搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石烯基晶体管沟道解析模型与电流超敏特性研究

甄嘉鹏 郭斯琳 张丹萍 巩仁峰 向自强 吕克洪 邱静 刘冠军

引用本文:
Citation:

金刚石烯基晶体管沟道解析模型与电流超敏特性研究

甄嘉鹏, 郭斯琳, 张丹萍, 巩仁峰, 向自强, 吕克洪, 邱静, 刘冠军

Analytical model of diamondene-based transistor channel and current hypersensitivity characteristics

Zhen Jiapeng, Guo Silin, Gong Renfeng, Zhang Danping, Xiang Ziqiang, Lv Kehong, Qiu Jing, Liu Guanjun
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
导出引用
  • 新一代检测装备对高灵敏检测器提出了迫切需求。纵观半导体检测器件的发展现状,目前传统硅基检测器灵敏度及沟道尺寸已不满足未来所需,金刚石烯具有高载流子迁移率、宽带隙等优异性能,其优异的电子特性有望有效提升检测器的灵敏度性能,为下一代检测器发展提供新途径。但基于金刚石烯的检测机理还尚不明晰。基于上述问题,本文通过建立晶体管电流沟道理论模型,分析了检测器工作状态下电子流动机制,进一步结合沟道材料电子特性,建立一种基于沟道材料电子流动的晶体管电流理论模型,并开展金刚石烯基晶体管检测器的机理仿真验证、电子特性分析研究,证明了碳基二维材料——金刚石烯在超敏电子检测中的潜力,为新一代高性能检测器的研制提供技术基础。
    The new generation of detection equipment puts forward an urgent need for high sensitivity detectors. Looking at the development status of semiconductor detection devices, the sensitivity and channel size of traditional silicon-based detectors cannot meet the needs of the future. Diamondene has excellent performance such as high carrier mobility and wide band gap. Its excellent electronic characteristics are expected to effectively improve the sensitivity performance of the detector and provide a new way for the development of the next generation of detectors. However, the detection mechanism based on diamondene is still unclear. Based on the above problems, the analytical model and mechanism of the transistor channel are first studied. By analyzing the relationship between the surface potential distribution of the current channel and the effective channel size in the working state and the sensitive characteristics of the two-dimensional material electrons of the channel, a theoretical model of the transistor detector based on the electronic characteristics of the channel material is constructed, and the working characteristics of the detector are revealed. Based on the finite element simulation, the working mechanism, potential and electron distribution of the transistor detector are simulated. The simulation results show that the mobility level of the diamondene-based detector is 2.5 times that of the traditional silicon-based detector, which theoretically verifies the hypersensitivity detection characteristics of the diamondene-based detector. The research work in this paper is of great significance to the design and application of a new generation of carbon-based ultra-sensitive detection devices.
  • [1]

    Jiang J F, Xu L, Qiu C G, Peng L-M 2023 Nature 616 470

    [2]

    Dwivedi P, Soneja S, Dhanekar S 2018IEEE SENSORS

    [3]

    Liu K L, Jin B, Han W, Zhao Y H, Yang S J, Duan J Y, Liu L X, Wang F K, Zhuge F W, Zhai T Y, Chen X, Gong P L, Huang L, Hu X Z 2021Nature electronics 4 906

    [4]

    Grigorenko A N, Polini M, Novoselov K S 2012Nature Photonics 6 749

    [5]

    Gui G, Li J, Zhong J X 2008Phys. Rev. B 78 1

    [6]

    Lu G H, Yu K H, Wen Z H, Chen J H 2013Nanoscale 5 1353

    [7]

    He Q, Su K, Zhang J F, Ren Z Y, Xing Y F, Zhang J C, Lei Y Q, Hao Y 2022IEEE Transactions on Electron Devices 691206

    [8]

    Zhen J P, Huang Q S, Shen K, Dong H L, Zhang S H, Lv K H, Yang P, Zhang Y, Guo S L, Qiu J, Liu G J 2024PNAS 121 e2403726121

    [9]

    Su K, Ren Z Y, Peng Y,Zhang J F, Zhang J C, Zhang Y C, He Q, Zhang C F, Hao Y 2020IEEE Access 8 20043

    [10]

    Sasama Y, Kageura T, Imura M, Watanabe K, Taniguchi T, Uchihashi T, Takahide Y 2022Nature Electronics 5 37

    [11]

    Zhang Q, Fang T, Xing H, Seabaugh A, Jena D 2008IEEE Electron. Device Lett. 29 1344

    [12]

    Cheli M, Michetti P, Iannaccone G 2010IEEE Electron. Devices Trans 57 1936

    [13]

    Liang G, Neophytou N, Lundstrom M S, Nikonov, D E 2008J. Comput. Electron 7 394

    [14]

    Xing H L, Fang T, Konar A, Jena D 2007Appl. Phys. Lett. 91 092109

    [15]

