搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期性应变调控斯格明子在纳米条带中的运动

轩胜杰 柳艳

引用本文:
Citation:

周期性应变调控斯格明子在纳米条带中的运动

轩胜杰, 柳艳

Control of skyrmion movement in nanotrack by using periodic strain

Xuan Sheng-Jie, Liu Yan
PDF
导出引用
  • 斯格明子是一种拓扑稳定的手性自旋结构,凭借其在磁性赛道存储器和自旋电子器件方面的巨大应用潜力而受到研究人员的广泛关注.为了使斯格明子能够更好地应用于磁性赛道存储器,研究斯格明子在纳米条带中的运动行为就变得非常重要.本文主要研究了存在周期性应变的纳米条带中铁磁斯格明子和反铁磁斯格明子在电流驱动下的运动行为.研究结果表明:周期性应变使得驱动电流存在一个临界电流密度,只有当电流密度大于临界电流密度时斯格明子才能够在纳米条带中连续移动.临界电流密度随应变振幅的增加而增加,随应变周期的增加而减小.铁磁斯格明子在周期性应变的调制下会产生周期性运动,轨迹为波浪式,其横向速度受到边界的影响,而纵向速度则与应变梯度成正比.反铁磁斯格明子在周期性应变调控下运动方向不变,但其移动速度则剧烈变化.
    Magnetic skyrmions are a topologically stable and particle-like chiral spin configuration. They are appealing because of their potential applications in racetrack memory and other spintronic devices. These applications are strongly dependent on the skyrmion motion in confined geometry. Therefore, it is important to study the moving behaviors of skyrmions in a nanotrack to make them have more practical applications. Mechanical strain and stress have been demonstrated theoretically and experimentally to be able to effectively control the skyrmion phase. It can stabilize the skyrmion lattice in a broad range, and change the shape of the skyrmion crystal. In this paper, we study the moving behaviors of ferromagnetic skyrmions and antiferromagnetic skyrmions under the action of sinusoidally distributed strain in a nanotrack by using micromagnetic simulation. We assume that strain is uniaxial and perpendicular to the plane of the nanotrack. Its strength varies sinusoidally along the x-axis. Meanwhile, we apply an in-pane current along the nanotrack to drive the skyrmion moving towards the right side. We first find that there is a threshold current density that is defined as the minimum current that can drive skyrmion moving continuously. When the current density is larger than the threshold current density, the skyrmion can move continuously in the nanotrack. The threshold current density increases with the amplitude of strain increasing, but decreases with the period of strain increasing. Second, we find that the trajectory of skyrmion changes under the action of the sinusoidal distributed strains. For ferromagnetic skyrmion, its trajectory changes from straight line to periodic wavy line. Also, we find that the longitudinal velocity of skyrmion is affected by the boundary of the nanotrack. When the skyrmion is close to the upper boundary of the nanotrack, the longitudinal velocity increases sharply and it will form a peak in the velocity curve, but when the skyrmion is close to the lower boundary of the nanotrack, the longitudinal velocity decreases and it will form a valley in the velocity curve. The transverse velocity of skyrmion relates to the strain gradient. It is inversely proportional to the strain gradient. For antiferromagnetic skyrmion, we find that the movement trajectory of antiferromagnetic skyrmion does not change under the stress control. However, its diameter and velocity change periodically. Its velocity can vary between 103 m/s and 0. Our results demonstrate that the sinusoidal strain can control the skyrmion motion. This work may provide guidance in designing and developing of the spintronic devices based on magnetic skyrmions.
      通信作者: 柳艳, liuyanphys@mail.neu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11774045)和中央高校基本科研业务费(批准号:160504003)资助的课题.
      Corresponding author: Liu Yan, liuyanphys@mail.neu.edu.cn
    • Funds: Projecy supported by the National Natural Science Foundation of China (Grant No. 11774045) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 160504003).
    [1]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [2]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [3]

    Shibata K, Yu X Z, Hara T, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y, Tokura Y 2013 Nat. Nanotechnol. 8 723

    [4]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [5]

    Franz C, Freimuth F, Bauer A, Ritz R, Schnarr C, Duvinage C, Adams T, Blgel S, Rosch A, Mokrousov Y, Pfleiderer C 2014 Phys. Rev. Lett. 112 186601

    [6]

    Tokunaga Y, Yu X Z, White J S, Rnnow H M, Morikawa D, Taguchi Y, Tokura Y 2015 Nat. Commun. 6 7638

