搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率微波注入对流层对氟利昂的影响

冉茂怡 胡耀垓 赵正予 张援农

引用本文:
Citation:

高功率微波注入对流层对氟利昂的影响

冉茂怡, 胡耀垓, 赵正予, 张援农

Effect of high power microwave injection on tropospheric freon

Ran Mao-Yi, Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong
PDF
导出引用
  • 采用高功率微波注入大气的方法来促进氟利昂的分解具有一定可行性,本文基于麦克斯韦方程、电流密度控制方程等,利用时域有限差分法定量分析了高功率微波注入不同对流层高度促进电子生成从而促进氟利昂分解的过程.结果显示,在微波作用下,电子数密度随时间呈指数增长,最大能达到1017 cm-3;电子对氟利昂的分解主要发生在电子衰减过程中,利用估算公式和化学反应过程两种方法计算得出的分解率一致,能够达到6%.
    High power microwave injection into the troposphere is a feasible approach to the decomposition of chlorofluorocarbon (CFC). However, in existing researches, there are only basic principles which lack quantitative tests. Hence, in this article we introduce the finite-difference time-domain method to quantitatively analyze the decomposition of CFC under high power pulses. We first investigate the principal chemical reactions of CFC decomposition induced by high power microwave injection and find that dissociation attachment is a dominant process of the microwave discharge decomposition of CFC. We use an empirical formula to calculate the decomposition efficiency of CFC. The result shows that 20% of the initial content of CFC molecules will be dissociated over 100 microseconds where we assume the electron number density to be 1013 cm-3. Then according to Maxwell's equations and the current density equation, we adopt the finite difference time domain method to simulate the generation process of a large number of free electrons induced by injecting the high power microwaves into the troposphere. The ionized electron generated by the high power microwave in troposphere is in favor of CFC decomposition since the electron affinity of CFC is larger than dissociation energy of CFC molecules. The simulation results indicate that the number density of electrons grows up to 1017 cm-3 exponentially with the injection time and will grow faster at higher height (10 km) or by the larger field intensity. During the pulse, the higher electron energy corresponds to a smaller dissociative attachment coefficient. Thus, most of the CFC molecules are decomposed during the electron-decay phase. During the relaxation period, the electron energy will return to the natural state within 0.01 ns. The number density of electrons decreases slower than the electron energy and it will take 1 ms to reach the natural state. From the results we can also see that the decay rates of the electron energy and number density decrease with the increase of the height. In this paper, two methods of calculating the CFC decomposition rate are utilized. One method is from the chemical reaction and the other method is based on an empirical formula which is mentioned before. It is shown that the results of these two methods present obvious consistency. The simulation results demonstrate that the CFC decomposition rate will increase with larger microwave intensity or higher frequency and can approach up to 6%. In conclusion, this study gives the quantitative analyses of the CFC decomposition induced by high power microwave injection in the troposphere for the first time.
      通信作者: 胡耀垓, yaogaihu@whu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:41375007)和湖北省自然科学基金青年杰出人才项目(批准号:2011CDA099)资助的课题.
      Corresponding author: Hu Yao-Gai, yaogaihu@whu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant NO.41375007) and the Natural Science Foundation of Hubei Province of China (Grant No.2011CDA099).
    [1]

    Askar'yan G A, Batanov G M, Barkhudarov A É, Gritsinin S I, Korchagina E G, Kossyi I A, Silakov V P, Tarasova N M 1992 Pis'ma Zh. Eksp. Teor. Fiz. 55 500

    [2]

    Askar'yan G A, Batanov G M, Barkhudarov A E, Gritsinin S I, Korchagina E G, Kossyi I A, Tarasova N M 1994 J. Phys. D:Appl. Phys. 27 1311

    [3]

    Wong A Y, Sensharma D K, Tang A W, Suchannek R G, Ho D 1994 Phys. Rev. Lett. 72 3124

    [4]

    Batanov G M, Kossyi I A, Silakov V P 2002 Plasma Phys. Rep. 28 204

    [5]

    Kang H C 2002 J. Ind. Eng. Chem. 8 488

    [6]

    Ricketts C L, Wallis A E, Whitehead J C, Zhang K 2004 J. Phys. Chem. A 108 8341

    [7]

