yu Y, Cao T, Tang H, Dong J, Zhang X 2016 Opt. Express 41 3301Google Scholar
计量
- 文章访问数: 6138
- PDF下载量: 89
- 被引次数: 0