    [7]

    Tanigaki T, Shibata K, Kanazawa N, Yu X, Onose Y, Park H S, Shindo D, Tokura Y 2015 Nano Lett. 15 5438

    [8]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [9]

    Sonntag A, Hermenau J, Krause S, Wiesendanger R 2014 Phys. Rev. Lett. 113 077202

    [10]

    Chen G, Mascaraque A, N'Diaye A T, Schmid A K 2015 Appl. Phys. Lett. 106 242404

    [11]

    Peng L, Zhang Y, Wang W, He M, Li L, Ding B, Li J, Sun Y, Zhang X G, Cai J, Wang S, Wu G, Shen B 2017 Nano Lett. 17 7075

    [12]

    Boulle O, Vogel J, Yang H, Pizzini S, de Souza Chaves D, Locatelli A, Mentes T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussign Y, Stashkevich A, Mourad Chrif S, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotechnol. 11 449

    [13]

    Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981

    [14]

    Woo S, Litzius K, Krger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klui M, Beach G S D 2016 Nat. Mater. 15 501

    [15]

    Yu G, Jenkins A, Ma X, Razavi S A, He C, Yin G, Shao Q, He Q L, Wu H, Li W, Jiang W, Han X, Li X E, Bleszynski Jayich A C, Amiri P K, Wang K L 2018 Nano Lett. 18 980

    [16]

    Karube K, White J S, Morikawa D, Bartkowiak M, Kikkawa A, Tokunaga Y, Arima T, Rnnow H M, Tokura Y, Taguchi Y 2017 Phys. Rev. Mater. 1 074405

    [17]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotechnol. 8 839

    [18]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Nanotechnol. 8 742

    [19]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commun. 4 1463

    [20]

    Koshibae W, Nagaosa N 2014 Nat. Commun. 5 5148

    [21]

    Nayak A K, Kumar V, Ma T, Werner P, Pippel E, Sahoo R, Damay F, Rler U K, Felser C, Parkin S S P 2017 Nature 548 561

    [22]

    Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203

    [23]

    Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M, Finocchio G 2014 Sci. Rep. 4 6784

    [24]

    Kang W, Huang Y, Zheng C, L W, Lei N, Zhang Y, Zhang X, Zhou Y, Zhao W 2016 Sci. Rep. 6 23164

    [25]

    Kang W, Zheng C, Huang Y, Zhang X, Zhou Y, L W, Zhao W 2016 IEEE Electron Device Lett. 37 924

    [26]

    Parkes D E, Cavill S A, Hindmarch A T, Wadley P, McGee F, Staddon C R, Edmonds K W, Campion R P, Gallagher B L, Rushforth A W 2012 Appl. Phys. Lett. 101 072402

    [27]

    Cavill S A, Parkes D E, Miguel J, Dhesi S S, Edmonds K W, Campion R P, Rushforth A W 2013 Appl. Phys. Lett. 102 032405

    [28]

    Jger J V, Scherbakov A V, Linnik T L, Yakovlev D R, Wang M, Wadley P, Holy V, Cavill S A, Akimov A V, Rushforth A W, Bayer M 2013 Appl. Phys. Lett. 103 032409

    [29]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D, Lecoeur P 2013 Nat. Commun. 4 1378

    [30]

    Ostler T A, Cuadrado R, Chantrell R W, Rushforth A W, Cavill S A 2015 Phys. Rev. Lett. 115 067202

    [31]

    Shibata K, Iwasaki J, Kanazawa N, Aizawa S, Tanigaki T, Shirai M, Nakajima T, Kubota M, Kawasaki M, Park H S, Shindo D, Nagaosa N, Tokura Y 2015 Nat. Nanotechnol. 10 589

    [32]

    Nii Y, Nakajima T, Kikkawa A, Yamasaki Y, Ohishi K, Suzuki J, Taguchi Y, Arima T, Tokura Y, Iwasa Y 2015 Nat. Commun. 6 8539

    [33]

    Liu Y, Lei N, Zhao W, Liu W, Ruotolo A, Braun H B, Zhou Y 2017 Appl. Phys. Lett. 111 022406

    [34]

    Zhang X, Zhou Y, Ezawa M 2016 Sci. Rep. 6 24795

    [35]

    Yuan H Y, Wang X R 2016 Sci. Rep. 6 22638

    [36]

