搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维多孔复合碳层对电极的制备及其光伏性能研究

陈卓 方磊 陈远富

引用本文:
Citation:

三维多孔复合碳层对电极的制备及其光伏性能研究

陈卓, 方磊, 陈远富

Fabrication and photovoltaic performance of counter electrode of 3D porous carbon composite

Chen Zhuo, Fang Lei, Chen Yuan-Fu
PDF
导出引用
  • 基于TiO2光阳极、Pt对电极的染料敏化太阳能电池(DSSC)因其优异的光电转换特性受到了广泛的关注,然而Pt昂贵的价格制约了其发展与应用.针对这一问题,本文设计、制备了一种由相对致密且高导电的石墨膜(PC层,底层)及多孔碳纳米颗粒膜(CC层,顶层)构成的低成本、高性能三维多孔复合碳层对电极.基于该CC/PC对电极的DSSC具有优异的光伏性能:在1.5标准太阳光照射下,其填充因子高达65.28%(较Pt对电极高4.1%)、光电转换效率高达5.9%(为Pt对电极的94.2%).CC/PC对电极的优异光伏性能主要归因于其独特的三维多孔导电结构,该结构有极高的比表面积和丰富的催化反应活性位,有利于电子的快速传输及离子的快速转移,在这些因素的协同作用下,其光电转换性能大大改善.
    Dye-sensitized solar cell (DSSC) has been widely investigated due to its low cost, simple fabrication process, and excellent photoelectric conversion efficiency. Generally, the DSSC is composed of photoanode, electrolyte and counter electrode. At present, platinum (Pt) film delivers the highest photoelectric conversion efficiency in the available counter electrode materials. However, Pt film is very expensive and prepared by relatively complicated and high-cost magnetron sputtering, which seriously hinders the large-scale applications in DSSC. Therefore, it is of highly academic and engineering significance to develop novel counter electrode materials with low cost and high photoelectric conversion efficiency to replace expensive Pt counter electrode. Previous research shows that carbon-based nanomaterials such as graphene and carbon nanotubes ard promising to be used as highly efficient counter electrode materials. However, the high-cost and complicated fabrication process restrict their practical applications in DSSC. To address such issues, here in this work, we present and fabricate a highly efficient and low-cost three-dimensional porous carbon composite, which is constructed by the relatively dense and conductive graphite film as bottom layer (PC layer), and the porous carbon nanoparticle film as top layer (CC layer). Our fabricated DSSC consists of commercial TiO2 photoanode (m 4 mm×4 mm), and PC, CC, CC/PC composite, or Pt counter electrode with a size of m 8 mm×8 mm. The results show that under illumination (100 mW/cm2) provided by a solar simulator, the short circuit current densities (open circuit voltages) of DSSCs with PC, CC, CC/PC, and Pt counter electrodes are 11.45 mA/cm2 (0.72 V), 11.88 mA/cm2 (0.73 V), 12.00 mA/cm2 (0.75 V), and 13.46 mA/cm2 (0.74 V), respectively. The filling factors of DSSCs with PC, CC, and CC/PC are 56.09%, 59.80%, 65.28%, and 62.69%, respectively; the photoelectric conversion efficiencies of DSSCs with PC, CC, and CC/PC are 4.61%, 5.20%, 5.90%, and 6.26%, respectively. It is noted that compared with CC layer or PC layer counter electrode, the CC/PC counter electrode delivers better photovoltaic performance. Particularly, the filling factor of DSSC with CC/PC (65.28%) is even 4.10% higher than that of DSSC with commercial Pt (62.69%), and the photoelectric conversion efficiency of the CC/PC-based DSSC is as large as 5.90%, which reaches 94.2% of the Pt-based DSSC (6.26%). The excellent performance of DSSC with CC/PC counter electrode is attributed to the unique three-dimensional porous structure, which can not only facilitate the transfer of electrons and ions, but also provide abundant catalytic sites; these synergistic effects greatly enhance the photovoltaic conversion performance of CC/PC-based DSSC.
    [1]

    O'Regan B, Grätzel M 1991 Nature 353 737

    [2]

    Nazeeruddin M K, Baranoff E, Grätzel M 2011 Sol. Energy 85 1172

    [3]

    Bu I Y, Hu T H 2016 Sol. Energy 130 81

    [4]

    Xin X, He M, Han W, Jung J, Lin Z 2011 Angew. Chem. Int. Ed. 50 11739

    [5]

