搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相变与悬链线连续相位调控的超构光子开关

宋睿睿 邓钦玲 周绍林

引用本文:
Citation:

基于相变与悬链线连续相位调控的超构光子开关

宋睿睿, 邓钦玲, 周绍林

Photonic meta-switch based on phase change and catenary-enabled continuous phase regulation

Song Rui-Rui, Deng Qin-Ling, Zhou Shao-Lin
PDF
HTML
导出引用
  • 针对超表面相位调控中的无源及离散特性, 本文拟将等宽悬链线超构单元与非易失性相变介质结合, 探索研究一种高效连续相位调制的双稳态相变有源波前超构开关. 首先在9—10 µm之间的宽带中红外波段实现了可动态切换的波前偏转开关; 当相变层在非晶态和晶态之间切换时, 入射光波前分别呈现异常反射和正常的镜面反射, 即“开” 或“关”两个偏转状态. 其次展示了一种可动态切换的高阶贝塞尔光束开关: 非晶态时, 9.6 µm波长垂直入射下交叉极化转换效率接近100%, 产生正常的几何相位调控与二阶贝塞尔聚焦, 即“开”态; 而相变至晶态时, 交叉极化与几何相位调控被“关”闭. 本质上, 自旋-轨道相互作用具有无色散的相位调控保证了该类器件的宽波段工作特性, 在未来的有源光电子集成、光通讯等应用领域中具有重大潜力.
    Aiming at the characteristics of passive and discrete phase regulations inherent in current metasurfaces, we combine optimized isowidth catenary with non-volatile phase change dielectrics and explore a type of bistable phase-change-based wavefront meta-switch of continuous phase tuning and active switching. First, the switchable wavefront deflector is demonstrated in the mid-IR range between 9 µm and 10 µm. Upon phase transition between crystalline state and amorphous state, the incident wave can be switched into anomalous reflection and regular reflection, i.e. the “on” state and “off ” state of wave deflection. Further, a type of dynamically tunable Bessel beam switch is demonstrated. In the amorphous state, the polarization conversion efficiency approaches to 100% with an incident wave of 9.6 µm in wavelength. Therefore, the normal geometrical phase and the second-order Bessel focus are switched “on”. However, the cross-polarization and geometrical phase are switched “off ” upon phase changing into crystallized state. Intrinsically, non-dispersive spin-orbit interaction ensures that this kind of device possesses the broadband characteristics. Such a devise has great potential applications in active optoelectronic integration, optical communications, etc.
      通信作者: 周绍林, eeslzhou@scut.edu.cn
      Corresponding author: Zhou Shao-Lin, eeslzhou@scut.edu.cn
    [1]

    Fan Z H, Deng Q L, Ma X Y, Zhou S L 2021 Materials 14 1272Google Scholar

    [2]

    Cai B G, Li Y B, Jiang W X, Cheng Q, Cui T J 2015 Opt. Express 23 7593Google Scholar

    [3]

    陈欢, 凌晓辉, 何武光, 李钱光, 易煦农 2017 物理学报 66 044203Google Scholar

    Chen H, Ling X H, He W G, Li Q G, Yi X N 2017 Acta Phys. Sin. 66 044203Google Scholar

    [4]

    Akram M R, Mehmood M Q, Tauqeer T, Rana A S, Rukhlenko I D, Zhu W R 2019 Opt. Express 27 9467Google Scholar

    [5]

    Luan J, Yang S K, Liu D M, Zhang M M 2020 Opt. Express 28 3732Google Scholar

    [6]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807Google Scholar

    [7]

    Zheng G, Muhlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [8]

    Zhang F, Pu M, Gao P, Jin J, Li X, Guo Y, Ma X, Luo J, Yu H, Luo X 2020 Adv. Sci. (Weinh) 7 1903156Google Scholar

    [9]

    Shen Y Z, Xue S, Yang J W, Hu S M 2021 Adv. Mater. Technol. 6 2001047Google Scholar

    [10]

    Khorasaninejad M, Capasso F 2017 Science 358 aam8100Google Scholar

    [11]