    Hanson G W 2007J. Appl. Phys. 103 064302

    [16]

    Jabbarzadeh F, Heydari M, Sharif A H 2019Mater. Res. Express 6 086209

    [17]

    Gusynin V P, Sharapov S G, Carbotte J P 2007J. Phys.: Condens. Matter 19 026222

    [18]

    Xu W, Zhu Z H, Liu K, Zhang J F, Yuan X D, Lu Q S, Qin S Q 2015Opt. Express 23 5147

    [19]

    Luo X G, Teng Q, Lu W B, Ni Z H 2013Materials Science and Engineering: R: Reports 74 351

    [20]

    Hua L, Gan X T, Mao D, Zhao J L 2017Photonics Research 5 162

    [21]

    Lima A W, Sombra A 2014Opt. Commun. 321 150

    [22]

    Frank S 2010Nat. Nanotech. 5 487

    [23]

    季启政, 刘峻, 杨铭, 马贵蕾, 胡小锋, 刘尚合2023电子学报51 1486

    [24]

    Ipsita C, Shuvajit R, Vivek D 2021Photonics and Nanostructures Fundamentals and Application 43 100865.

    [25]

    Jabbarzadeh F, Habibzadeh S A 2019JOSA B 36 690

    [26]

    Liu M, Yin X B, Erick U A, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011Nature 474 64

    [27]

    Heidari M, Orouji A A, Bozorgi S A 2023J Mater Sci: Mater Electron 34 1708

    [28]

    Santini T, Morand S, Fouladirad M, Phung L V, Miller F, Foucher B, Grall A, Allard B 2014Microelectronics Reliability 54 1718

    [29]

    Sreevani A, Swarnakar S, Krishna S V 2022Silicon 14 9223

  • [1] 张冷, 张鹏展, 刘飞, 李方政, 罗毅, 侯纪伟, 吴孔平. 基于形变势理论的掺杂计算Sb2Se3空穴迁移率. 物理学报, doi: 10.7498/aps.73.20231406
    [2] 寇科, 王错, 王晛, 连天虹, 焦明星, 樊毓臻. 线性调频激光回馈粒度探测灵敏度提升方法. 物理学报, doi: 10.7498/aps.72.20230569
    [3] 张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊. 双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法. 物理学报, doi: 10.7498/aps.69.20200765
    [4] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, doi: 10.7498/aps.69.20190640
    [5] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪. 物理学报, doi: 10.7498/aps.67.20172563
    [6] 胡泽华, 叶涛, 刘雄国, 王佳. 抽样法与灵敏度法keff不确定度量化. 物理学报, doi: 10.7498/aps.66.012801
    [7] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, doi: 10.7498/aps.64.038501
    [8] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, doi: 10.7498/aps.64.228501
    [9] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型. 物理学报, doi: 10.7498/aps.63.128503
    [10] 江莺, 梁大开, 曾捷, 倪晓宇. 监测点波长对高双折射光纤环镜轴向应变灵敏度的影响. 物理学报, doi: 10.7498/aps.62.064216
    [11] 田会娟, 牛萍娟. 基于delta-P1近似模型的空间分辨漫反射一阶散射参量灵敏度研究. 物理学报, doi: 10.7498/aps.62.034201
    [12] 徐晋, 谢品华, 司福祺, 李昂, 周海金, 吴丰成, 王杨, 刘建国, 刘文清. 基于机载平台的NO2 垂直廓线反演灵敏度研究. 物理学报, doi: 10.7498/aps.62.104214
    [13] 董海明. 低温下二硫化钼电子迁移率研究. 物理学报, doi: 10.7498/aps.62.206101
    [14] 骆杨, 段羽, 陈平, 臧春亮, 谢月, 赵毅, 刘式墉. 利用空间电荷限制电流方法确定三(8-羟基喹啉)铝的电子迁移率特性初步研究. 物理学报, doi: 10.7498/aps.61.147801
    [15] 张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃. 高电子迁移率晶格匹配InAlN/GaN材料研究. 物理学报, doi: 10.7498/aps.60.117305
    [16] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析. 物理学报, doi: 10.7498/aps.60.064202
    [17] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, doi: 10.7498/aps.59.4732
    [18] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度. 物理学报, doi: 10.7498/aps.56.2119
    [19] 代月花, 陈军宁, 柯导明, 孙家讹, 胡 媛. 纳米MOSFET迁移率解析模型. 物理学报, doi: 10.7498/aps.55.6090
    [20] 李志锋, 陆 卫, 叶红娟, 袁先璋, 沈学础, G.Li, S.J.Chua. GaN载流子浓度和迁移率的光谱研究. 物理学报, doi: 10.7498/aps.49.1614
计量
  • 文章访问数:  182
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-09

/

返回文章
返回