搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变对单氢空位锗烷电子结构和输运性质的调控

吴俊宇 万佳琦 孙宝珍 吴木生 徐波 刘刚

引用本文:
Citation:

应变对单氢空位锗烷电子结构和输运性质的调控

吴俊宇, 万佳琦, 孙宝珍, 吴木生, 徐波, 刘刚
cstr: 32037.14.aps.74.20250529

Regulation of structural, electronic, and transport properties of single hydrogen vacancy germanane by strain

WU Junyu, WAN Jiaqi, SUN Baozhen, WU Musheng, XU Bo, LIU Gang
cstr: 32037.14.aps.74.20250529
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文利用基于密度泛函理论的第一性原理计算方法, 研究了双轴应变对单氢空位锗烷电子结构及其输运特性的调控. 研究结果发现, 单氢空位缺陷态的引入不仅可在锗烷中产生类P型掺杂效应, 还可使锗烷发生无磁性到铁磁性的转变. –3%—3%双轴应变作用下, 单氢空位锗烷的键长、键角和褶皱高度与带隙均随应变呈线性变化; 当ε = 0.75%时, 类P型掺杂效应消失, 而进一步增大应变至ε = 2.5%时, 产生了类N型掺杂效应. 其机理分析表明, 双轴应变主要改变了费米能级、价带顶和导带底的能量, 使缺陷态能级发生了相对位置的移动, 使之成为受主能级或施主能级, 并产生受控于双轴应变的掺杂效应变化. 进一步的输运特性计算表明, 具有各向同性的单氢空位锗烷的I-V特性与电子有效质量也可线性的受控于双轴应变, 并导致其电子迁移率随之变化. 当ε = 3%时, 单氢空位锗烷的电导率与电子迁移率可分别增至3660 S/cm和24252 cm2/(V·s).
    The regulation of the electronic structure and transport properties of single-hydrogen-vacancy germanane by biaxial strain is investigated using first-principles calculations based on density functional theory in this work. The results reveal that the introduction of single-hydrogen-vacancy defect states not only induces P-type doping-like effects in germanane but also triggers off a transition from non-magnetic to ferromagnetic states. Under –3% to 3% biaxial strain, both the structural parameters (bond length, bond angle, and corrugation height) and the bandgap of single-hydrogen-vacancy germanane linearly vary with strain. The P-type doping-like effect disappears at ε = 0.75%, while an N-type doping-like effect appears when strain increases to ε = 2.5%. Mechanism analysis reveals that biaxial strain primarily modulates the energies of the Fermi level, valence band maximum, and conduction band minimum, causing the relative position of defect state energy levels to shift, making them become acceptor or donor energy levels, and producing doping effect changes regulated by biaxial strain. Transport property calculations further demonstrate that the isotropic I-V characteristics and electron effective mass of single-hydrogen-vacancy germanane can be linearly controlled by biaxial strain, leading to corresponding changes in electron mobility. At ε = 3%, the electrical conductivity and electron mobility of single-hydrogen-vacancy germanane increase significantly to 3660 S/cm and 24252 cm2/(V·s), respectively.
      通信作者: 刘刚, 721lg@jxnu.edu.cn
    • 基金项目: 江西省自然科学基金(批准号: 20224ACB201010, 20232BAB201030, 20232BAB201038, 20242BAB25034)和国家自然科学基金(批准号: 12174162, 12364026, 12464029)资助的课题.
      Corresponding author: LIU Gang, 721lg@jxnu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20224ACB201010, 20232BAB201030, 20232BAB201038, 20242BAB25034) and the National Natural Science Foundation of China (Grant Nos. 12174162, 12364026, 12464029).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Ye X S, Shao Z G, Zhao H B, Yang L, Wang C L 2014 RSC Adv. 4 21216Google Scholar

    [3]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430Google Scholar

    [4]

    Lew Yan Voon L C, Sandberg E, Aga R S, Farajian A A 2010 Appl. Phys. Lett. 97 163114Google Scholar

    [5]

    Houssa M, Pourtois G, Afanas’ev V V, Stesmans A 2010 Appl. Phys. Lett. 96 082111Google Scholar

    [6]

    Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas’ev V V, Stesmans A 2011 Appl. Phys. Lett. 98 223107Google Scholar

    [7]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414Google Scholar

    [8]