    Wang S, Wu P C, Su V C, et al. 2018 Nat. Nanotechnol. 13 227Google Scholar

    [12]

    Li Z, Wang C, Wang Y, Lu X, Guo Y, Li X, Ma X, Pu M, Luo X 2021 Opt. Express 29 9991Google Scholar

    [13]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [14]

    Sun S L, Yang K Y, Wang C M, et al. 2012 Nano. Letters 12 6223Google Scholar

    [15]

    易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203Google Scholar

    Liu T J, Xi X, Ling Y H, Sun Y L, Li Z W, Huang L R 2014 Acta Phys. Sin. 63 094203Google Scholar

    [16]

    Huang L, Chen X, Muhlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S 2012 Nano Lett. 12 5750Google Scholar

    [17]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [18]

    Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraji-Dana M, Faraon A 2018 Nat. Commun. 9 812Google Scholar

    [19]

    Ahmadivand A, Gerislioglu B, Ramezani Z 2019 Nanoscale 11 8091Google Scholar

    [20]

    Lee B, Park J, Han G H, Ee H S, Naylor C H, Liu W J, Johnson A T C, Agarwal R 2015 Nano Lett. 15 3646Google Scholar

    [21]

    Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403Google Scholar

    [22]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar

    [23]

    Gholipour B, Zhang J F, MacDonald K F, Hewak D W, Zheludev N I 2013 Adv. Mater. 25 3050Google Scholar

    [24]

    Li P, Yang X, Mass T W, Hanss J, Lewin M, Michel A K, Wuttig M, Taubner T 2016 Nat. Mater. 15 870Google Scholar

    [25]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824Google Scholar

    [26]

    Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M 2008 Nat. Mater. 7 972Google Scholar

    [27]

    Leitis A, Heßler A, Wahl S, Wuttig M, Taubner T, Tittl A, Altug H 2020 Adv. Funct. Mater. 30 2070122Google Scholar

    [28]

    Kim I, Ansari M A, Mehmood M Q, Kim W S, Jang J, Zubair M, Kim Y K, Rho J 2020 Adv. Mater. 32 e2004664Google Scholar

    [29]

    Huang Y, Xiao T, Xie Z, Zheng J, Su Y, Chen W, Liu K, Tang M, Li L 2021 Materials (Basel) 14 2212

    [30]

    Kato T, Tanaka K 2005 Jpn. J. Appl. Phys. 44 7340Google Scholar

    [31]

    Lei K, Wang Y, Jiang M, Wu Y 2016 J. Appl. Phys. 119 173105Google Scholar

    [32]

    Lyeo H K, Cahill D G, Lee B S, Abelson J R, Kwon M H, Kim K B, Bishop S G, Cheong B K 2006 Appl. Phys. Lett. 89 151904Google Scholar

    [33]

    Zhou C, Xie Z, Zhang B, Lei T, Li Z, Du L, Yuan X 2020 Opt. Express 28 38241Google Scholar

    [34]

    Wang Q, Rogers E T F, Gholipour B, Wang C M, Yuan G, Teng J, Zheludev N I 2015 Nat. Photonics 10 60

    [35]

    Zhou S, Wu Y, Chen S, Liao S, Zhang H, Xie C, Chan M 2020 J. Phys. D: Appl. Phys. 53 204001

    [36]

    Shalaginov M Y, An S, Zhang Y, et al. 2021 Nat. Commun. 12 1225Google Scholar

    [37]

    Northover F H 1971 Applied Diffraction Theory (New York: American Elsevier Pub. Co.) p632

    [38]

    Pu M B, Li X, Ma X L, et al. 2015 Sci. Adv. 1 e1500396Google Scholar

    [39]

    Guo Y H, Huang Y J, Li X, Pu M B, Gao P, Jin J J, Ma X L, Luo X G 2019 Adv. Opt. Mater. 7 1900503

    [40]

    Zhang F, Zeng Q, Pu M, Wang Y, Guo Y, Li X, Ma X, Luo X 2020 Nanophotonics 9 2829Google Scholar

