搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

确定磁性体在绝热磁化过程中达到最高温度的方法

陈辉 张国营 杨丹 高娇

引用本文:
Citation:

确定磁性体在绝热磁化过程中达到最高温度的方法

陈辉, 张国营, 杨丹, 高娇

A method of determining the highest temperature attained by magnetic material in the adiabatic magnetization

Chen Hui, Zhang Guo-Ying, Yang Dan, Gao Jiao
PDF
导出引用
  • 在磁性体磁化过程中, 决定其能够达到的最高温度, 对磁热材料的优化选取是重要的. 本文以钆镓石榴石(Gd3Ga5O12)为例, 根据高磁场下趋近饱和定律的思想, 给出了低温、超强磁场下, Gd3Ga5O12晶体等效磁化率的定量形式. 在外磁场从040 T范围内, 计算了该晶体的磁熵变、声子熵变以及磁性体温度随外磁场的变化, 结果均与实验值符合较好. 利用声子熵变与饱和磁熵变曲线交点的唯一性, 给出了在磁性体磁化过程中, 确定其温度达到最大值的方法, 预言了Gd3Ga5O12晶体在绝热磁化过程中达到的最高温度为64.7K. 该方法还可以对所加外磁场大小进行预言或估计.
    Determining the highest temperature attained by a magnetic material in the adiabatic magnetization is important for the optimal selecting of magnetocaloric material. As an example, the Gd3Ga5O12 crystals are investigated. Under the superstrong magnetic field and at low temperature, the form of effective magnetic susceptibility is given based on the tendency-saturation law. The magnetic entropy change and the phonon entropy change as well as the magnetocaloric effect are calculated in a magnetic field range from 0 to 40 T. The calculated results are in good agreement with the measured data. A method of determining the highest temperature attained by magnetic material in the adiabatic magnetization is given by using the only intersection point between the curves of the saturation-magnetic entropy change and the phonon entropy change. The highest temperature in the adiabatic magnetization is predicted to be 64.7 K for the Gd3Ga5O12 crstal.
    • 基金项目: 中央高校基础研究基金(批准号: 2010LKWL07)资助的课题.
    • Funds: Project supported by the Fundamental Research for the Central Universities (Grant No.2010LKWL07).
    [1]

    Levitin R Z, Zvezdin A K, Ortenberg M V, Platonov V V, Plis V I, Popov A I, Puhlmann N 2002 Phys. Solid State 44 2107

    [2]

    Plis V I, Popov A I 2004 Phys. Solid State 46 2229

    [3]

    Amaral J S, Amaral V S 2010 J. Magn. Magn. Mater 322 1552

    [4]

    Yang G, Zhang G Y, Gao J, Xue L P, Xia T, Zhang X L 2011 Chin. Phys. B 20 017802

    [5]

    Wen Dai, Gmelin E, Kremer R 1988 J. Phys. D: Appl. Phys. 21 628

    [6]

    Stevens K W H 1952 Proc. Phys. Soc. 65 209

    [7]

    Brandle C D, Valentino A J 1972 J. Cryst. Growth 12 3

    [8]

    Onn D G, Meyer H, Remeika J P 1967 Phys. Rev. 156 663

    [9]

    Kuz'min M D, Tishin A M 1991 J. Phys. D: Appl. Phys. 24 2039

    [10]

    Zhang G Y, Xia T, Xue L P, Zhang X L 2006 Phys. Lett. A 360 327

    [11]

    Xia T, Zhang G Y, Xue L P, Zhang X L 2007 Acta Phys. Sin. 56 1741 (in Chinese) [夏天, 张国营, 薛刘萍, 张学龙 2007 物理学报 56 1741]

    [12]

    Zhang G Y, Wei M, Xia W S, Yang G 2009 J. Magn. Magn. Mater 321 3077

    [13]

    Zhang G Y, Xia T, Zhang X L, Xue L P 2008 Chin. Phys. B 17 3093

    [14]

