-
针对超表面相位调控中的无源及离散特性, 本文拟将等宽悬链线超构单元与非易失性相变介质结合, 探索研究一种高效连续相位调制的双稳态相变有源波前超构开关. 首先在9—10 µm之间的宽带中红外波段实现了可动态切换的波前偏转开关; 当相变层在非晶态和晶态之间切换时, 入射光波前分别呈现异常反射和正常的镜面反射, 即“开” 或“关”两个偏转状态. 其次展示了一种可动态切换的高阶贝塞尔光束开关: 非晶态时, 9.6 µm波长垂直入射下交叉极化转换效率接近100%, 产生正常的几何相位调控与二阶贝塞尔聚焦, 即“开”态; 而相变至晶态时, 交叉极化与几何相位调控被“关”闭. 本质上, 自旋-轨道相互作用具有无色散的相位调控保证了该类器件的宽波段工作特性, 在未来的有源光电子集成、光通讯等应用领域中具有重大潜力.Aiming at the characteristics of passive and discrete phase regulations inherent in current metasurfaces, we combine optimized isowidth catenary with non-volatile phase change dielectrics and explore a type of bistable phase-change-based wavefront meta-switch of continuous phase tuning and active switching. First, the switchable wavefront deflector is demonstrated in the mid-IR range between 9 µm and 10 µm. Upon phase transition between crystalline state and amorphous state, the incident wave can be switched into anomalous reflection and regular reflection, i.e. the “on” state and “off ” state of wave deflection. Further, a type of dynamically tunable Bessel beam switch is demonstrated. In the amorphous state, the polarization conversion efficiency approaches to 100% with an incident wave of 9.6 µm in wavelength. Therefore, the normal geometrical phase and the second-order Bessel focus are switched “on”. However, the cross-polarization and geometrical phase are switched “off ” upon phase changing into crystallized state. Intrinsically, non-dispersive spin-orbit interaction ensures that this kind of device possesses the broadband characteristics. Such a devise has great potential applications in active optoelectronic integration, optical communications, etc.
-
Keywords:
- phase transition /
- metamaterials and metasurface /
- meta-devices /
- photonic switch
[1] Fan Z H, Deng Q L, Ma X Y, Zhou S L 2021 Materials 14 1272Google Scholar
[2] Cai B G, Li Y B, Jiang W X, Cheng Q, Cui T J 2015 Opt. Express 23 7593Google Scholar
[3] 陈欢, 凌晓辉, 何武光, 李钱光, 易煦农 2017 物理学报 66 044203Google Scholar
Chen H, Ling X H, He W G, Li Q G, Yi X N 2017 Acta Phys. Sin. 66 044203Google Scholar
[4] Akram M R, Mehmood M Q, Tauqeer T, Rana A S, Rukhlenko I D, Zhu W R 2019 Opt. Express 27 9467Google Scholar
[5] Luan J, Yang S K, Liu D M, Zhang M M 2020 Opt. Express 28 3732Google Scholar
[6] Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807Google Scholar
[7] Zheng G, Muhlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar
[8] Zhang F, Pu M, Gao P, Jin J, Li X, Guo Y, Ma X, Luo J, Yu H, Luo X 2020 Adv. Sci. (Weinh) 7 1903156Google Scholar
[9] Shen Y Z, Xue S, Yang J W, Hu S M 2021 Adv. Mater. Technol. 6 2001047Google Scholar
[10] Khorasaninejad M, Capasso F 2017 Science 358 aam8100Google Scholar
[11] Wang S, Wu P C, Su V C, et al. 2018 Nat. Nanotechnol. 13 227Google Scholar
[12] Li Z, Wang C, Wang Y, Lu X, Guo Y, Li X, Ma X, Pu M, Luo X 2021 Opt. Express 29 9991Google Scholar
[13] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[14] Sun S L, Yang K Y, Wang C M, et al. 2012 Nano. Letters 12 6223Google Scholar
[15] 易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203Google Scholar
Liu T J, Xi X, Ling Y H, Sun Y L, Li Z W, Huang L R 2014 Acta Phys. Sin. 63 094203Google Scholar
[16] Huang L, Chen X, Muhlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S 2012 Nano Lett. 12 5750Google Scholar
[17] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar
[18] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraji-Dana M, Faraon A 2018 Nat. Commun. 9 812Google Scholar