    [41]

    Song R, Deng Q, Zhou S, Pu M 2021 Opt. Express 29 23006Google Scholar

    [42]

    Xu M, Pu M, Sang D, Zheng Y, Li X, Ma X, Guo Y, Zhang R, Luo X 2021 Opt. Express 29 10181Google Scholar

    [43]

    Zhang F, Pu M, Li X, Ma X, Guo Y, Gao P, Yu H, Gu M, Luo X 2021 Adv. Mater. 33 e2008157Google Scholar

    [44]

    Luo X G, Pu M B, Guo Y H, Li X, Zhang F, Ma X L 2020 Adv. Opt. Mater. 8 2001194Google Scholar

    [45]

    Guo Y H, Pu M B, Li X, Ma X L, Luo X G 2018 Appl. Phys. Express 11 092202Google Scholar

    [46]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524Google Scholar

    [47]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [48]

    Zhang M, Pu M B, Zhang F, Guo Y H, He Q, Ma X L, Huang Y J, Li X, Yu H L, Luo X G 2018 Adv. Sci. (Weinh) 5 1800835Google Scholar

    [49]

    Chen W T, Khorasaninejad M, Zhu A Y, Oh J, Devlin R C, Zaidi A, Capasso F 2017 Light Sci. Appl. 6 e16259Google Scholar

  • 图 1  优化后的悬链线特征[43] (a) 水平长度为0.75 Λ的单个悬链线结构; (b)经流水线优化算法得到的悬链线局部宽度W(x)随x的变化

    Fig. 1.  Schematic of the catenary atom[43]: (a) Single catenary structure with a horizontal length of 0.75 Λ; (b) the locally varied width W(x) of the catenary by streamlined optimization algorithm along x-axis

    图 2  (a)离散几何相位实现异常偏折; (b)连续几何相位实现异常偏折

    Fig. 2.  (a) Discrete geometric phase for abnormal deflection; (b) continuous geometric phase for abnormal deflection.

    图 3  (a)基于螺旋悬链线排列的零阶贝塞尔光束发生器(l = 0); (b) 基于同心圆悬链线排列的高阶贝塞尔光束发生器(l = 2); (c) 9.6 µm右旋圆光垂直入射图(a)中结构得到的相位分布图; (d) 9.6 µm左旋圆光垂直入射图(b)所示结构得到的相位分布图

    Fig. 3.  (a) The zero-order Bessel beam generator based on spiral catenary arrangement (l = 0); (b) high-order Bessel beam generator based on concentric circular catenary arrangement (l = 2); (c) phase distribution for the arrangement in (a) at the incidence of 9.6 μm RCP waves; (d) phase distribution for the arrangement in (b) at the incidence of 9.6 μm LCP waves.

    图 4  悬链线结构单元模型及其特性 (a) 悬链线结构单元横截面图; (b) 前视图; (c) 9.6 µm处非晶态和 (d)晶态沿位置x的相位变化; (e) 9.6µm处非晶态和(f)晶态归一化横截面强度分布

    Fig. 4.  A catenary-based atom and its characteristic: (a) The cross-sectional view; (b) the top view of one atom. The phase change with respect to position x (c) in the amorphous state and (d) the crystalline state at 9.6 µm. The normalized cross-sectional intensity distribution at 9.6 µm in (e) amorphous and (f) crystalline states.

    图 5  可切换的超构阵列偏折器件 (a) 基于悬链线-Ge2Sb2Te5集成的有源波束控制准连续超表面; (b) 非晶态共偏振和交叉偏振反射率的仿真结果; (c) 极化转换效率(PCR)谱; (d) 非晶态和 (e) 晶态下9.0 µm, 9.5 µm和10.0 µm波长光束以不同偏折角反射; (f) 非晶态和 (g) 晶态下9 µm右旋光入射时x-z平面内的反射电场(Ex)归一化振幅分布

    Fig. 5.  The switchable meta-array for deflectable devices. (a) The Catenary-Ge2Sb2Te5 integrated quasi-continuous metasurface for active beam control. (b) The simulated results of the co-polarized and cross-polarized reflectivity in the amorphous state. (c) Polarization conversion efficiency (PCR) spectrum. The beams with different wavelengths of 9.0, 9.5 µm, and 10.0 µm are reflected/deflected to distinctly different angles in the (d) amorphous state and (e) crystalline state. The normalized amplitude distribution of the reflected electric field (Ex) for RCP incidence (9 µm) in the (f) amorphous and (g) crystalline state in the x-z plane.