    Jiang S T, Li W 2003 Magnetic Condensed Matter Physics (Beijing: Science Press) (in Chinese) [姜寿亭, 李卫 2003 凝聚态磁性物理 (北京: 科学出版社)]

    [15]

    Daudin B, Lagnier R, Salce B 1982 J. Magn. Magn. Mater 27 315

    [16]

    Yu M, Liu J, Liu Z X, Yang J L, Jin L, Zhang B S, Zhou H M 1985 Acta Phys. Sin. 34 39 [余梅, 刘进, 刘尊孝, 杨继廉, 金兰, 张百生, 周蕙明 1985 物理学报 34 39]

    [17]

    Barclay J A, Steyert W A 1982 Cryogenics22 73

    [18]

    Belov K P, Zvezdin A K, Kadomtseva A M, Levitin R Z 1979 Orientational Phase Transitions (Nauka, Moscow)

    [19]

    Levitin R Z, Snegirev V V, Kopylov A V, Lagutin A S, Gerber A 1997 J. Magn. Magn. Mater 170 223

  • [1]

    Levitin R Z, Zvezdin A K, Ortenberg M V, Platonov V V, Plis V I, Popov A I, Puhlmann N 2002 Phys. Solid State 44 2107

    [2]

    Plis V I, Popov A I 2004 Phys. Solid State 46 2229

    [3]

    Amaral J S, Amaral V S 2010 J. Magn. Magn. Mater 322 1552

    [4]

    Yang G, Zhang G Y, Gao J, Xue L P, Xia T, Zhang X L 2011 Chin. Phys. B 20 017802

    [5]

    Wen Dai, Gmelin E, Kremer R 1988 J. Phys. D: Appl. Phys. 21 628

    [6]

    Stevens K W H 1952 Proc. Phys. Soc. 65 209

    [7]

    Brandle C D, Valentino A J 1972 J. Cryst. Growth 12 3

    [8]

    Onn D G, Meyer H, Remeika J P 1967 Phys. Rev. 156 663

    [9]

    Kuz'min M D, Tishin A M 1991 J. Phys. D: Appl. Phys. 24 2039

    [10]

    Zhang G Y, Xia T, Xue L P, Zhang X L 2006 Phys. Lett. A 360 327

    [11]

    Xia T, Zhang G Y, Xue L P, Zhang X L 2007 Acta Phys. Sin. 56 1741 (in Chinese) [夏天, 张国营, 薛刘萍, 张学龙 2007 物理学报 56 1741]

    [12]

    Zhang G Y, Wei M, Xia W S, Yang G 2009 J. Magn. Magn. Mater 321 3077

    [13]

    Zhang G Y, Xia T, Zhang X L, Xue L P 2008 Chin. Phys. B 17 3093

    [14]

    Jiang S T, Li W 2003 Magnetic Condensed Matter Physics (Beijing: Science Press) (in Chinese) [姜寿亭, 李卫 2003 凝聚态磁性物理 (北京: 科学出版社)]

    [15]

    Daudin B, Lagnier R, Salce B 1982 J. Magn. Magn. Mater 27 315

    [16]

    Yu M, Liu J, Liu Z X, Yang J L, Jin L, Zhang B S, Zhou H M 1985 Acta Phys. Sin. 34 39 [余梅, 刘进, 刘尊孝, 杨继廉, 金兰, 张百生, 周蕙明 1985 物理学报 34 39]

    [17]

    Barclay J A, Steyert W A 1982 Cryogenics22 73

    [18]

    Belov K P, Zvezdin A K, Kadomtseva A M, Levitin R Z 1979 Orientational Phase Transitions (Nauka, Moscow)

    [19]

    Levitin R Z, Snegirev V V, Kopylov A V, Lagutin A S, Gerber A 1997 J. Magn. Magn. Mater 170 223