    Wallis A E, Whitehead J C, Zhang K 2007 Catal. Lett. 113 29

    [8]

    Zhou Q H, Dong Z W 2013 Acta Phys. Sin. 62 205202 (in Chinese)[周前红, 董志伟 2013 物理学报 62 205202]

    [9]

    Jick H Y, Alvarez R A, Mayhall D J, Byrne D P, Degroot J 1986 Phys. Fluids 29 1238

    [10]

    Cao J K, Zhou D F, Niu Z X, Shao Y, Zou W, Xing Z W 2006 High Power Laser Part. Beams 18 115 (in Chinese)[曹金坤, 周东方, 牛忠霞, 邵颖, 邹伟, 邢召伟 2006 强激光与粒子束 18 115]

    [11]

    Zhou G Y, Zhu H G 1996 High Power Laser Part. Beams 8 485 (in Chinese)[周光镒, 朱红刚 1996 强激光与粒子束 8 485]

    [12]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302

    [13]

    Yuan Z C, Shi J M 2014 Acta Phys. Sin. 63 095202 (in Chinese)[袁忠才, 时佳明 2014 物理学报 63 095202]

    [14]

    Tang T, Liao C, Yang D 2010 Chin. J. Radio. 25 122 (in Chinese)[唐涛, 廖成, 杨丹 2010 电波科学学报 25 122]

    [15]

    Zhao P C, Liao C, Tang T, Gao Q M 2010 J. Chongqing Univ. Posts Telecomm. 22 431 (in Chinese)[赵朋程, 廖成, 唐涛, 高清敏 2010 重庆邮电大学学报(自然科学版) 22 431]

    [16]

    Fehsenfeld F C, Crutzen P J, Schmeltekopf A L, Howard C J, Albritton D L, Ferguson E E, Davidson J A, Schiff H I 1976 J. Geophys. Res. Atmos. 81 4454

    [17]

    Zhang C, Zhou D F, Rao Y P, Chen Y, Hou D T 2009 High Power Laser Part. Beams 21 719 (in Chinese)[张超, 周东方, 饶育萍, 陈勇, 侯德亭 2009 强激光与粒子束 21 719]

    [18]

    Zhu G Q, Boeuf J P, Chaudhury B 2011 Plasma Sources Sci. Technol. 20 35007

    [19]

    Tang T, Liao C, Gao Q M, Zhao P C 2010 J. Electromagn. Anal. Appl. 2 543

    [20]

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Xi'an:Xidian University Press) p34 (in Chinese)[葛德彪, 闫玉波 2005 电磁波时域有限差分方法(西安:西安电子科技大学出版社)第34页]

    [21]

    Hu T, Zhou D F, Li Q R, Niu Z X 2009 High Power Laser Part. Beams 21 545 (in Chinese)[胡涛, 周东方, 李庆荣, 牛忠霞 2009 强激光与粒子束 21 545]

    [22]

    Gurevich A V (translated by Liu X M) 1986 Nonlinear Phenomena in the Ionosphere (Beijing:Science Press) pp21-42 (in Chinese)[古列维奇A V著 (刘选谋 译) 1986 电离层中的非线性现象(北京:科学出版社) 第21–42页]

    [23]

    Xiong N L, Tang C C, Li X J 1999 Ionosphere Physics Phenomena (Wuhan:Wuhan University Press) pp311-353 (in Chinese)[熊年禄, 唐存琛, 李行健 1999 电离层物理概论(武汉:武汉大学出版社)第311–353页]

  • [1]

    Askar'yan G A, Batanov G M, Barkhudarov A É, Gritsinin S I, Korchagina E G, Kossyi I A, Silakov V P, Tarasova N M 1992 Pis'ma Zh. Eksp. Teor. Fiz. 55 500

    [2]

    Askar'yan G A, Batanov G M, Barkhudarov A E, Gritsinin S I, Korchagina E G, Kossyi I A, Tarasova N M 1994 J. Phys. D:Appl. Phys. 27 1311

    [3]

    Wong A Y, Sensharma D K, Tang A W, Suchannek R G, Ho D 1994 Phys. Rev. Lett. 72 3124

    [4]