    Yang J, Bao C, Zhu K, Yu T, Li F, Liu J, Li Z, Zou Z 2014 Chem. Commun. 50 4824

    [6]

    Li G, Song J, Pan G, Gao X 2011 Energy Environ. Sci. 4 1680

    [7]

    Bu I Y, Hou K, Engstrom D 2011 Diamond Relat. Mater. 20 746

    [8]

    Veerappan G, Bojan K, Rhee S W 2011 ACS Appl. Mater. Inter. 3 857

    [9]

    Murakami T N, Ito S, Wang Q, Nazeeruddin M K, Bessho T, Cesar I, Liska P, Humphry-Baker R, Comte P, Péchy P 2006 J. Electrochem. Soc. 153 A2255

    [10]

    Imoto K, Takahashi K, Yamaguchi T, Komura T, Nakamura J I, Murata K 2003 Sol. Energy Mater. Sol. Cells 79 459

    [11]

    Dobrzański L A, Prokopowicz M P, Drygała A, et al. 2017 Arch. Met. Mater. 62 27

    [12]

    Wang H, Hu Y H 2012 Energy Environ. Sci. 5 8182

    [13]

    Suriani A B, Muqoyyanah, Mohamed A, Othman M H D, Mamat M H, Hashim N, Ahmad M K, Nayan N, Abdul Khalil H P S 2018 J. Mater. Sci.: Mater. Electron. 29 10723

    [14]

    Ramasamy E, Lee W J, Lee D Y, Song J S 2008 Electrochem. Commun. 10 1087

    [15]

    Cruz R, Pacheco D A T, Mendes A 2012 Sol. Energy 86 716

    [16]

    Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B, He J R, Zhang W L 2012 Chin. Phys. B 21 118101

  • [1]

    O'Regan B, Grätzel M 1991 Nature 353 737

    [2]

    Nazeeruddin M K, Baranoff E, Grätzel M 2011 Sol. Energy 85 1172

    [3]

    Bu I Y, Hu T H 2016 Sol. Energy 130 81

    [4]

    Xin X, He M, Han W, Jung J, Lin Z 2011 Angew. Chem. Int. Ed. 50 11739

    [5]

    Yang J, Bao C, Zhu K, Yu T, Li F, Liu J, Li Z, Zou Z 2014 Chem. Commun. 50 4824

    [6]

    Li G, Song J, Pan G, Gao X 2011 Energy Environ. Sci. 4 1680

    [7]

    Bu I Y, Hou K, Engstrom D 2011 Diamond Relat. Mater. 20 746

    [8]

    Veerappan G, Bojan K, Rhee S W 2011 ACS Appl. Mater. Inter. 3 857

    [9]

    Murakami T N, Ito S, Wang Q, Nazeeruddin M K, Bessho T, Cesar I, Liska P, Humphry-Baker R, Comte P, Péchy P 2006 J. Electrochem. Soc. 153 A2255

    [10]

    Imoto K, Takahashi K, Yamaguchi T, Komura T, Nakamura J I, Murata K 2003 Sol. Energy Mater. Sol. Cells 79 459

    [11]

    Dobrzański L A, Prokopowicz M P, Drygała A, et al. 2017 Arch. Met. Mater. 62 27

    [12]

    Wang H, Hu Y H 2012 Energy Environ. Sci. 5 8182

    [13]

    Suriani A B, Muqoyyanah, Mohamed A, Othman M H D, Mamat M H, Hashim N, Ahmad M K, Nayan N, Abdul Khalil H P S 2018 J. Mater. Sci.: Mater. Electron. 29 10723

    [14]

    Ramasamy E, Lee W J, Lee D Y, Song J S 2008 Electrochem. Commun. 10 1087

    [15]

    Cruz R, Pacheco D A T, Mendes A 2012 Sol. Energy 86 716

    [16]

    Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B, He J R, Zhang W L 2012 Chin. Phys. B 21 118101

