搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机分子插层调控二维关联电子系统的研究进展

石孟竹 康宝蕾 孟凡保 吴涛 陈仙辉

引用本文:
Citation:

有机分子插层调控二维关联电子系统的研究进展

石孟竹, 康宝蕾, 孟凡保, 吴涛, 陈仙辉

Research progress of tuning correlated state in two-dimensional system by organic molecule intercalation

Shi Meng-Zhu, Kang Bao-Lei, Meng Fan-Bao, Wu Tao, Chen Xian-Hui
PDF
HTML
导出引用
  • 在采用机械解理方法制备的二维关联电子系统薄层样品中, 人们观察到了丰富的新奇物性. 发展新的宏观二维块材制备方法, 有可能在块体材料中发现与薄层样品类似的新奇物性. 结合传统的表征手段, 可以进一步地加深对低维系统的理解, 并将这些新奇物性推向潜在的应用领域. 本文将介绍一类有机分子插层调控二维关联电子系统的方法, 重点介绍层状结构材料在有机分子插层后结构和物理性质的变化, 分析其演化过程. 文章将介绍有机分子插层法在热电、磁性、电荷密度波和超导电性等物性调控方面的研究进展.
    Abundant novel physical properties have been observed in thin-flake samples of two-dimensional correlated electronic systems prepared by mechanical exfoliation. Developing new methods of preparing bulk two-dimensional samples can further understand the low-dimensional system by combining traditional bulk characterization methods like X-ray diffraction, magnetic susceptibility and specific heat measurements. It is possible to maintain the novel properties of thin-flake samples in bulk state and promote these novel physical properties for potential applications. This article introduces a class of organic molecular intercalation methods to regulate two-dimensional correlated electronic systems, focusing on the changes of structure and physical properties of two-dimensional materials after organic molecular intercalation. The applications of organic molecular intercalation method in regulating thermoelectricity, two-dimensional magnetism, charge density wave and two-dimensional superconductivity are also presented.
      通信作者: 陈仙辉, chenxh@ustc.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFA0303001)、国家自然科学基金(批准号: 11888101)、中国科学院战略性先导科技专项 (批准号: XDB25000000)、安徽量子信息前沿计划(批准号: AHY160000)和中国科学院前沿科学重点研究计划(批准号: QYZDYSSW-SLH021)资助的课题.
      Corresponding author: Chen Xian-Hui, chenxh@ustc.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303001), the National Natural Science Foundation of China (Grant No. 11888101), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB25000000), the Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY160000), and the Key Research Program of Frontier Sciences, CAS, China (Grant No. QYZDYSSW-SLH021).
    [1]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [2]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [3]

    Wang E Y, Ding H, Fedorov A V, Yao W, Li Z, Lv Y F, Zhao K, Zhang L G, Xu Z J, Schneeloch J, Zhong R D, Ji S H, Wang L L, He K, Ma X C, Gu G D, Yao H, Xue Q K, Chen X, Zhou S Y 2013 Nat. Phys. 9 621Google Scholar

    [4]

    Zhang Z C, Wang Y H, Song Q, Liu C, Peng R, Moler K A, Feng D L, Wang Y Y 2015 Sci. Bull. 60 1301Google Scholar

    [5]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [6]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [7]

    Kamysbayev V, Filatov A S, Hu H, Rui X, Lagunas F, Wang D, Klie R F, Talapin D V 2020 Science 369 979Google Scholar

    [8]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [9]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [10]

    Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [11]

    Wang N Z, Shi M Z, Shang C, Meng F B, Ma L K, Luo X G, Chen X H 2018 New J. Phys. 20 023014Google Scholar

    [12]

    Shi M Z, Wang N Z, Lei B, Ying J J, Zhu C S, Sun Z L, Cui J H, Meng F B, Hang C S, Ma L K, Chen X H 2018 New J. Phys. 20 123007Google Scholar

    [13]

    Kang B L, Shi M Z, Li S J, Wang H H, Zhang Q, Zhao D, Li J, Song D W, Zheng L X, Nie L P, Wu T, Chen X H 2020 Phys. Rev. Lett. 125 097003Google Scholar

    [14]

    Zhao Y C, Su Y Q, Guo Y Q, Peng J, Zhao J Y, Wang C Y, Wang L J, Wu C Z, Xie Y 2021 ACS Mater. Lett. 3 210Google Scholar

    [15]