[19] Ahmadivand A, Gerislioglu B, Ramezani Z 2019 Nanoscale 11 8091Google Scholar
[20] Lee B, Park J, Han G H, Ee H S, Naylor C H, Liu W J, Johnson A T C, Agarwal R 2015 Nano Lett. 15 3646Google Scholar
[21] Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403Google Scholar
[22] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar
[23] Gholipour B, Zhang J F, MacDonald K F, Hewak D W, Zheludev N I 2013 Adv. Mater. 25 3050Google Scholar
[24] Li P, Yang X, Mass T W, Hanss J, Lewin M, Michel A K, Wuttig M, Taubner T 2016 Nat. Mater. 15 870Google Scholar
[25] Wuttig M, Yamada N 2007 Nat. Mater. 6 824Google Scholar
[26] Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M 2008 Nat. Mater. 7 972Google Scholar
[27] Leitis A, Heßler A, Wahl S, Wuttig M, Taubner T, Tittl A, Altug H 2020 Adv. Funct. Mater. 30 2070122Google Scholar
[28] Kim I, Ansari M A, Mehmood M Q, Kim W S, Jang J, Zubair M, Kim Y K, Rho J 2020 Adv. Mater. 32 e2004664Google Scholar
[29] Huang Y, Xiao T, Xie Z, Zheng J, Su Y, Chen W, Liu K, Tang M, Li L 2021 Materials (Basel) 14 2212
[30] Kato T, Tanaka K 2005 Jpn. J. Appl. Phys. 44 7340Google Scholar
[31] Lei K, Wang Y, Jiang M, Wu Y 2016 J. Appl. Phys. 119 173105Google Scholar
[32] Lyeo H K, Cahill D G, Lee B S, Abelson J R, Kwon M H, Kim K B, Bishop S G, Cheong B K 2006 Appl. Phys. Lett. 89 151904Google Scholar
[33] Zhou C, Xie Z, Zhang B, Lei T, Li Z, Du L, Yuan X 2020 Opt. Express 28 38241Google Scholar
[34] Wang Q, Rogers E T F, Gholipour B, Wang C M, Yuan G, Teng J, Zheludev N I 2015 Nat. Photonics 10 60
[35] Zhou S, Wu Y, Chen S, Liao S, Zhang H, Xie C, Chan M 2020 J. Phys. D: Appl. Phys. 53 204001
[36] Shalaginov M Y, An S, Zhang Y, et al. 2021 Nat. Commun. 12 1225Google Scholar
[37] Northover F H 1971 Applied Diffraction Theory (New York: American Elsevier Pub. Co.) p632
[38] Pu M B, Li X, Ma X L, et al. 2015 Sci. Adv. 1 e1500396Google Scholar
[39] Guo Y H, Huang Y J, Li X, Pu M B, Gao P, Jin J J, Ma X L, Luo X G 2019 Adv. Opt. Mater. 7 1900503
[40] Zhang F, Zeng Q, Pu M, Wang Y, Guo Y, Li X, Ma X, Luo X 2020 Nanophotonics 9 2829Google Scholar
[41] Song R, Deng Q, Zhou S, Pu M 2021 Opt. Express 29 23006Google Scholar
[42] Xu M, Pu M, Sang D, Zheng Y, Li X, Ma X, Guo Y, Zhang R, Luo X 2021 Opt. Express 29 10181Google Scholar
[43] Zhang F, Pu M, Li X, Ma X, Guo Y, Gao P, Yu H, Gu M, Luo X 2021 Adv. Mater. 33 e2008157Google Scholar
[44] Luo X G, Pu M B, Guo Y H, Li X, Zhang F, Ma X L 2020 Adv. Opt. Mater. 8 2001194Google Scholar
[45] Guo Y H, Pu M B, Li X, Ma X L, Luo X G 2018 Appl. Phys. Express 11 092202Google Scholar
[46] Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524Google Scholar
[47] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar
[48] Zhang M, Pu M B, Zhang F, Guo Y H, He Q, Ma X L, Huang Y J, Li X, Yu H L, Luo X G 2018 Adv. Sci. (Weinh) 5 1800835Google Scholar
[49] Chen W T, Khorasaninejad M, Zhu A Y, Oh J, Devlin R C, Zaidi A, Capasso F 2017 Light Sci. Appl. 6 e16259Google Scholar
-
图 3 (a)基于螺旋悬链线排列的零阶贝塞尔光束发生器(l = 0); (b) 基于同心圆悬链线排列的高阶贝塞尔光束发生器(l = 2); (c) 9.6 µm右旋圆光垂直入射图(a)中结构得到的相位分布图; (d) 9.6 µm左旋圆光垂直入射图(b)所示结构得到的相位分布图
Fig. 3. (a) The zero-order Bessel beam generator based on spiral catenary arrangement (l = 0); (b) high-order Bessel beam generator based on concentric circular catenary arrangement (l = 2); (c) phase distribution for the arrangement in (a) at the incidence of 9.6 μm RCP waves; (d) phase distribution for the arrangement in (b) at the incidence of 9.6 μm LCP waves.