  • [1] 王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨. 设计制备具有优异形成能力和磁热效应的GdHoErCoNiAl高熵非晶合金. 物理学报, 2024, 73(21): 217101. doi: 10.7498/aps.73.20241132
    [2] 林源, 胡凤霞, 沈保根. 相变调控、磁热效应和反常热膨胀. 物理学报, 2023, 72(23): 237501. doi: 10.7498/aps.72.20231118
    [3] 张艳, 宗朔通, 孙志刚, 刘虹霞, 陈峰华, 张克维, 胡季帆, 赵同云, 沈保根. HoCoSi快淬带的磁性和各向异性磁热效应. 物理学报, 2022, 71(16): 167501. doi: 10.7498/aps.71.20220683
    [4] 彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏. 非晶态Gd45Ni30Al15Co10合金的制备与磁热性能. 物理学报, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [5] 张鹏, 朴红光, 张英德, 黄焦宏. 钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展. 物理学报, 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [6] 张虎, 邢成芬, 龙克文, 肖亚宁, 陶坤, 王利晨, 龙毅. 一级磁结构相变材料Mn0.6Fe0.4NiSi0.5Ge0.5和Ni50Mn34Co2Sn14的磁热效应与磁场的线性相关性. 物理学报, 2018, 67(20): 207501. doi: 10.7498/aps.67.20180927
    [7] 杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚. 间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响. 物理学报, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [8] 郝志红, 王海英, 张荃, 莫兆军. Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应. 物理学报, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [9] 孙晓东, 徐宝, 吴鸿业, 曹凤泽, 赵建军, 鲁毅. Tb掺杂双层锰氧化物La4/3Sr5/3Mn2O7的磁熵变和电输运性质. 物理学报, 2017, 66(15): 157501. doi: 10.7498/aps.66.157501
    [10] 李振兴, 李珂, 沈俊, 戴巍, 高新强, 郭小惠, 公茂琼. 室温磁制冷技术的研究进展. 物理学报, 2017, 66(11): 110701. doi: 10.7498/aps.66.110701
    [11] 霍军涛, 盛威, 王军强. 非晶合金的磁热效应及磁蓄冷性能. 物理学报, 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [12] 郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根. 磁热效应材料的研究进展. 物理学报, 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [13] 王芳, 原凤英, 汪金芝. Mn42Al50-xFe8+x合金的磁性和磁热效应. 物理学报, 2013, 62(16): 167501. doi: 10.7498/aps.62.167501
    [14] 蔡培阳, 冯尚申, 陈卫平, 薛双喜, 李志刚, 周英, 王海波, 王古平. Ni47Mn32Ga21多晶合金的磁熵变和磁感生应变. 物理学报, 2011, 60(10): 107501. doi: 10.7498/aps.60.107501
    [15] 张浩雷, 李哲, 乔燕飞, 曹世勋, 张金仓, 敬超. 哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究. 物理学报, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [16] 敬 超, 陈继萍, 李 哲, 曹世勋, 张金仓. 哈斯勒合金Ni50Mn35In15的马氏体相变及其磁热效应. 物理学报, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [17] 刘喜斌, 沈保根. Mn5Ge2.7M0.3 (M=Ga,Al,Sn) 化合物的磁性和磁熵变. 物理学报, 2005, 54(12): 5884-5889. doi: 10.7498/aps.54.5884
    [18] 张锡娟, 成海英, 杨翠红, 王维. 超交换作用对Er3Ga5O12的磁特性的影响. 物理学报, 2004, 53(5): 1507-1509. doi: 10.7498/aps.53.1507
    [19] 陈伟, 钟伟, 潘成福, 常虹, 都有为. La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应. 物理学报, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
    [20] 李桌棠, 吴佩芳, 陶永棋, 茅德康. 通过磁化曲线计算金属磁熵变. 物理学报, 1999, 48(13): 126-131. doi: 10.7498/aps.48.126
计量
  • 文章访问数:  7869
  • PDF下载量:  648
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-03
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

/

返回文章
返回