    Zhu R L, Zhu L Z, Zhu J X, Xu L H 2008 Appl. Clay Sci. 42 224Google Scholar

    [16]

    Ganter P, Schoop L M, Lotsch B V 2017 Adv. Mater. 29 1604884Google Scholar

    [17]

    Gamble F R, Osiecki J H, Cais M, Pisharody R, Disalvo F J, Geballe T H 1971 Science 174 493Google Scholar

    [18]

    Li Z, Zhao Y, Mu K, Shan H, Guo Y, Wu J, Su Y, Wu Q, Sun Z, Zhao A, Cui X, Wu C, Xie Y 2017 J. Am. Chem. Soc. 139 16398Google Scholar

    [19]

    Gao Z, Zeng S Y, Zhu B C, Li B A, Hao Q Y, Hu Y W, Wang D K, Tang K B 2018 Sci. Chin. -Mater. 61 977Google Scholar

    [20]

    Bartlett N, McQuillan B W (Whittingham M S, Jacobson A J, Eds) 1982 Intercalation Chemistry (New York: Academic Press) pp19–53

    [21]

    Yoo H D, Liang Y L, Dong H, Lin J H, Wang H, Liu Y S, Ma L, Wu T P, Li Y F, Ru Q, Jing Y, An Q Y, Zhou W, Guo J H, Lu J, Pantelides S T, Qian X F, Yao Y 2017 Nat. Commun. 8 339Google Scholar

    [22]

    Rendenbach B, Hohl T, Harm S, Hoch C, Johrendt D 2021 J. Am. Chem. Soc. 143 3043Google Scholar

    [23]

    Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder G J, Yang R, Koumoto K 2015 Nat. Mater. 14 622Google Scholar

    [24]

    Jin S F, Fan X, Wu X Z, Sun R J, Wu H, Huang Q Z, Shi C L, Xi X K, Li Z L, Chen X L 2017 Chem. Commun. 53 9729Google Scholar

    [25]

    Wang N, Tang H, Shi M, Zhang H, Zhuo W, Liu D, Meng F, Ma L, Ying J, Zou L, Sun Z, Chen X 2019 J. Am. Chem. Soc. 141 17166Google Scholar

    [26]

    Ma L K, Shi M Z, Kang B L, Peng K L, Meng F B, Zhu C S, Cui J H, Sun Z L, Wang H H, Lei B, Wu T, Chen X H 2020 Phys. Rev. Mater. 4 124803Google Scholar

    [27]

    Meng F B, Liu Z, Yang L X, Shi M Z, Ge B H, Zhang H, Ying J J, Wang Z F, Wang Z Y, Wu T, Chen X H 2020 Phys. Rev. B 102 165410Google Scholar

    [28]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [29]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [30]

    Hu G B, Shi M Z, Wang W X, Zhu C S, Luo X G, Chen X H 2022 New J. Phys. 24 043035Google Scholar

  • 图 1  电化学有机分子插层的过程及结构演化 (a)电化学电解池的结构及电荷流动示意图, 包括工作电极(固定有二维材料的In丝)、对电极(Ag片)和电解液(溶有季铵盐的有机溶液); (b), (c) CTA+插层TaS2前后的结构示意图, 其中有机分子CTA+垂直于TaS2ab[11]; (d), (e), (f) (TBA)xFeSe[12], (CTA)xFeSe[13]以及(TBA)xCr2Ge2Te6[25]的结构示意图, 其中TBA+在层间单层排列, CTA+在层间以双层平行排列; (g), (h) (Cp)2Co插层SnSe2的STM形貌图和其对应的结构示意图, 有机分子(Cp)2Co的五元环平面与SnSe2ab面垂直[18]; (i) (CTA)xFeSe的STM形貌图, 其中CTA+分子在FeSe层间紧密排列, 且CTA+分子的长链与FeSe的ab面平行[13]

    Fig. 1.  Process of the electrochemical intercalation and the structure of the intercalated materials: (a) The illustration of the electrolytic cell which includes the working electrode (In wire fixed with two-dimensional material), counter electrode (Ag sheet) and the electrolyte (organic solution containing quaternary ammonium salt). (b), (c) The structure of TaS2 and (CTA)xTaS2 , respectively. The organic molecule CTA+ is perpendicular to the ab plane of TaS2[11]. (d), (e), (f) The structure of (TBA)xFeSe[12], (CTA)xFeSe[13] and (TBA)xCr2Ge2Te6[25], respectively. The TBA+ is arranged in a monolayer mode, while CTA+ is arranged in a double-layer mode. (g), (h) The STM image and surface structure of (Cp)2Co intercalated SnSe2. The five-membered ring plane of organic molecule (Cp)2Co is perpendicular to the ab plane of SnSe2[18]. (i) The STM image of (CTA)xFeSe. The CTA+ molecules are closely arranged in the interlayer of FeSe, and the long chain of CTA+ molecules is parallel to the ab plane of FeSe[13].