    Donahue M J, Porter D G 1999 OOMMF User's Guid. Version 1.0 Gaithersburg, MD: Interag. Rep. NISTIR 6376, NIST

    [37]

    Saiki K 1972 J. Phys. Soc. Jpn. 33 1284

    [38]

    Kittle C 1949 Rev. Mod. Phys. 19 541

    [39]

    Hu Y, Wang B 2017 New J. Phys. 19 123002

  • [1]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [2]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [3]

    Shibata K, Yu X Z, Hara T, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y, Tokura Y 2013 Nat. Nanotechnol. 8 723

    [4]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [5]

    Franz C, Freimuth F, Bauer A, Ritz R, Schnarr C, Duvinage C, Adams T, Blgel S, Rosch A, Mokrousov Y, Pfleiderer C 2014 Phys. Rev. Lett. 112 186601

    [6]

    Tokunaga Y, Yu X Z, White J S, Rnnow H M, Morikawa D, Taguchi Y, Tokura Y 2015 Nat. Commun. 6 7638

    [7]

    Tanigaki T, Shibata K, Kanazawa N, Yu X, Onose Y, Park H S, Shindo D, Tokura Y 2015 Nano Lett. 15 5438

    [8]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [9]

    Sonntag A, Hermenau J, Krause S, Wiesendanger R 2014 Phys. Rev. Lett. 113 077202

    [10]

    Chen G, Mascaraque A, N'Diaye A T, Schmid A K 2015 Appl. Phys. Lett. 106 242404

    [11]

    Peng L, Zhang Y, Wang W, He M, Li L, Ding B, Li J, Sun Y, Zhang X G, Cai J, Wang S, Wu G, Shen B 2017 Nano Lett. 17 7075

    [12]

    Boulle O, Vogel J, Yang H, Pizzini S, de Souza Chaves D, Locatelli A, Mentes T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussign Y, Stashkevich A, Mourad Chrif S, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotechnol. 11 449

    [13]

    Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981

    [14]

    Woo S, Litzius K, Krger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klui M, Beach G S D 2016 Nat. Mater. 15 501

    [15]

    Yu G, Jenkins A, Ma X, Razavi S A, He C, Yin G, Shao Q, He Q L, Wu H, Li W, Jiang W, Han X, Li X E, Bleszynski Jayich A C, Amiri P K, Wang K L 2018 Nano Lett. 18 980

    [16]

    Karube K, White J S, Morikawa D, Bartkowiak M, Kikkawa A, Tokunaga Y, Arima T, Rnnow H M, Tokura Y, Taguchi Y 2017 Phys. Rev. Mater. 1 074405

    [17]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotechnol. 8 839

    [18]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Nanotechnol. 8 742

    [19]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commun. 4 1463

    [20]

    Koshibae W, Nagaosa N 2014 Nat. Commun. 5 5148

    [21]

    Nayak A K, Kumar V, Ma T, Werner P, Pippel E, Sahoo R, Damay F, Rler U K, Felser C, Parkin S S P 2017 Nature 548 561

    [22]

    Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203

    [23]

    Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M, Finocchio G 2014 Sci. Rep. 4 6784

    [24]

    Kang W, Huang Y, Zheng C, L W, Lei N, Zhang Y, Zhang X, Zhou Y, Zhao W 2016 Sci. Rep. 6 23164

    [25]

    Kang W, Zheng C, Huang Y, Zhang X, Zhou Y, L W, Zhao W 2016 IEEE Electron Device Lett. 37 924

    [26]

    Parkes D E, Cavill S A, Hindmarch A T, Wadley P, McGee F, Staddon C R, Edmonds K W, Campion R P, Gallagher B L, Rushforth A W 2012 Appl. Phys. Lett. 101 072402

    [27]

    Cavill S A, Parkes D E, Miguel J, Dhesi S S, Edmonds K W, Campion R P, Rushforth A W 2013 Appl. Phys. Lett. 102 032405

    [28]

    Jger J V, Scherbakov A V, Linnik T L, Yakovlev D R, Wang M, Wadley P, Holy V, Cavill S A, Akimov A V, Rushforth A W, Bayer M 2013 Appl. Phys. Lett. 103 032409

    [29]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D, Lecoeur P 2013 Nat. Commun. 4 1378

    [30]

    Ostler T A, Cuadrado R, Chantrell R W, Rushforth A W, Cavill S A 2015 Phys. Rev. Lett. 115 067202