    图 6  可切换高阶贝塞尔光束器件 (l = 2) (a) 具有同心悬链线排列的可切换高阶贝塞尔光束发生器(l = 2)及(b)局部放大图; (c)非晶态下x-z平面 (y = 0) 内归一化强度分布; (d) x-y平面 (z = 100 µm)的归一化强度分布; (e) 沿图(d)中虚线的归一化强度; (f) Ge2Sb2Te5晶态下x-z平面 (y = 0) 内归一化强度分布

    Fig. 6.  The switchable high-order Bessel beam device (l = 2): (a) The switchable high-order Bessel beam generator with concentric catenary atoms (l = 2) and (b) its partially enlarged view; (c) the normalized intensity distribution in the x-z plane (y = 0) in the amorphous state; (d) the normalized intensity distribution in the x-y plane (z = 100 µm); (e) the normalized intensity along the dotted line marked in (d); (f) the normalized intensity distribution in the x-z plane (y = 0) in the crystalline state of Ge2Sb2Te5.

  • [1]

    Fan Z H, Deng Q L, Ma X Y, Zhou S L 2021 Materials 14 1272Google Scholar

    [2]

    Cai B G, Li Y B, Jiang W X, Cheng Q, Cui T J 2015 Opt. Express 23 7593Google Scholar

    [3]

    陈欢, 凌晓辉, 何武光, 李钱光, 易煦农 2017 物理学报 66 044203Google Scholar

    Chen H, Ling X H, He W G, Li Q G, Yi X N 2017 Acta Phys. Sin. 66 044203Google Scholar

    [4]

    Akram M R, Mehmood M Q, Tauqeer T, Rana A S, Rukhlenko I D, Zhu W R 2019 Opt. Express 27 9467Google Scholar

    [5]

    Luan J, Yang S K, Liu D M, Zhang M M 2020 Opt. Express 28 3732Google Scholar

    [6]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807Google Scholar

    [7]

    Zheng G, Muhlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [8]

    Zhang F, Pu M, Gao P, Jin J, Li X, Guo Y, Ma X, Luo J, Yu H, Luo X 2020 Adv. Sci. (Weinh) 7 1903156Google Scholar

    [9]

    Shen Y Z, Xue S, Yang J W, Hu S M 2021 Adv. Mater. Technol. 6 2001047Google Scholar

    [10]

    Khorasaninejad M, Capasso F 2017 Science 358 aam8100Google Scholar

    [11]

    Wang S, Wu P C, Su V C, et al. 2018 Nat. Nanotechnol. 13 227Google Scholar

    [12]

    Li Z, Wang C, Wang Y, Lu X, Guo Y, Li X, Ma X, Pu M, Luo X 2021 Opt. Express 29 9991Google Scholar

    [13]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [14]

    Sun S L, Yang K Y, Wang C M, et al. 2012 Nano. Letters 12 6223Google Scholar

    [15]

    易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203Google Scholar

    Liu T J, Xi X, Ling Y H, Sun Y L, Li Z W, Huang L R 2014 Acta Phys. Sin. 63 094203Google Scholar

    [16]

    Huang L, Chen X, Muhlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S 2012 Nano Lett. 12 5750Google Scholar

    [17]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [18]

    Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraji-Dana M, Faraon A 2018 Nat. Commun. 9 812Google Scholar

    [19]

    Ahmadivand A, Gerislioglu B, Ramezani Z 2019 Nanoscale 11 8091Google Scholar

    [20]

    Lee B, Park J, Han G H, Ee H S, Naylor C H, Liu W J, Johnson A T C, Agarwal R 2015 Nano Lett. 15 3646Google Scholar