    图 2  Cr2Ge2Te6中插层TBA+分子后的结构和磁作用机制变化 (a), (b) Cr2Ge2Te6插层TBA+分子前后的结构示意图[25]; (c) Cr2Ge2Te6插层TBA+分子前(左图)和插层TBA+分子后(右图)的磁性作用机制示意图[25]

    Fig. 2.  Changes of structure and magnetism origin in TBA+ intercalated Cr2Ge2Te6: (a), (b) The structure of Cr2Ge2Te6 and (TBA)xCr2Ge2Te6[25]; (c) the magnetism exchange interaction of Cr2Ge2Te6 (left panel) and (TBA)xCr2Ge2Te6 (right panel)[25].

    图 3  VSe2中插层TBA+分子后的结构和能带结构变化 (a), (b) VSe2和(TBA)xVSe2的结构示意图[27]; (c)—(f) 第一性原理计算的VSe2的层间距离为6.12, 8.62, 11.02, 18.62 Å时对应的能带结构[27]; (g)—(j) 第一性原理计算的VSe2的层间距离为18.62 Å时, 费米面移动0, 0.05, 0.1, 0.15 eV后, 能带结构的演化, 其对应的费米面嵌套波失分别为1/4a*, 0.26a*, 0.29a*, 1/3a*[27]

    Fig. 3.  Changes of crystal structure and Fermi surface topology in the TBA+ intercalated VSe2: (a), (b) The crystal structure of VSe2 and (TBA)xVSe2[27]. (c)–(f) The calculated Fermi surface topology of VSe2 with the interlayer distance of 6.12, 8.62, 11.02 and 18.62 Å[27]. (g)–(j) The calculated Fermi surface topology of VSe2 with the different amount of Fermi surface shift with the interlayer distance at 18.62 Å. The shift amount is 0, 0.05, 0.1 and 0.15 eV, respectively. The nesting vectors are 1/4a*, 0.26a*, 0.29a*, 1/3a*[27]

    图 4  (CTA)xSnSe2中的二维超导与(TBA)xFeSe中的赝能隙相图 (a) (CTA)xSnSe2在超导转变温度附近的I-V曲线[26]; (b) (CTA)xSnSe2R(T)曲线, 其中纵坐标是(d lnR(T)/dT)–2/3 [26]; (c)从(CTA)xSnSe2I-V曲线中分离出来的幂指数α; (d) (TBA)xFeSe的磁场-温度相图, 其中Tc0是零电阻温度, Tc是通过NMR谱线展宽和电阻曲线一阶微分定义的超导转变温度, Tp是电子预配对的温度[13]

    Fig. 4.  Quasi-two-dimensional superconductivity in (CTA)xSnSe2 and the pseudogap behavior in (TBA)xFeSe: (a) The I-V curves of (CTA)xSnSe2 around the Tc[26]; (b) the R(T) curve of (CTA)xSnSe2 with the Y axis at the scale of (d lnR(T)/dT)–2/3 [26]; (c) the temperature dependent index α of (CTA)xSnSe2 using the fitting formula $ V \propto {I^\alpha } $[26]; (d) the Field-Temperature phase diagram of (TBA)xFeSe. The Tc0 is the zero-resistance critical temperature; Tc is the superconducting temperature defined by the onset temperature of NMR line broadening and the first derivative of resistance data; Tp is the onset temperature of the pseudogap behavior[13].