    [31]

    Shibata K, Iwasaki J, Kanazawa N, Aizawa S, Tanigaki T, Shirai M, Nakajima T, Kubota M, Kawasaki M, Park H S, Shindo D, Nagaosa N, Tokura Y 2015 Nat. Nanotechnol. 10 589

    [32]

    Nii Y, Nakajima T, Kikkawa A, Yamasaki Y, Ohishi K, Suzuki J, Taguchi Y, Arima T, Tokura Y, Iwasa Y 2015 Nat. Commun. 6 8539

    [33]

    Liu Y, Lei N, Zhao W, Liu W, Ruotolo A, Braun H B, Zhou Y 2017 Appl. Phys. Lett. 111 022406

    [34]

    Zhang X, Zhou Y, Ezawa M 2016 Sci. Rep. 6 24795

    [35]

    Yuan H Y, Wang X R 2016 Sci. Rep. 6 22638

    [36]

    Donahue M J, Porter D G 1999 OOMMF User's Guid. Version 1.0 Gaithersburg, MD: Interag. Rep. NISTIR 6376, NIST

    [37]

    Saiki K 1972 J. Phys. Soc. Jpn. 33 1284

    [38]

    Kittle C 1949 Rev. Mod. Phys. 19 541

    [39]

    Hu Y, Wang B 2017 New J. Phys. 19 123002

  • [1] 袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞. GaAs晶体在不同应变下生长过程的分子动力学模拟. 物理学报, 2023, 72(13): 136801. doi: 10.7498/aps.72.20221860
    [2] 潘凤春, 林雪玲, 王旭明. 应变对(Ga, Mo)Sb磁学和光学性质影响的理论研究. 物理学报, 2022, 71(9): 096103. doi: 10.7498/aps.71.20212316
    [3] 卢群林, 杨伟煌, 熊飞兵, 林海峰, 庄芹芹. 双轴向应变对单层GeSe气体传感特性的影响. 物理学报, 2020, 69(19): 196801. doi: 10.7498/aps.69.20200539
    [4] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质. 物理学报, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [5] 张蕾. 斯格明子相关的螺旋磁有序体系的临界行为. 物理学报, 2018, 67(13): 137501. doi: 10.7498/aps.67.20180137
    [6] 梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平. 磁性斯格明子的赛道存储. 物理学报, 2018, 67(13): 137510. doi: 10.7498/aps.67.20180764
    [7] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳. 磁斯格明子器件及其应用进展. 物理学报, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [8] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国. 磁性斯格明子的多场调控研究. 物理学报, 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [9] 赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光. 斯格明子电子学的研究进展. 物理学报, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [10] 邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓. 单模光纤中用声波导布里渊散射同时测量温度和应变. 物理学报, 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [11] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [12] 王疆靖, 邵瑞文, 邓青松, 郑坤. 应变加载下Si纳米线电输运性能的原位电子显微学研究. 物理学报, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [13] 谢剑锋, 曹觉先. 六角氮化硼片能带结构的应变调控. 物理学报, 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [14] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究. 物理学报, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [15] 任晓栋, 刘建军, 张文清. 应变对层状锰系锂离子电池正极材料输出电压的影响. 物理学报, 2012, 61(18): 183101. doi: 10.7498/aps.61.183101
    [16] 黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩. N型掺杂应变Ge发光性质. 物理学报, 2012, 61(3): 036202. doi: 10.7498/aps.61.036202
    [17] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [18] 姚 飞, 薛春来, 成步文, 王启明. 重掺B对应变SiGe材料能带结构的影响. 物理学报, 2007, 56(11): 6654-6659. doi: 10.7498/aps.56.6654
    [19] 张开骁, 陈敦军, 沈 波, 陶亚奇, 吴小山, 徐 金, 张 荣, 郑有炓. 表面钝化前后Al0.22Ga0.78N/GaN异质结势垒层应变的高温特性. 物理学报, 2006, 55(3): 1402-1406. doi: 10.7498/aps.55.1402
    [20] 王焕友, 曹晓平, 蒋亦民, 刘 佑. 静止颗粒体的应变与弹性. 物理学报, 2005, 54(6): 2784-2790. doi: 10.7498/aps.54.2784
计量
  • 文章访问数:  6543
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-04
  • 修回日期:  2018-04-02
  • 刊出日期:  2018-07-05

/

返回文章
返回