    Jiang S, Butler S, Bianco E, Restrepo O D, Windl W, Goldberger J E 2014 Nat. Commun. 5 3389Google Scholar

    [9]

    Xu L Y, Liu J C, Shao C, Li H, Ma W Q, Yan J F, Zhang Y Y, Dai Y, Lei X Y, Liao C G, Zhang Z Y, Zhao W, Lu J, Zhang H 2024 J. Appl. Phys. 135 134303Google Scholar

    [10]

    AlMutairi A, Zhao Y, Yin D, Yoon Y 2017 IEEE Electron Device Lett. 38 673Google Scholar

    [11]

    Zhao Y, AlMutairi A, Yoon Y 2017 IEEE Electron Device Lett. 38 1743Google Scholar

    [12]

    Sahoo N G, Esteves R J, Punetha V D, Pestov D, Arachchige I U, McLeskey J T 2016 Appl. Phys. Lett. 109 023507Google Scholar

    [13]

    Li Y F, Chen Z F 2014 J. Phys. Chem. C 118 1148Google Scholar

    [14]

    Yan J, Cao D, Yang X, Wang J F, Jiang Z T, Jiao Z W, Shu H B 2022 Appl. Phys. A 128 958Google Scholar

    [15]

    Wang X, Liu G, Liu R F, Luo W W, Wu M S, Sun B Z, Lei X L, Ouyang C Y, Xu B 2018 Nanotechnology 29 465202Google Scholar

    [16]

    Ye J P, Liu G, Han Y, Luo W W, Sun B Z, Lei X L, Xu B, Ouyang C Y, Zhang H L 2019 Phys. Chem. Chem. Phys. 21 20287Google Scholar

    [17]

    Chen Q, Liang L, Potsi G, Wan P, Lu J, Giousis T, Thomou E, Gournis D, Rudolf P, Ye J 2019 Nano Lett. 19 1520Google Scholar

    [18]

    Qiu J, Wang H, Wang J, Yao X, Meng S, Liu Y 2022 Phys. Rev. B 106 184102Google Scholar

    [19]

    Zhao J, Zeng H 2016 RSC Adv. 6 28298Google Scholar

    [20]

    Wang X, Liu G, Liu R F, Luo W W, Sun B Z, Lei X L, Ouyang C Y, Xu B 2019 J. Appl. Phys. 125 082504Google Scholar

    [21]

    Zeng J C, Liu G, Han Y, Luo W W, Wu M S, Xu B, Ouyang C Y 2021 ACS Omega 6 14639Google Scholar

    [22]

    Kresse G, Hafner J 1993 Phys. Rev. B: Condens. Matter 47 558Google Scholar

    [23]

    Blochl P E 1994 Phys. Rev. B: Condens. Matter 50 17953Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [26]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [27]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [28]

    Yang W, Cao Y, Han J C, Lin X H, Wang X H, Wei G D, Lv C, Bournel A, Zhao W S 2021 Nanoscale 13 862Google Scholar

    [29]

    Hu L, Zhao J, Yang J L 2014 J. Phys. Condens. Matter 26 335302Google Scholar

    [30]

    Liu L, Ji Y J, Liu L Q 2019 Bull. Mater. Sci. 42 157Google Scholar

    [31]

    杨子豪, 刘刚, 吴木生, 石晶, 欧阳楚英, 杨慎博, 徐波 2023 物理学报 72 127101Google Scholar

    Yang Z H, Liu G, Wu M S, Shi J, Ouyang C Y, Yang S B, Xu B 2023 Acta Phys. Sin. 72 127101Google Scholar

    [32]

    Zhou Y G, Liu K Z, Xiao H Y, Xiang X, Nie J L, Li S A, Huang H, Zu X T 2015 J. Mater. Chem. A 3 3128

    [33]

    Tong X Y, Fang L, Liu R L 2019 AIP Adv. 9 055324Google Scholar

    [34]

    Chung Y F, Chang S T 2024 Nanomaterials 14 1420Google Scholar

    [35]

    Yu D C, Zhang Y, Liu F 2008 Phys. Rev. B 78 245204Google Scholar

    [36]

    Hosseini M, Elahi M, Pourfath M, Esseni D 2015 J. Phys. D: Appl. Phys. 48 375104Google Scholar

  • 图 1  单氢空位锗烷自旋电荷密度的俯视图和侧视图(绿色和白色球体分别表示锗和氢原子, 等值面设置为0.005 Å–3)

    Fig. 1.  Top and side views of spin charge density of single hydrogen vacancy germanane (green and white spheres represent Ge and H atoms, respectively, the isosurface is set to be 0.005 Å–3).