图 4 悬链线结构单元模型及其特性 (a) 悬链线结构单元横截面图; (b) 前视图; (c) 9.6 µm处非晶态和 (d)晶态沿位置x的相位变化; (e) 9.6µm处非晶态和(f)晶态归一化横截面强度分布
Fig. 4. A catenary-based atom and its characteristic: (a) The cross-sectional view; (b) the top view of one atom. The phase change with respect to position x (c) in the amorphous state and (d) the crystalline state at 9.6 µm. The normalized cross-sectional intensity distribution at 9.6 µm in (e) amorphous and (f) crystalline states.
图 5 可切换的超构阵列偏折器件 (a) 基于悬链线-Ge2Sb2Te5集成的有源波束控制准连续超表面; (b) 非晶态共偏振和交叉偏振反射率的仿真结果; (c) 极化转换效率(PCR)谱; (d) 非晶态和 (e) 晶态下9.0 µm, 9.5 µm和10.0 µm波长光束以不同偏折角反射; (f) 非晶态和 (g) 晶态下9 µm右旋光入射时x-z平面内的反射电场(Ex)归一化振幅分布
Fig. 5. The switchable meta-array for deflectable devices. (a) The Catenary-Ge2Sb2Te5 integrated quasi-continuous metasurface for active beam control. (b) The simulated results of the co-polarized and cross-polarized reflectivity in the amorphous state. (c) Polarization conversion efficiency (PCR) spectrum. The beams with different wavelengths of 9.0, 9.5 µm, and 10.0 µm are reflected/deflected to distinctly different angles in the (d) amorphous state and (e) crystalline state. The normalized amplitude distribution of the reflected electric field (Ex) for RCP incidence (9 µm) in the (f) amorphous and (g) crystalline state in the x-z plane.
图 6 可切换高阶贝塞尔光束器件 (l = 2) (a) 具有同心悬链线排列的可切换高阶贝塞尔光束发生器(l = 2)及(b)局部放大图; (c)非晶态下x-z平面 (y = 0) 内归一化强度分布; (d) x-y平面 (z = 100 µm)的归一化强度分布; (e) 沿图(d)中虚线的归一化强度; (f) Ge2Sb2Te5晶态下x-z平面 (y = 0) 内归一化强度分布
Fig. 6. The switchable high-order Bessel beam device (l = 2): (a) The switchable high-order Bessel beam generator with concentric catenary atoms (l = 2) and (b) its partially enlarged view; (c) the normalized intensity distribution in the x-z plane (y = 0) in the amorphous state; (d) the normalized intensity distribution in the x-y plane (z = 100 µm); (e) the normalized intensity along the dotted line marked in (d); (f) the normalized intensity distribution in the x-z plane (y = 0) in the crystalline state of Ge2Sb2Te5.
-
[1] Fan Z H, Deng Q L, Ma X Y, Zhou S L 2021 Materials 14 1272Google Scholar
[2] Cai B G, Li Y B, Jiang W X, Cheng Q, Cui T J 2015 Opt. Express 23 7593Google Scholar
[3] 陈欢, 凌晓辉, 何武光, 李钱光, 易煦农 2017 物理学报 66 044203Google Scholar
Chen H, Ling X H, He W G, Li Q G, Yi X N 2017 Acta Phys. Sin. 66 044203Google Scholar
[4] Akram M R, Mehmood M Q, Tauqeer T, Rana A S, Rukhlenko I D, Zhu W R 2019 Opt. Express 27 9467Google Scholar
[5] Luan J, Yang S K, Liu D M, Zhang M M 2020 Opt. Express 28 3732Google Scholar
[6] Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807Google Scholar
[7] Zheng G, Muhlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar
[8] Zhang F, Pu M, Gao P, Jin J, Li X, Guo Y, Ma X, Luo J, Yu H, Luo X 2020 Adv. Sci. (Weinh) 7 1903156Google Scholar
[9] Shen Y Z, Xue S, Yang J W, Hu S M 2021 Adv. Mater. Technol. 6 2001047Google Scholar
[10] Khorasaninejad M, Capasso F 2017 Science 358 aam8100Google Scholar
[11] Wang S, Wu P C, Su V C, et al. 2018 Nat. Nanotechnol. 13 227Google Scholar
[12] Li Z, Wang C, Wang Y, Lu X, Guo Y, Li X, Ma X, Pu M, Luo X 2021 Opt. Express 29 9991Google Scholar
[13] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[14] Sun S L, Yang K Y, Wang C M, et al. 2012 Nano. Letters 12 6223Google Scholar
[15] 易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203Google Scholar