    Batanov G M, Kossyi I A, Silakov V P 2002 Plasma Phys. Rep. 28 204

    [5]

    Kang H C 2002 J. Ind. Eng. Chem. 8 488

    [6]

    Ricketts C L, Wallis A E, Whitehead J C, Zhang K 2004 J. Phys. Chem. A 108 8341

    [7]

    Wallis A E, Whitehead J C, Zhang K 2007 Catal. Lett. 113 29

    [8]

    Zhou Q H, Dong Z W 2013 Acta Phys. Sin. 62 205202 (in Chinese)[周前红, 董志伟 2013 物理学报 62 205202]

    [9]

    Jick H Y, Alvarez R A, Mayhall D J, Byrne D P, Degroot J 1986 Phys. Fluids 29 1238

    [10]

    Cao J K, Zhou D F, Niu Z X, Shao Y, Zou W, Xing Z W 2006 High Power Laser Part. Beams 18 115 (in Chinese)[曹金坤, 周东方, 牛忠霞, 邵颖, 邹伟, 邢召伟 2006 强激光与粒子束 18 115]

    [11]

    Zhou G Y, Zhu H G 1996 High Power Laser Part. Beams 8 485 (in Chinese)[周光镒, 朱红刚 1996 强激光与粒子束 8 485]

    [12]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302

    [13]

    Yuan Z C, Shi J M 2014 Acta Phys. Sin. 63 095202 (in Chinese)[袁忠才, 时佳明 2014 物理学报 63 095202]

    [14]

    Tang T, Liao C, Yang D 2010 Chin. J. Radio. 25 122 (in Chinese)[唐涛, 廖成, 杨丹 2010 电波科学学报 25 122]

    [15]

    Zhao P C, Liao C, Tang T, Gao Q M 2010 J. Chongqing Univ. Posts Telecomm. 22 431 (in Chinese)[赵朋程, 廖成, 唐涛, 高清敏 2010 重庆邮电大学学报(自然科学版) 22 431]

    [16]

    Fehsenfeld F C, Crutzen P J, Schmeltekopf A L, Howard C J, Albritton D L, Ferguson E E, Davidson J A, Schiff H I 1976 J. Geophys. Res. Atmos. 81 4454

    [17]

    Zhang C, Zhou D F, Rao Y P, Chen Y, Hou D T 2009 High Power Laser Part. Beams 21 719 (in Chinese)[张超, 周东方, 饶育萍, 陈勇, 侯德亭 2009 强激光与粒子束 21 719]

    [18]

    Zhu G Q, Boeuf J P, Chaudhury B 2011 Plasma Sources Sci. Technol. 20 35007

    [19]

    Tang T, Liao C, Gao Q M, Zhao P C 2010 J. Electromagn. Anal. Appl. 2 543

    [20]

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Xi'an:Xidian University Press) p34 (in Chinese)[葛德彪, 闫玉波 2005 电磁波时域有限差分方法(西安:西安电子科技大学出版社)第34页]

    [21]

    Hu T, Zhou D F, Li Q R, Niu Z X 2009 High Power Laser Part. Beams 21 545 (in Chinese)[胡涛, 周东方, 李庆荣, 牛忠霞 2009 强激光与粒子束 21 545]

    [22]

    Gurevich A V (translated by Liu X M) 1986 Nonlinear Phenomena in the Ionosphere (Beijing:Science Press) pp21-42 (in Chinese)[古列维奇A V著 (刘选谋 译) 1986 电离层中的非线性现象(北京:科学出版社) 第21–42页]

    [23]

    Xiong N L, Tang C C, Li X J 1999 Ionosphere Physics Phenomena (Wuhan:Wuhan University Press) pp311-353 (in Chinese)[熊年禄, 唐存琛, 李行健 1999 电离层物理概论(武汉:武汉大学出版社)第311–353页]