    图 2  单氢空位锗烷的能带结构和投影态密度

    Fig. 2.  Band structure and projected density of states of single hydrogen vacancy germanane.

    图 3  在–3%—3%双轴应变下单氢空位锗烷键长、键角和平均褶皱高度Δ的变化趋势

    Fig. 3.  The variation trend of bond length, bond angle, and average bending height Δ of single hydrogen vacancy germanane under biaxial strain of –3% to 3%.

    图 4  (a)—(d) 在0%—3%的压缩应变下, 单氢空位锗烷的能带结构

    Fig. 4.  (a)–(d) The band structures of single hydrogen vacancy germanane under compression strain of 0% to 3%.

    图 5  (a)—(f) 在0%—3%的拉伸应变下, 单氢空位锗烷的能带结构

    Fig. 5.  (a)–(f) The band structures of single hydrogen vacancy germanane under tensile strain of 0% to 3%.

    图 6  在–3%—3%的双轴应变下, 单氢空位锗烷 (a) 投影态密度; (b) E-fermi, CBM, VBM, HOMO和LUMO的绝对能量相对于真空能级的变化; (c) Eg, EnEp的变化

    Fig. 6.  Single hydrogen vacancy germanane under biaxial strain of –3% to 3%: (a) The projected density of states; (b) the evolution of absolute energy of E-fermi, CBM, VBM, HOMO and LUMO with respect to the vacuum level; (c) the evolution of the Eg, En and Ep.

    图 7  Γ点处CBM的能带分解电荷密度图(俯视图和侧视图) (a) ε = –3%; (b) ε = 0%; (c) ε = 3%

    Fig. 7.  The band decomposed charge density of the CBM at the Γ-point (top and side views): (a) ε = –3%; (b) ε = 0%; (c) ε = 3%.

    图 8  Γ点处VBM的能带分解电荷密度图(俯视图) (a) ε = –3%; (b) ε = 0%; (c) ε = 3%

    Fig. 8.  The band decomposed charge density of the VBM at the Γ-point (top views): (a) ε = –3%; (b) ε = 0%; (c) ε = 3%.

    图 9  单氢空位锗烷器件在–3%—3%的双轴应变下 (a) I-V特性曲线; (b) 电导率; (c) 电子有效质量和电子迁移率

    Fig. 9.  Single hydrogen vacancy germanane devices under biaxial strain of –3% to 3%: (a) I-V characteristic curve; (b) conductivity; (c) electronic effective mass and electronic mobility.

    表 1  单氢空位锗烷的键长、键角和平均褶皱高度Δ随–3%—3%双轴应变的变化

    Table 1.  The variation of bond length, bond angle, and average fold height Δ of single hydrogen vacancy germanane with –3%–3% biaxial strain.

    Strain dGe—H dGe—Ge α/(°) $d_{{\rm Ge}_n—{\rm H}}$/Å $d_{{\mathrm{Ge}}_{25}—{\mathrm{Ge}}_{n}} $/Å α1/(°) Δ
    –3% 1.559 2.417 109.85 1.566 2.432 109.36 0.791
    –2% 1.560 2.433 110.42 1.567 2.449 109.90 0.773
    –1% 1.562 2.450 111.00 1.567 2.466 110.41 0.756
    0% 1.563 2.466 111.47 1.568 2.485 110.99 0.739
    1% 1.564 2.486 111.90 1.570 2.502 111.46 0.724
    2% 1.565 2.504 112.39 1.570 2.524 111.84 0.709
    3% 1.566 2.522 112.83 1.571 2.545 112.20 0.695
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Ye X S, Shao Z G, Zhao H B, Yang L, Wang C L 2014 RSC Adv. 4 21216Google Scholar

    [3]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430Google Scholar

    [4]

    Lew Yan Voon L C, Sandberg E, Aga R S, Farajian A A 2010 Appl. Phys. Lett. 97 163114Google Scholar

    [5]

    Houssa M, Pourtois G, Afanas’ev V V, Stesmans A 2010 Appl. Phys. Lett. 96 082111Google Scholar