  • [1]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [2]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [3]

    Wang E Y, Ding H, Fedorov A V, Yao W, Li Z, Lv Y F, Zhao K, Zhang L G, Xu Z J, Schneeloch J, Zhong R D, Ji S H, Wang L L, He K, Ma X C, Gu G D, Yao H, Xue Q K, Chen X, Zhou S Y 2013 Nat. Phys. 9 621Google Scholar

    [4]

    Zhang Z C, Wang Y H, Song Q, Liu C, Peng R, Moler K A, Feng D L, Wang Y Y 2015 Sci. Bull. 60 1301Google Scholar

    [5]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [6]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [7]

    Kamysbayev V, Filatov A S, Hu H, Rui X, Lagunas F, Wang D, Klie R F, Talapin D V 2020 Science 369 979Google Scholar

    [8]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [9]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [10]

    Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [11]

    Wang N Z, Shi M Z, Shang C, Meng F B, Ma L K, Luo X G, Chen X H 2018 New J. Phys. 20 023014Google Scholar

    [12]

    Shi M Z, Wang N Z, Lei B, Ying J J, Zhu C S, Sun Z L, Cui J H, Meng F B, Hang C S, Ma L K, Chen X H 2018 New J. Phys. 20 123007Google Scholar

    [13]

    Kang B L, Shi M Z, Li S J, Wang H H, Zhang Q, Zhao D, Li J, Song D W, Zheng L X, Nie L P, Wu T, Chen X H 2020 Phys. Rev. Lett. 125 097003Google Scholar

    [14]

    Zhao Y C, Su Y Q, Guo Y Q, Peng J, Zhao J Y, Wang C Y, Wang L J, Wu C Z, Xie Y 2021 ACS Mater. Lett. 3 210Google Scholar

    [15]

    Zhu R L, Zhu L Z, Zhu J X, Xu L H 2008 Appl. Clay Sci. 42 224Google Scholar

    [16]

    Ganter P, Schoop L M, Lotsch B V 2017 Adv. Mater. 29 1604884Google Scholar

    [17]

    Gamble F R, Osiecki J H, Cais M, Pisharody R, Disalvo F J, Geballe T H 1971 Science 174 493Google Scholar

    [18]

    Li Z, Zhao Y, Mu K, Shan H, Guo Y, Wu J, Su Y, Wu Q, Sun Z, Zhao A, Cui X, Wu C, Xie Y 2017 J. Am. Chem. Soc. 139 16398Google Scholar

    [19]

    Gao Z, Zeng S Y, Zhu B C, Li B A, Hao Q Y, Hu Y W, Wang D K, Tang K B 2018 Sci. Chin. -Mater. 61 977Google Scholar

    [20]

    Bartlett N, McQuillan B W (Whittingham M S, Jacobson A J, Eds) 1982 Intercalation Chemistry (New York: Academic Press) pp19–53

    [21]

    Yoo H D, Liang Y L, Dong H, Lin J H, Wang H, Liu Y S, Ma L, Wu T P, Li Y F, Ru Q, Jing Y, An Q Y, Zhou W, Guo J H, Lu J, Pantelides S T, Qian X F, Yao Y 2017 Nat. Commun. 8 339Google Scholar

    [22]

    Rendenbach B, Hohl T, Harm S, Hoch C, Johrendt D 2021 J. Am. Chem. Soc. 143 3043Google Scholar

    [23]

    Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder G J, Yang R, Koumoto K 2015 Nat. Mater. 14 622Google Scholar

    [24]

    Jin S F, Fan X, Wu X Z, Sun R J, Wu H, Huang Q Z, Shi C L, Xi X K, Li Z L, Chen X L 2017 Chem. Commun. 53 9729Google Scholar

    [25]

    Wang N, Tang H, Shi M, Zhang H, Zhuo W, Liu D, Meng F, Ma L, Ying J, Zou L, Sun Z, Chen X 2019 J. Am. Chem. Soc. 141 17166Google Scholar

    [26]

    Ma L K, Shi M Z, Kang B L, Peng K L, Meng F B, Zhu C S, Cui J H, Sun Z L, Wang H H, Lei B, Wu T, Chen X H 2020 Phys. Rev. Mater. 4 124803Google Scholar

    [27]

    Meng F B, Liu Z, Yang L X, Shi M Z, Ge B H, Zhang H, Ying J J, Wang Z F, Wang Z Y, Wu T, Chen X H 2020 Phys. Rev. B 102 165410Google Scholar

    [28]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [29]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [30]

    Hu G B, Shi M Z, Wang W X, Zhu C S, Luo X G, Chen X H 2022 New J. Phys. 24 043035Google Scholar