    [21]

    Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403Google Scholar

    [22]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar

    [23]

    Gholipour B, Zhang J F, MacDonald K F, Hewak D W, Zheludev N I 2013 Adv. Mater. 25 3050Google Scholar

    [24]

    Li P, Yang X, Mass T W, Hanss J, Lewin M, Michel A K, Wuttig M, Taubner T 2016 Nat. Mater. 15 870Google Scholar

    [25]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824Google Scholar

    [26]

    Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M 2008 Nat. Mater. 7 972Google Scholar

    [27]

    Leitis A, Heßler A, Wahl S, Wuttig M, Taubner T, Tittl A, Altug H 2020 Adv. Funct. Mater. 30 2070122Google Scholar

    [28]

    Kim I, Ansari M A, Mehmood M Q, Kim W S, Jang J, Zubair M, Kim Y K, Rho J 2020 Adv. Mater. 32 e2004664Google Scholar

    [29]

    Huang Y, Xiao T, Xie Z, Zheng J, Su Y, Chen W, Liu K, Tang M, Li L 2021 Materials (Basel) 14 2212

    [30]

    Kato T, Tanaka K 2005 Jpn. J. Appl. Phys. 44 7340Google Scholar

    [31]

    Lei K, Wang Y, Jiang M, Wu Y 2016 J. Appl. Phys. 119 173105Google Scholar

    [32]

    Lyeo H K, Cahill D G, Lee B S, Abelson J R, Kwon M H, Kim K B, Bishop S G, Cheong B K 2006 Appl. Phys. Lett. 89 151904Google Scholar

    [33]

    Zhou C, Xie Z, Zhang B, Lei T, Li Z, Du L, Yuan X 2020 Opt. Express 28 38241Google Scholar

    [34]

    Wang Q, Rogers E T F, Gholipour B, Wang C M, Yuan G, Teng J, Zheludev N I 2015 Nat. Photonics 10 60

    [35]

    Zhou S, Wu Y, Chen S, Liao S, Zhang H, Xie C, Chan M 2020 J. Phys. D: Appl. Phys. 53 204001

    [36]

    Shalaginov M Y, An S, Zhang Y, et al. 2021 Nat. Commun. 12 1225Google Scholar

    [37]

    Northover F H 1971 Applied Diffraction Theory (New York: American Elsevier Pub. Co.) p632

    [38]

    Pu M B, Li X, Ma X L, et al. 2015 Sci. Adv. 1 e1500396Google Scholar

    [39]

    Guo Y H, Huang Y J, Li X, Pu M B, Gao P, Jin J J, Ma X L, Luo X G 2019 Adv. Opt. Mater. 7 1900503

    [40]

    Zhang F, Zeng Q, Pu M, Wang Y, Guo Y, Li X, Ma X, Luo X 2020 Nanophotonics 9 2829Google Scholar

    [41]

    Song R, Deng Q, Zhou S, Pu M 2021 Opt. Express 29 23006Google Scholar

    [42]

    Xu M, Pu M, Sang D, Zheng Y, Li X, Ma X, Guo Y, Zhang R, Luo X 2021 Opt. Express 29 10181Google Scholar

    [43]

    Zhang F, Pu M, Li X, Ma X, Guo Y, Gao P, Yu H, Gu M, Luo X 2021 Adv. Mater. 33 e2008157Google Scholar

    [44]

    Luo X G, Pu M B, Guo Y H, Li X, Zhang F, Ma X L 2020 Adv. Opt. Mater. 8 2001194Google Scholar

    [45]

    Guo Y H, Pu M B, Li X, Ma X L, Luo X G 2018 Appl. Phys. Express 11 092202Google Scholar

    [46]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524Google Scholar

    [47]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [48]

    Zhang M, Pu M B, Zhang F, Guo Y H, He Q, Ma X L, Huang Y J, Li X, Yu H L, Luo X G 2018 Adv. Sci. (Weinh) 5 1800835Google Scholar

    [49]