    [6]

    Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas’ev V V, Stesmans A 2011 Appl. Phys. Lett. 98 223107Google Scholar

    [7]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414Google Scholar

    [8]

    Jiang S, Butler S, Bianco E, Restrepo O D, Windl W, Goldberger J E 2014 Nat. Commun. 5 3389Google Scholar

    [9]

    Xu L Y, Liu J C, Shao C, Li H, Ma W Q, Yan J F, Zhang Y Y, Dai Y, Lei X Y, Liao C G, Zhang Z Y, Zhao W, Lu J, Zhang H 2024 J. Appl. Phys. 135 134303Google Scholar

    [10]

    AlMutairi A, Zhao Y, Yin D, Yoon Y 2017 IEEE Electron Device Lett. 38 673Google Scholar

    [11]

    Zhao Y, AlMutairi A, Yoon Y 2017 IEEE Electron Device Lett. 38 1743Google Scholar

    [12]

    Sahoo N G, Esteves R J, Punetha V D, Pestov D, Arachchige I U, McLeskey J T 2016 Appl. Phys. Lett. 109 023507Google Scholar

    [13]

    Li Y F, Chen Z F 2014 J. Phys. Chem. C 118 1148Google Scholar

    [14]

    Yan J, Cao D, Yang X, Wang J F, Jiang Z T, Jiao Z W, Shu H B 2022 Appl. Phys. A 128 958Google Scholar

    [15]

    Wang X, Liu G, Liu R F, Luo W W, Wu M S, Sun B Z, Lei X L, Ouyang C Y, Xu B 2018 Nanotechnology 29 465202Google Scholar

    [16]

    Ye J P, Liu G, Han Y, Luo W W, Sun B Z, Lei X L, Xu B, Ouyang C Y, Zhang H L 2019 Phys. Chem. Chem. Phys. 21 20287Google Scholar

    [17]

    Chen Q, Liang L, Potsi G, Wan P, Lu J, Giousis T, Thomou E, Gournis D, Rudolf P, Ye J 2019 Nano Lett. 19 1520Google Scholar

    [18]

    Qiu J, Wang H, Wang J, Yao X, Meng S, Liu Y 2022 Phys. Rev. B 106 184102Google Scholar

    [19]

    Zhao J, Zeng H 2016 RSC Adv. 6 28298Google Scholar

    [20]

    Wang X, Liu G, Liu R F, Luo W W, Sun B Z, Lei X L, Ouyang C Y, Xu B 2019 J. Appl. Phys. 125 082504Google Scholar

    [21]

    Zeng J C, Liu G, Han Y, Luo W W, Wu M S, Xu B, Ouyang C Y 2021 ACS Omega 6 14639Google Scholar

    [22]

    Kresse G, Hafner J 1993 Phys. Rev. B: Condens. Matter 47 558Google Scholar

    [23]

    Blochl P E 1994 Phys. Rev. B: Condens. Matter 50 17953Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [26]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [27]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [28]

    Yang W, Cao Y, Han J C, Lin X H, Wang X H, Wei G D, Lv C, Bournel A, Zhao W S 2021 Nanoscale 13 862Google Scholar

    [29]

    Hu L, Zhao J, Yang J L 2014 J. Phys. Condens. Matter 26 335302Google Scholar

    [30]

    Liu L, Ji Y J, Liu L Q 2019 Bull. Mater. Sci. 42 157Google Scholar

    [31]

    杨子豪, 刘刚, 吴木生, 石晶, 欧阳楚英, 杨慎博, 徐波 2023 物理学报 72 127101Google Scholar

    Yang Z H, Liu G, Wu M S, Shi J, Ouyang C Y, Yang S B, Xu B 2023 Acta Phys. Sin. 72 127101Google Scholar

    [32]

    Zhou Y G, Liu K Z, Xiao H Y, Xiang X, Nie J L, Li S A, Huang H, Zu X T 2015 J. Mater. Chem. A 3 3128

    [33]

    Tong X Y, Fang L, Liu R L 2019 AIP Adv. 9 055324Google Scholar

    [34]

    Chung Y F, Chang S T 2024 Nanomaterials 14 1420Google Scholar

    [35]

    Yu D C, Zhang Y, Liu F 2008 Phys. Rev. B 78 245204Google Scholar

    [36]

