-
报道了在铝酸镧(00l)衬底上生长Tl-1223超导薄膜的快速升温烧结方法以及铊(Tl)源陪烧靶的配比对Tl-1223薄膜晶体结构的影响.扫描电子显微镜观测表明,采用快速升温烧结方法生长的Tl-1223超导薄膜具有致密的晶体结构.X-射线衍射等测试表明,采用合适配比的陪烧靶在氩气环境下可以制备出纯c轴取向的Tl-1223超导薄膜,充氧退火后的薄膜具有较好的电学性能,其临界转变温度Tc onset达到116 K,临界电流密度达到1.5 MA/cm2(77 K,0 T).实验结果表明,采用这一新的烧结方法制备Tl系超导薄膜具有升降温时间和恒温时间短、生产成本低等特点.
-
关键词:
- Tl-1223超导薄膜 /
- 铝酸镧基片 /
- 快速升温烧结方法
Owing to high critical temperature (125 K) and high upper critical field, TlBa2Ca2Cu3O9 (Tl-1223) superconductor is a kind of superconducting power transmission material working at liquefied natural gas temperature, and it has a great potential application value in the strong and weak electric field. In this work, the Tl-1223 superconducting films are fabricated by rapidly heating-up sintering technology (RHST) on (00l) lanthanum aluminate substrates. The Tl-Ba-Ca-Cu-O target is used as a sputtering source to deposit the precursor films by the radio-frequency magnetron sputtering technique. The Tl-contained pellets, named annealing targets, are fabricated by the solid-state reaction of stoichiometric quantities of Tl2O3, BaO2, CaO and CuO powders with an initial cation ratio of m Tl:Ba:Ca:Cu=0.4-1.8:2:2:3. The amorphous precursors together with the annealing target providing Tl source are sealed in a silver foil and annealed at 820℃ for 5 min in argon atmosphere, then converted into Tl-1223 superconducting phase. The heating rates are set at 2.5℃/s from room temperature to 350℃, 5℃/s from 350℃ to 650℃, and 35℃/s from 650℃ to 820℃, respectively. The prepared films are characterized by X-ray diffraction and scanning electron microscope. In the conventional low heating rate process, all of the precursor films sintered together with the annealing targets containing different Tl content are first converted into Tl-2212 superconducting phase. That is because the sample residence time in the phase transition temperature range of Tl-2212 is longer, while the phase-formed temperature of Tl-2212 is lower than that of Tl-1223. In the RHST, when the metal ion molar ratio of Tl to Ba in the annealing target is 1.8:2, the main phase of the film is (00l)-oriented Tl-2212. In addition, the film also contains a small number of Tl-2223 grains. On reducing the ratio to 1:2, the film is composed of Tl-1212, Tl-2212, Tl-1223 and Tl-2223 grains. As the ratio decreases to 0.8:2, the film contains the (00l)-oriented Tl-1223 grains and traces of Tl-2223 grains. With the ratio decreasing to 0.4:2, purely c-axis oriented Tl-1223 film is obtained. The critical transition temperature Tc onset of the as-grown film is only 103 K. The film annealed again in oxygen gas has a dense crystal structure and excellent electrical properties. The Tc onset of the sample is about 116 K, and the critical current density Jc is about 1.5 MA/cm2 (77 K, 0 T). The experimental results show that the new sintering process to grow Tl-based films has several advantages such as the short processing cycles, less raw-material consumption, and low production cost.-
Keywords:
- Tl-1223 superconducting thin film /
- lanthanum aluminate substrate /
- rapid heating-up sintering technology
[1] Fiegelman M V, Geshkenbein V G, Larkin A I 1990 Physica C 167 177
[2] Jergel M, Conde Gallardo A, Falcony Guajardo C, Strbik V 1996 Supercond. Sci. Technol. 9 427
[3] Nabatame T, Saito Y, Aihara K, Kamo T, Matsuda S P 1996 Supercond. Sci. Technol. 9 17
[4] Crisana A, Iyo A, Tanaka Y 2003 Appl. Phys. Lett. 83 506
[5] Profulla C K 2014 Int. J. Engineer. Innovat. Res. 3 850
[6] Gao X X, Xie W, Wang Z, Zhao X J, He M, Zhang X, Yan S L, Ji L 2014 J. Supercond. Nov. Magn. 27 1665
[7] Xie Q L, Wang Z, Huang G H, Wang X H, You F, Ji L, Zhao X J, Fang L, Yan S L 2009 Acta Phys. Sin. 58 7958 (in Chinese) [谢清连, 王争, 黄国华, 王向红, 游峰, 季鲁, 赵新杰, 方兰, 阎少林 2009 物理学报 58 7958]