  • [1] 黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸. 锁频锁相的高功率微波器件技术研究. 物理学报, 2018, 67(8): 088402. doi: 10.7498/aps.67.20172684
    [2] 刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp. 氟利昂F1110分子在飞秒激光脉冲作用下的多光子解离动力学. 物理学报, 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [3] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学. 物理学报, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [4] 李志鹏, 李晶, 孙静, 刘阳, 方进勇. 高功率微波作用下高电子迁移率晶体管的损伤机理. 物理学报, 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [5] 魏进进, 周东方, 余道杰, 胡涛, 侯德亭, 张德伟, 雷雪, 胡俊杰. 高功率微波作用下O-离子解吸附产生种子电子过程. 物理学报, 2016, 65(5): 055202. doi: 10.7498/aps.65.055202
    [6] 唐涛. 高功率微波土壤击穿的数值验证研究. 物理学报, 2015, 64(4): 045203. doi: 10.7498/aps.64.045203
    [7] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究. 物理学报, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [8] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析. 物理学报, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [9] 马振洋, 柴常春, 任兴荣, 杨银堂, 乔丽萍, 史春蕾. 不同样式的高功率微波对双极晶体管的损伤效应和机理. 物理学报, 2013, 62(12): 128501. doi: 10.7498/aps.62.128501
    [10] 周东方, 余道杰, 杨建宏, 侯德亭, 夏蔚, 胡涛, 林竞羽, 饶育萍, 魏进进, 张德伟, 王利萍. 基于混合大气传输模型的单脉冲高功率微波大气击穿理论与实验研究. 物理学报, 2013, 62(1): 014207. doi: 10.7498/aps.62.014207
    [11] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究. 物理学报, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [12] 方进勇, 黄惠军, 张治强, 黄文华, 江伟华. 基于圆柱谐振腔的高功率微波脉冲压缩系统. 物理学报, 2011, 60(4): 048404. doi: 10.7498/aps.60.048404
    [13] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究. 物理学报, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [14] 蓝朝晖, 胡希伟, 刘明海. 大面积表面波等离子体源微波功率吸收的数值模拟研究. 物理学报, 2011, 60(2): 025205. doi: 10.7498/aps.60.025205
    [15] 吴洋, 许州, 徐勇, 金晓, 常安碧, 李正红, 黄华, 刘忠, 罗雄, 马乔生, 唐传祥. 低功率驱动的高功率微波放大器实验研究. 物理学报, 2011, 60(4): 044102. doi: 10.7498/aps.60.044102
    [16] 王淦平, 向飞, 谭杰, 曹绍云, 罗敏, 康强, 常安碧. 长脉冲高功率微波驱动源放电过程研究. 物理学报, 2011, 60(7): 072901. doi: 10.7498/aps.60.072901
    [17] 李国林, 舒挺, 袁成卫, 张军, 靳振兴, 杨建华, 钟辉煌, 杨杰, 武大鹏. 一种高功率微波空间滤波器的设计与初步实验研究. 物理学报, 2010, 59(12): 8591-8596. doi: 10.7498/aps.59.8591
    [18] 蔡利兵, 王建国. 微波磁场和斜入射对介质表面次级电子倍增的影响. 物理学报, 2010, 59(2): 1143-1147. doi: 10.7498/aps.59.1143
    [19] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [20] 李正红, 孟凡宝, 常安碧, 黄 华, 马乔生. 两腔高功率微波振荡器研究. 物理学报, 2005, 54(8): 3578-3583. doi: 10.7498/aps.54.3578
计量
  • 文章访问数:  2795
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-06
  • 修回日期:  2016-11-17
  • 刊出日期:  2017-02-05

高功率微波注入对流层对氟利昂的影响

  • 1. 武汉大学电子信息学院, 武汉 430072
  • 通信作者: 胡耀垓, yaogaihu@whu.edu.cn
    基金项目: 国家自然科学基金(批准号:41375007)和湖北省自然科学基金青年杰出人才项目(批准号:2011CDA099)资助的课题.

摘要: 采用高功率微波注入大气的方法来促进氟利昂的分解具有一定可行性,本文基于麦克斯韦方程、电流密度控制方程等,利用时域有限差分法定量分析了高功率微波注入不同对流层高度促进电子生成从而促进氟利昂分解的过程.结果显示,在微波作用下,电子数密度随时间呈指数增长,最大能达到1017 cm-3;电子对氟利昂的分解主要发生在电子衰减过程中,利用估算公式和化学反应过程两种方法计算得出的分解率一致,能够达到6%.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回