    Hosseini M, Elahi M, Pourfath M, Esseni D 2015 J. Phys. D: Appl. Phys. 48 375104Google Scholar

  • [1] 张敏, 唐桂华, 史晓磊, 李一斐, 赵欣, 黄滇, 陈志刚. 双轴应变对单层Janus过渡金属硫族化合物热输运和热电性能的影响. 物理学报, 2025, 74(13): 137202. doi: 10.7498/aps.74.20250295
    [2] 李祗烁, 曹欣睿, 吴顺情, 吴建洋, 文玉华, 朱梓忠. 单层Janus MoSSe在不同手性角单轴拉伸应变下力学性质的第一性原理研究. 物理学报, 2025, 74(16): 166201. doi: 10.7498/aps.74.20250437
    [3] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究. 物理学报, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [4] 潘凤春, 林雪玲, 王旭明. 应变对(Ga, Mo)Sb磁学和光学性质影响的理论研究. 物理学报, 2022, 71(9): 096103. doi: 10.7498/aps.71.20212316
    [5] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究. 物理学报, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [6] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质. 物理学报, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [7] 肖美霞, 梁尤平, 陈玉琴, 刘萌. 应变对两层半氢化氮化镓薄膜电磁学性质的调控机理研究. 物理学报, 2016, 65(2): 023101. doi: 10.7498/aps.65.023101
    [8] 王疆靖, 邵瑞文, 邓青松, 郑坤. 应变加载下Si纳米线电输运性能的原位电子显微学研究. 物理学报, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [9] 谢剑锋, 曹觉先. 六角氮化硼片能带结构的应变调控. 物理学报, 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [10] 黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩. N型掺杂应变Ge发光性质. 物理学报, 2012, 61(3): 036202. doi: 10.7498/aps.61.036202
    [11] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [12] 程莉, 汪丽莉, 蒲十周, 胡妮, 张悦, 刘雍, 魏伟, 熊锐, 石兢. 磁性和非磁性元素掺杂的自旋梯状化合物Sr14(Cu0.97M0.03)24O41(M=Zn, Ni, Co)的结构和电输运性质. 物理学报, 2010, 59(2): 1155-1162. doi: 10.7498/aps.59.1155
    [13] 史力斌, 李容兵, 成爽, 李明标. 关于Zn1-xBexO电子结构和光学性质的研究. 物理学报, 2009, 58(9): 6446-6452. doi: 10.7498/aps.58.6446
    [14] 徐跟建, 谭伟石, 曹辉, 邓开明, 吴小山. 非化学计量配比La0.67Sr0.33-x□xMnO3的结构和输运性质的研究. 物理学报, 2009, 58(1): 378-383. doi: 10.7498/aps.58.378
    [15] 欧阳方平, 王晓军, 张华, 肖金, 陈灵娜, 徐慧. 扶手椅型石墨纳米带的双空位缺陷效应研究. 物理学报, 2009, 58(8): 5640-5644. doi: 10.7498/aps.58.5640
    [16] 欧阳方平, 徐慧, 林峰. 双空位缺陷石墨纳米带的电子结构和输运性质研究. 物理学报, 2009, 58(6): 4132-4136. doi: 10.7498/aps.58.4132
    [17] 欧阳方平, 徐 慧, 魏 辰. Zigzag型石墨纳米带电子结构和输运性质的第一性原理研究. 物理学报, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [18] 欧阳方平, 王焕友, 李明君, 肖 金, 徐 慧. 单空位缺陷对石墨纳米带电子结构和输运性质的影响. 物理学报, 2008, 57(11): 7132-7138. doi: 10.7498/aps.57.7132
    [19] 姚 飞, 薛春来, 成步文, 王启明. 重掺B对应变SiGe材料能带结构的影响. 物理学报, 2007, 56(11): 6654-6659. doi: 10.7498/aps.56.6654
    [20] 曾 晖, 胡慧芳, 韦建卫, 谢 芳, 彭 平. 含有五边形—七边形缺陷的单壁纳米碳管的输运性质研究. 物理学报, 2006, 55(9): 4822-4827. doi: 10.7498/aps.55.4822
计量
  • 文章访问数:  369
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-23
  • 修回日期:  2025-05-21
  • 上网日期:  2025-07-14
  • 刊出日期:  2025-09-05

/

返回文章
返回