Liu T J, Xi X, Ling Y H, Sun Y L, Li Z W, Huang L R 2014 Acta Phys. Sin. 63 094203Google Scholar
[16] Huang L, Chen X, Muhlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S 2012 Nano Lett. 12 5750Google Scholar
[17] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar
[18] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraji-Dana M, Faraon A 2018 Nat. Commun. 9 812Google Scholar
[19] Ahmadivand A, Gerislioglu B, Ramezani Z 2019 Nanoscale 11 8091Google Scholar
[20] Lee B, Park J, Han G H, Ee H S, Naylor C H, Liu W J, Johnson A T C, Agarwal R 2015 Nano Lett. 15 3646Google Scholar
[21] Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403Google Scholar
[22] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar
[23] Gholipour B, Zhang J F, MacDonald K F, Hewak D W, Zheludev N I 2013 Adv. Mater. 25 3050Google Scholar
[24] Li P, Yang X, Mass T W, Hanss J, Lewin M, Michel A K, Wuttig M, Taubner T 2016 Nat. Mater. 15 870Google Scholar
[25] Wuttig M, Yamada N 2007 Nat. Mater. 6 824Google Scholar
[26] Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M 2008 Nat. Mater. 7 972Google Scholar
[27] Leitis A, Heßler A, Wahl S, Wuttig M, Taubner T, Tittl A, Altug H 2020 Adv. Funct. Mater. 30 2070122Google Scholar
[28] Kim I, Ansari M A, Mehmood M Q, Kim W S, Jang J, Zubair M, Kim Y K, Rho J 2020 Adv. Mater. 32 e2004664Google Scholar
[29] Huang Y, Xiao T, Xie Z, Zheng J, Su Y, Chen W, Liu K, Tang M, Li L 2021 Materials (Basel) 14 2212
[30] Kato T, Tanaka K 2005 Jpn. J. Appl. Phys. 44 7340Google Scholar
[31] Lei K, Wang Y, Jiang M, Wu Y 2016 J. Appl. Phys. 119 173105Google Scholar
[32] Lyeo H K, Cahill D G, Lee B S, Abelson J R, Kwon M H, Kim K B, Bishop S G, Cheong B K 2006 Appl. Phys. Lett. 89 151904Google Scholar
[33] Zhou C, Xie Z, Zhang B, Lei T, Li Z, Du L, Yuan X 2020 Opt. Express 28 38241Google Scholar
[34] Wang Q, Rogers E T F, Gholipour B, Wang C M, Yuan G, Teng J, Zheludev N I 2015 Nat. Photonics 10 60
[35] Zhou S, Wu Y, Chen S, Liao S, Zhang H, Xie C, Chan M 2020 J. Phys. D: Appl. Phys. 53 204001
[36] Shalaginov M Y, An S, Zhang Y, et al. 2021 Nat. Commun. 12 1225Google Scholar
[37] Northover F H 1971 Applied Diffraction Theory (New York: American Elsevier Pub. Co.) p632
[38] Pu M B, Li X, Ma X L, et al. 2015 Sci. Adv. 1 e1500396Google Scholar
[39] Guo Y H, Huang Y J, Li X, Pu M B, Gao P, Jin J J, Ma X L, Luo X G 2019 Adv. Opt. Mater. 7 1900503
[40] Zhang F, Zeng Q, Pu M, Wang Y, Guo Y, Li X, Ma X, Luo X 2020 Nanophotonics 9 2829Google Scholar
[41] Song R, Deng Q, Zhou S, Pu M 2021 Opt. Express 29 23006Google Scholar
[42] Xu M, Pu M, Sang D, Zheng Y, Li X, Ma X, Guo Y, Zhang R, Luo X 2021 Opt. Express 29 10181Google Scholar
[43] Zhang F, Pu M, Li X, Ma X, Guo Y, Gao P, Yu H, Gu M, Luo X 2021 Adv. Mater. 33 e2008157Google Scholar
[44] Luo X G, Pu M B, Guo Y H, Li X, Zhang F, Ma X L 2020 Adv. Opt. Mater. 8 2001194Google Scholar
[45] Guo Y H, Pu M B, Li X, Ma X L, Luo X G 2018 Appl. Phys. Express 11 092202Google Scholar
[46] Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524Google Scholar
[47] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar
[48] Zhang M, Pu M B, Zhang F, Guo Y H, He Q, Ma X L, Huang Y J, Li X, Yu H L, Luo X G 2018 Adv. Sci. (Weinh) 5 1800835Google Scholar
[49] Chen W T, Khorasaninejad M, Zhu A Y, Oh J, Devlin R C, Zaidi A, Capasso F 2017 Light Sci. Appl. 6 e16259Google Scholar
计量
- 文章访问数: 5081
- PDF下载量: 137
- 被引次数: 0