  • [1] 王纪伟, 田汉民, 王月荣, 曹蕊, 许武. Cs2AgBiI6双空穴传输层太阳能电池的分析与优化. 物理学报, 2025, 74(3): 038802. doi: 10.7498/aps.74.20241361
    [2] 姚美灵, 廖纪星, 逯好峰, 黄强, 崔艳峰, 李翔, 杨雪莹, 白杨. 影响钙钛矿/异质结叠层太阳能电池效率及稳定性的关键问题与解决方法. 物理学报, 2024, 73(8): 088801. doi: 10.7498/aps.73.20231977
    [3] 熊祥杰, 钟防, 张资文, 陈芳, 罗婧澜, 赵宇清, 朱慧平, 蒋绍龙. 二维范德瓦耳斯异质结Cs3X2I9/InSe (X = Bi, Sb)的光电性能. 物理学报, 2024, 73(13): 137101. doi: 10.7498/aps.73.20240434
    [4] 王月荣, 田汉民, 张登琪, 刘维龙, 马旭蕾. Cs2AgBi0.75Sb0.25Br6钙钛矿太阳能电池的优化设计. 物理学报, 2024, 73(2): 028802. doi: 10.7498/aps.73.20231299
    [5] 方正, 张飞, 秦校军, 杨柳, 靳永斌, 周养盈, 王兴涛, 刘云, 谢立强, 魏展画. 减小边缘复合助力28%效率的四端钙钛矿/硅叠层太阳能电池. 物理学报, 2023, 72(5): 057302. doi: 10.7498/aps.72.20222209
    [6] 张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉. 迈向效率大于30%的钙钛矿/晶硅叠层太阳能电池技术的研究进展. 物理学报, 2023, 72(5): 058801. doi: 10.7498/aps.72.20222019
    [7] 刘恒, 李晔, 杜梦超, 仇鹏, 何荧峰, 宋祎萌, 卫会云, 朱晓丽, 田丰, 彭铭曾, 郑新和. AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用. 物理学报, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [8] 李学锐, 林俊辉, 唐戎, 郑壮豪, 苏正华, 陈烁, 范平, 梁广兴. 新型硒化锑薄膜太阳电池背接触优化. 物理学报, 2023, 72(3): 036401. doi: 10.7498/aps.72.20221929
    [9] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [10] 王兰, 程思远, 曾航航, 谢聪伟, 龚元昊, 郑植, 范晓丽. CuBiI三元化合物晶体结构预测及光电性能第一性原理研究. 物理学报, 2021, 70(20): 207305. doi: 10.7498/aps.70.20210145
    [11] 张源, 陈晨, 李美亚, 罗山梦黛. 石墨烯与复合纳米结构SiO2@Au对染料敏化太阳能电池性能的协同优化. 物理学报, 2020, 69(16): 160201. doi: 10.7498/aps.69.20191722
    [12] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [13] 刘学文, 朱重阳, 董辉, 徐峰, 孙立涛. 二硒化铁/还原氧化石墨烯的制备及其在染料敏化太阳能电池中的应用. 物理学报, 2016, 65(11): 118802. doi: 10.7498/aps.65.118802
    [14] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [15] 王鹏, 郭闰达, 陈宇, 岳守振, 赵毅, 刘式墉. 梯度掺杂体异质结对有机太阳能电池光电转换效率的影响. 物理学报, 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [16] 徐炜炜, 胡林华, 罗向东, 刘培生, 戴松元. 基于薄膜电极溶胶修饰的染料敏化太阳电池光电特性研究. 物理学报, 2012, 61(8): 088801. doi: 10.7498/aps.61.088801
    [17] 耿俊杰, 张军, 张俊, 张义, 丁建军, 孙松, 罗震林, 鲍骏, 高琛. 叠层荧光集光太阳能光伏器件的性能模拟和优化. 物理学报, 2012, 61(3): 034201. doi: 10.7498/aps.61.034201
    [18] 陈双宏, 翁坚, 王利军, 张昌能, 黄阳, 姜年权, 戴松元. 负偏压作用下染料敏化太阳电池界面及光电性能研究. 物理学报, 2011, 60(12): 128404. doi: 10.7498/aps.60.128404
    [19] 寇东星, 刘伟庆, 胡林华, 黄阳, 戴松元, 姜年权. 电极表面改性对染料敏化太阳电池性能影响的机理研究. 物理学报, 2010, 59(8): 5857-5862. doi: 10.7498/aps.59.5857
    [20] 黄阳, 戴松元, 陈双宏, 胡林华, 孔凡太, 寇东星, 姜年权. 大面积染料敏化太阳电池的串联阻抗特性研究. 物理学报, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
计量
  • 文章访问数:  6641
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-10
  • 修回日期:  2018-11-20
  • 刊出日期:  2019-01-05

/

返回文章
返回