    Chen W T, Khorasaninejad M, Zhu A Y, Oh J, Devlin R C, Zaidi A, Capasso F 2017 Light Sci. Appl. 6 e16259Google Scholar

  • [1] 郭灿, 康晨瑞, 高莹, 张一弛, 邓英远, 马超, 徐春杰, 梁淑华. 金属基复合材料原位反应相场模型. 物理学报, 2022, 71(9): 096401. doi: 10.7498/aps.71.20211737
    [2] 冯妍卉, 冯黛丽, 褚福强, 邱琳, 孙方远, 林林, 张欣欣. 纳米组装相变储热材料的热设计前沿. 物理学报, 2022, 71(1): 016501. doi: 10.7498/aps.71.20211776
    [3] 鲁圣国, 李丹丹, 林雄威, 简晓东, 赵小波, 姚英邦, 陶涛, 梁波. 铁电材料中电场对唯象系数和电卡强度的影响. 物理学报, 2020, 69(12): 127701. doi: 10.7498/aps.69.20200296
    [4] 蒋招绣, 王永刚, 聂恒昌, 刘雨生. 极化状态与方向对单轴压缩下Pb(Zr0.95Ti0.05)O3铁电陶瓷畴变与相变行为的影响. 物理学报, 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [5] 王雅琴, 姚刚, 黄子健, 黄鹰. 用于红外激光防护的高开关率VO2薄膜. 物理学报, 2016, 65(5): 057102. doi: 10.7498/aps.65.057102
    [6] 宋萍, 蔡灵仓, 李欣竹, 陶天炯, 赵信文, 王学军, 方茂林. 低孔隙度疏松锡的高压声速与相变. 物理学报, 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [7] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [8] 刘志强, 常胜江, 王晓雷, 范飞, 李伟. 基于VO2薄膜相变原理的温控太赫兹超材料调制器. 物理学报, 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [9] 袁焕丽, 袁保合, 李芳, 梁二军. ZrV2-xPxO7固溶体的相变与热膨胀性质的研究. 物理学报, 2012, 61(22): 226502. doi: 10.7498/aps.61.226502
    [10] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [11] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [12] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用. 物理学报, 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [13] 明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜 鹃, 郑立梅. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析. 物理学报, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [14] 王 晖, 刘金芳, 何 燕, 陈 伟, 王 莺, L. Gerward, 蒋建中. 高压下纳米锗的状态方程与相变. 物理学报, 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [15] 房元锋, 杜春光, 李师群. 光子晶体中四能级系统的量子相干效应. 物理学报, 2006, 55(9): 4652-4658. doi: 10.7498/aps.55.4652
    [16] 李 卫, 冯良桓, 武莉莉, 蔡亚平, 张静全, 郑家贵, 蔡 伟, 黎 兵, 雷 智, 张冬敏. CdSxTe1-x多晶薄膜的制备与性质研究. 物理学报, 2005, 54(4): 1879-1884. doi: 10.7498/aps.54.1879
    [17] 汪金芝, 方庆清. 纳米Zn0.6CoxFe2.4-xO4晶粒的结构相变与磁性研究. 物理学报, 2004, 53(9): 3186-3190. doi: 10.7498/aps.53.3186
    [18] 张可言. 金属材料在中强度激光辐照下的相变速度研究. 物理学报, 2004, 53(6): 1815-1819. doi: 10.7498/aps.53.1815
    [19] 刘 红. 丝状相液晶由表面相互作用产生的相变. 物理学报, 2000, 49(7): 1321-1326. doi: 10.7498/aps.49.1321
    [20] 刘 鹏, 杨同青, 张良莹, 姚 熹. Pb(Zr,Sn,Ti)O3反铁电陶瓷的低温相变扩散与极化弛豫. 物理学报, 2000, 49(11): 2300-2303. doi: 10.7498/aps.49.2300
计量
  • 文章访问数:  2933
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-22
  • 修回日期:  2021-10-26
  • 上网日期:  2022-01-19
  • 刊出日期:  2022-01-20

/

返回文章
返回