  • [1] 弭孟娟, 于立轩, 肖寒, 吕兵兵, 王以林. 有机阳离子插层调控二维反铁磁MPX3磁性能. 物理学报, 2024, 73(5): 057501. doi: 10.7498/aps.73.20232010
    [2] 童健, 马亮. 基于环丁烯-1,2-二羧酸分子的二维有机铁电分子晶体单层的设计与理论研究. 物理学报, 2022, 71(6): 067302. doi: 10.7498/aps.71.20211759
    [3] 郭宁, 周舟, 倪牮, 蔡宏琨, 张建军, 孙艳艳, 李娟. 基于二维有机无机杂化钙钛矿的薄膜晶体管. 物理学报, 2020, 69(19): 198102. doi: 10.7498/aps.69.20200701
    [4] 张钰, 周欢萍. 有机-无机杂化钙钛矿材料的本征稳定性. 物理学报, 2019, 68(15): 158804. doi: 10.7498/aps.68.20190343
    [5] 高艺璇, 张礼智, 张余洋, 杜世萱. 二维有机拓扑绝缘体的研究进展. 物理学报, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [6] 王福芝, 谭占鳌, 戴松元, 李永舫. 平面异质结有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [7] 范昌君, 王瑞雪, 刘振, 雷勇, 李国庆, 熊祖洪, 杨晓晖. 基于溶液加工小分子材料发光层的有机-无机复合发光器件. 物理学报, 2015, 64(16): 167801. doi: 10.7498/aps.64.167801
    [8] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [9] 郑莹莹, 邓海涛, 万静, 李超荣. 有机-无机杂化钙钛矿自组装量子阱结构的能带调控和光电性能的研究. 物理学报, 2011, 60(6): 067306. doi: 10.7498/aps.60.067306
    [10] 邓舒鹏, 李文萃, 黄文彬, 刘永刚, 彭增辉, 鲁兴海, 宣丽. 基于全息聚合物分散液晶的有机二维光子晶体激光器的研究. 物理学报, 2011, 60(8): 086103. doi: 10.7498/aps.60.086103
    [11] 刘荣, 张勇, 雷衍连, 陈平, 张巧明, 熊祖洪. LiF插层对有机发光二极管磁场效应的调控. 物理学报, 2010, 59(6): 4283-4289. doi: 10.7498/aps.59.4283
    [12] 袁广才, 徐征, 赵谡玲, 张福俊, 许娜, 孙钦军, 徐叙瑢. 低栅极电压控制下带有phenyltrimethoxysilane单分子自组装层的有机薄膜晶体管场效应特性研究. 物理学报, 2009, 58(7): 4941-4947. doi: 10.7498/aps.58.4941
    [13] 张丹, 王兆明, 王艳双, 薄淑辉, 甄珍, 张大明. LaF3∶Er,Yb纳米颗粒掺杂有机/无机杂化材料制备光波导放大器及特性研究. 物理学报, 2009, 58(3): 1675-1678. doi: 10.7498/aps.58.1675
    [14] 付吉永, 任俊峰, 刘德胜, 解士杰. 一维铁磁/有机共轭聚合物的自旋极化研究. 物理学报, 2004, 53(6): 1989-1993. doi: 10.7498/aps.53.1989
    [15] 许雪梅, 彭景翠, 李宏建, 瞿述, 赵楚军, 罗小华. 有机层界面对双层有机发光二极管复合效率的影响. 物理学报, 2004, 53(1): 286-290. doi: 10.7498/aps.53.286
    [16] 张红群. 一维有机导体的Peierls相变研究. 物理学报, 2004, 53(4): 1162-1165. doi: 10.7498/aps.53.1162
    [17] 赵俊卿, 魏建华, 王守国, 解士杰, 梅良模. 非闭环结构下有机磁性材料中的自旋密度波性质. 物理学报, 1999, 48(6): 1163-1169. doi: 10.7498/aps.48.1163
    [18] 刘丽英, 徐 雷, 侯占佳, 徐志凌, 陈 杰, 王文澄, 李富铭. 有机/无机薄膜凝胶动态过程的实时光学二次谐波产生研究. 物理学报, 1999, 48(1): 69-73. doi: 10.7498/aps.48.69
    [19] 方忠, 刘祖黎, 姚凯伦, 李再光. 准一维有机铁磁体的磁性机理研究. 物理学报, 1994, 43(11): 1866-1870. doi: 10.7498/aps.43.1866
    [20] 庞小峰. 在准一维有机分子晶体中由超声孤子引起的M?ssbauer效应. 物理学报, 1993, 42(11): 1856-1867. doi: 10.7498/aps.42.1856
计量
  • 文章访问数:  7135
  • PDF下载量:  394
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 修回日期:  2022-05-30
  • 上网日期:  2022-06-15
  • 刊出日期:  2022-06-20

/

返回文章
返回