[8] Xie Q L, You F, Meng Q H, Ji L, Zhou T G, Zhao X J, Fang L, Yan S L 2010 J. Synth. Cryst. 39 1539 (in Chinese) [谢清连, 游峰, 蒙庆华, 季鲁, 周铁戈, 赵新杰, 方兰, 阎少林 2010 人工晶体学报 39 1539]
[9] Sundaresan A, Asada H, Crisan A, Nie J C, Kito H, Iyo A, Tanaka Y, Kusunoki M, Ohshima S 2003 IEEE Trans. Appl. Supercond. 13 2913
[10] Ji L, Yan S L, Xie Q L, You S T, Zhou T G, He M, Zuo T, Zhang X, Li J L, Zhao X J, Fang L 2007 Supercond. Sci. Technol. 20 1173
[11] Badica P, Sundaresan A, Crisan A, Nie J C, Hirai M, Fujiwara S, Kito H, Ihara H 2003 Physica C 383 482
[12] Xuan H N, Beauquis S, Gales P, Chadouet P, Jimenez C, Weiss F, Decroux M, Therasse M, Strbk V, Polk M, Chromi S K 2006 J. Phys.: Conference Series 43 281
[13] Prazuch J, Konig W T, Gritzner G, Przybylski K 2000 Physica C 331 227
[14] Phok S, Galez Ph, Jorda J L, Supardi Z, Barros D D, Odier P, Sin A, Weiss F 2002 Physica C 372376 876
[15] Bramley A P, Connor J D O, Grovenor C R M 1999 Supercond. Sci. Technol. 12 R57
[16] Shakil A, Nawazish A K, Mumtaz M, Khurram A A 2015 Radiat. Phys. Chem. 112 145
[17] Abou Aly A I, Ibrahim I H, Awad R, El-Harizy A, Khalaf A 2010 J. Supercond. Nov. Magn. 23 1325
[18] You F, Ji L, Wang Z, Xie Q L, Zhao X J, Yue H W, Fang L, Yan S L 2010 Supercond. Sci. Technol. 23 065002
[19] Siegal M P, Overmyer D L, Venturini E L, Newcomer P P, Dunn R, Dominguez F, Padilla R R, Sokolowski S S 1997 IEEE Trans. Appl. Supercond. 7 1881
[20] Zhao X J, Ji L, Chen E, Zuo T, Zhou T G, Chen S, Yan S L, Fang L, Zuo X 2005 Chin. J. Low Temperature Phys. 27 629 (in Chinese) [赵新杰, 季鲁, 陈恩, 左涛, 周铁戈, 陈思, 阎少林, 方兰, 左旭 2005 低温物理学报 27 629]
-
[1] Fiegelman M V, Geshkenbein V G, Larkin A I 1990 Physica C 167 177
[2] Jergel M, Conde Gallardo A, Falcony Guajardo C, Strbik V 1996 Supercond. Sci. Technol. 9 427
[3] Nabatame T, Saito Y, Aihara K, Kamo T, Matsuda S P 1996 Supercond. Sci. Technol. 9 17
[4] Crisana A, Iyo A, Tanaka Y 2003 Appl. Phys. Lett. 83 506
[5] Profulla C K 2014 Int. J. Engineer. Innovat. Res. 3 850
[6] Gao X X, Xie W, Wang Z, Zhao X J, He M, Zhang X, Yan S L, Ji L 2014 J. Supercond. Nov. Magn. 27 1665
[7] Xie Q L, Wang Z, Huang G H, Wang X H, You F, Ji L, Zhao X J, Fang L, Yan S L 2009 Acta Phys. Sin. 58 7958 (in Chinese) [谢清连, 王争, 黄国华, 王向红, 游峰, 季鲁, 赵新杰, 方兰, 阎少林 2009 物理学报 58 7958]
[8] Xie Q L, You F, Meng Q H, Ji L, Zhou T G, Zhao X J, Fang L, Yan S L 2010 J. Synth. Cryst. 39 1539 (in Chinese) [谢清连, 游峰, 蒙庆华, 季鲁, 周铁戈, 赵新杰, 方兰, 阎少林 2010 人工晶体学报 39 1539]
[9] Sundaresan A, Asada H, Crisan A, Nie J C, Kito H, Iyo A, Tanaka Y, Kusunoki M, Ohshima S 2003 IEEE Trans. Appl. Supercond. 13 2913
[10] Ji L, Yan S L, Xie Q L, You S T, Zhou T G, He M, Zuo T, Zhang X, Li J L, Zhao X J, Fang L 2007 Supercond. Sci. Technol. 20 1173
[11] Badica P, Sundaresan A, Crisan A, Nie J C, Hirai M, Fujiwara S, Kito H, Ihara H 2003 Physica C 383 482
[12] Xuan H N, Beauquis S, Gales P, Chadouet P, Jimenez C, Weiss F, Decroux M, Therasse M, Strbk V, Polk M, Chromi S K 2006 J. Phys.: Conference Series 43 281
[13] Prazuch J, Konig W T, Gritzner G, Przybylski K 2000 Physica C 331 227
[14] Phok S, Galez Ph, Jorda J L, Supardi Z, Barros D D, Odier P, Sin A, Weiss F 2002 Physica C 372376 876
[15] Bramley A P, Connor J D O, Grovenor C R M 1999 Supercond. Sci. Technol. 12 R57
[16] Shakil A, Nawazish A K, Mumtaz M, Khurram A A 2015 Radiat. Phys. Chem. 112 145
[17] Abou Aly A I, Ibrahim I H, Awad R, El-Harizy A, Khalaf A 2010 J. Supercond. Nov. Magn. 23 1325
[18] You F, Ji L, Wang Z, Xie Q L, Zhao X J, Yue H W, Fang L, Yan S L 2010 Supercond. Sci. Technol. 23 065002
[19] Siegal M P, Overmyer D L, Venturini E L, Newcomer P P, Dunn R, Dominguez F, Padilla R R, Sokolowski S S 1997 IEEE Trans. Appl. Supercond. 7 1881
[20] Zhao X J, Ji L, Chen E, Zuo T, Zhou T G, Chen S, Yan S L, Fang L, Zuo X 2005 Chin. J. Low Temperature Phys. 27 629 (in Chinese) [赵新杰, 季鲁, 陈恩, 左涛, 周铁戈, 陈思, 阎少林, 方兰, 左旭 2005 低温物理学报 27 629]
计量
- 文章访问数: 5601
- PDF下载量: 101
- 被引次数: 0