-
本文利用基于密度泛函理论的第一性原理计算方法,研究了双轴应变对单氢空位锗烷电子结构及其输运特性的调控。研究结果发现,单氢空位缺陷态的引入不仅可在锗烷中产生类P型掺杂效应,还可使锗烷发生无磁性到铁磁性的转变。-3%~3%双轴应变作用下,单氢空位锗烷的键长、键角和褶皱高度与带隙均随应变呈线性变化;当ε=0.75%时,类P型掺杂效应消失,而进一步增大应变至ε=2.5%时,产生了类N型掺杂效应。其机理分析表明,双轴应变主要改变了费米能级、价带顶和导带底的能量,使缺陷态能级发生了相对位置的移动,使之成为受主能级或施主能级,并产生受控于双轴应变的掺杂效应变化。进一步的输运特性计算表明,具有各向同性的单氢空位锗烷的I-V特性与电子有效质量也可线性的受控于双轴应变,并导致其电子迁移率随之变化。当ε=3%时,单氢空位锗烷的电导率与电子迁移率可分别增至3660 S/cm和24252 cm2/(V·s)。This study employs first-principles calculations based on density functional theory to investigate the regulation of biaxial strain on the electronic structure and transport properties of single-hydrogen-vacancy germanane. The results reveal that introducing single-hydrogen-vacancy defect states not only induces p-type doping-like effects in germanane but also triggers a transition from non-magnetic to ferromagnetic states. Under -3% to 3% biaxial strain, both the structural parameters (bond length, bond angle, and corrugation height) and bandgap of single-hydrogen-vacancy germanane exhibit linear variations with strain. The p-type doping-like effect disappears at ε=0.75%, while an n-type doping-like effect emerges when strain increases to ε=2.5%. Mechanistic analysis reveals that biaxial strain primarily modulates the energies of the Fermi level, valence band maximum, and conduction band minimum, causing the defect states to shift their relative positions and transform into acceptor or donor levels. This evolution ultimately generates doping effect variations regulated by biaxial strain. Transport property calculations further demonstrate that the isotropic I-V characteristics and electron effective mass of single-hydrogen-vacancy germanane can be linearly controlled by biaxial strain, leading to corresponding changes in electron mobility. At ε=3%, the electrical conductivity and electron mobility of single-hydrogen-vacancy germanane increase significantly to 3660 S/cm and 24252 cm2/(V·s), respectively.
-
Keywords:
- strain /
- single hydrogen vacancy /
- electronic structure /
- transport properties
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Ye X S, Shao Z G, Zhao H B, Yang L, Wang C L 2014 RSC Adv. 4 21216
[3] Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430
[4] Lew Yan Voon L C, Sandberg E, Aga R S, Farajian A A 2010 Appl. Phys. Lett. 97 163114
[5] Houssa M, Pourtois G, Afanas’ev V V, Stesmans A 2010 Appl. Phys. Lett. 96 082111
[6] Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas’ev V V, Stesmans A 2011 Appl. Phys. Lett. 98 223107
[7] Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano. 7 4414
[8] Jiang S, Butler S, Bianco E, Restrepo O D, Windl W, Goldberger J E 2014 Nat Commun 5 3389
[9] Xu L, Liu J, Shao C, Li H, Ma W, Yan J, Zhang Y, Dai Y, Lei X, Liao C, Zhang Z, Zhao W, Lu J, Zhang H 2024 J. Appl. Phys. 135 134303
[10] AlMutairi A, Zhao Y, Yin D, Yoon Y 2017 IEEE Electron Device Lett. 38 673
[11] Zhao Y, AlMutairi A, Yoon Y 2017 IEEE Electron Device Lett. 38 1743
[12] Sahoo N G, Esteves R J, Punetha V D, Pestov D, Arachchige I U, McLeskey J T 2016 Appl. Phys. Lett. 109 023507
[13] Li Y, Chen Z 2014 J. Phys. Chem. C 118 1148
[14] Yan J, Cao D, Yang X, Wang J, Jiang Z, Jiao Z, Shu H 2022 Appl. Phys. A 128 958
[15] Wang X, Liu G, Liu R F, Luo W W, Wu M S, Sun B Z, Lei X L, Ouyang C Y, Xu B 2018 Nanotechnology 29 465202
[16] Ye J P, Liu G, Han Y, Luo W W, Sun B Z, Lei X L, Xu B, Ouyang C Y, Zhang H L 2019 Phys. Chem. Chem. Phys. 21 20287
[17] Chen Q, Liang L, Potsi G, Wan P, Lu J, Giousis T, Thomou E, Gournis D, Rudolf P, Ye J 2019 Nano Lett. 19 1520
[18] Qiu J, Wang H, Wang J, Yao X, Meng S, Liu Y 2022 Phys. Rev. B 106 184102
[19] Zhao J, Zeng H 2016 RSC Adv. 6 28298
[20] Wang X, Liu G, Liu R F, Luo W W, Sun B Z, Lei X L, Ouyang C Y, Xu B 2019 J. Appl. Phys. 125 082504
[21] Zeng J, Liu G, Han Y, Luo W, Wu M, Xu B, Ouyang C 2021 ACS Omega 6 14639
[22] Kresse G, Hafner J 1993 Phys. Rev. B: Condens. Matter 47 558
[23] Blochl P E 1994 Phys. Rev. B: Condens. Matter 50 17953
[24] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[26] Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407
[27] Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
[28] Yang W, Cao Y, Han J, Lin X, Wang X, Wei G, Lv C, Bournel A, Zhao W 2021 Nanoscale 13 862
[29] Hu L, Zhao J, Yang J 2014 J. Phys.: Condens. Matter 26 335302
[30] Liu L, Ji Y, Liu L 2019 Bull. Mater. Sci. 42 157
[31] Yang Z H, Liu G, Wu M S, Shi J, Ouyang C Y, Yang S B, Xu B 2023 Acta Phys. Sin. 72 127101
[32] Zhou Y, Liu K, Xiao H, Xiang X, Nie J, Li S, Huang H, Zu X 2015 J. Mater. Chem. A 3 3128
[33] Tong X, Fang L, Liu R 2019 AIP Adv. 9 055324
[34] Chung Y F, Chang S T 2024 Nanomaterials 14 1420
[35] Yu D, Zhang Y, Liu F 2008 Phys. Rev. B 78 245204
[36] Hosseini M, Elahi M, Pourfath M, Esseni D 2015 J. Phys. D: Appl. Phys. 48 375104
计量
- 文章访问数: 20
- PDF下载量: 0
- 被引次数: 0