搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态水中的多种局域结构

杨成 周昕

引用本文:
Citation:

液态水中的多种局域结构

杨成, 周昕

Multiple types of local structure in liquid water

Yang Cheng, Zhou Xin
PDF
导出引用
  • 对于液态水中的微观结构到底是均匀的还是由多种结构混合而成,这一问题的争论已经持续了一个多世纪. 随着多种水的非晶体的发现以及计算机技术的进步,混合模型逐渐得到更多的关注. 本文首先介绍在模拟和实验上验证液态水中存在多种微观结构的最新进展;然后使用主成分分析方法研究液态水的拉曼谱和四面体序分布,发现它们可以通过两个基本的函数线性叠加而得到,对应液态水中存在两种微观结构;最后介绍了使用二元溶液理论来解释水的一些热力学性质的工作,以及水的液液相变理论的进展.
    Nowadays, although our understanding on liquid water have lots of progresses due to the development of experimental tools and computer simulation techniques, the molecular level structure of water, its heterogeneity, is still elusive. In the end of the nineteenth century, Rntgen proposed that the water is a mixture of two molecular complexes, which cannot be confirmed by experiments at that time. In the middle of the twentieth century, Bernal and his followers regarded the structure of liquid water as a random tetrahedral network, which was widely accepted by most scientists. With the development of computer science and the discovery of several amorphism, more and more attentions are paid on the mixture model of liquid water. In this paper, we firstly review some latest evidences about the multiple types of local structure in liquid water in both simulations and experiments. In all-atom simulation, the distributions of the local structure index obtained by minimizing the energy of samples are double peak at all temperatures. In experiment, the X-ray emission spectroscopy of liquid water at ambient pressure shows that there are two local structures in liquid water, one is order and ice-like, the other one is disorder and gas-like. Secondly, some results of our group on this topic are presented. We transformed the Raman spectra into the high-dimensional vectors and analyze the vectors with the principal component analysis method. The results show that all the end points of vectors are in a line in the high-dimensional space which implies that they can be obtained by linearly combining two basic points in that line. This means that the Raman spectra can be decomposed into two basic spectra. We also perform the same analysis on the distributions of tetrahedral order parameter in liquid water and obtained similar results. It is an obvious signal of the existence of multi-component in liquid water. Finally, we introduce the mixture model of liquid water which can be used to explain the thermodynamic properties of liquid water. In the mixture model, the form of the Gibbs free energy of liquid water is the same as the binary regular solution. The free energy is a function of the concentration of the disorder local structure. The anomalies of liquid water are directly caused by the change of concentration of the disorder local structure. In the low temperature and high pressure region, the mixture model has a critical point, which is consistent with the liquid-liquid phase transition theory.
      通信作者: 周昕, xzhou@ucas.ac.cn
      Corresponding author: Zhou Xin, xzhou@ucas.ac.cn
    [1]

    Arunan E, Desiraju G R, Klein R A, Sadlej J, Scheiner S, Alkorta I, Clary D C, Crabtree R H, Dannenberg J J, Hobza P, Kjaergaard H G, Legon A C, Mennucci B, Nesbitt D J 2011 Pure Appl. Chem. 83 1619

    [2]

    Debenedetti P G 2003 J. Phys. Condens. Matter 15 R1669

    [3]

    Nilsson A, Pettersson L G M 2015 Nat. Commun. 6 8998

    [4]

    Tanaka H 2012 Eur. Phys. J. E 35 1

    [5]

    Malenkov G 2009 J. Phys. Condens. Matter 21 283101

    [6]

    Mishima O, Calvert L D, Whalley E 1984 Nature 310 393

    [7]

    Mishima O, Calvert L D, Whalley E 1985 Nature 314 76

    [8]

    Handa Y P, Mishima O, Whalley E 1986 J. Chem. Phys. 84 2766

    [9]

    Mishima O 1994 J. Chem. Phys. 100 5910

    [10]

    Whalley E 1988 Journal of The Less Common Metals 140 361

    [11]

    Smith J D, Cappa C D, Wilson K R, Messer B M, Cohen R C, Saykally R J 2004 Science 306 851

    [12]

    Huang C C, Wikfeldt K T, Tokushima T, Nordlund D, Harada Y, Bergmann U, Niebuhr M, Weiss T M, Horikawa Y, Leetmaa M, Ljungberg M P, Takahashi O, Lenz A, Ojamae L, Lyubartsev A P, Shin S, Pettersson L G M, Nilsson A 2009 Proc. Natl. Acad. Sci. 106 15214

    [13]

    Rntgen W C 1891 Ann. Phys. Chem. N.F. XLV 91

    [14]

    Bernal J D 1964 Proc. R. Soc. Lond. A: Math. Phys. Sci. 280 299

    [15]

    Cuthbertson M J, Poole P H 2011 Phys. Rev. Lett. 106 115706

    [16]

    Saika-Voivod I, Sciortino F, Poole P H 2000 Phys. Rev. E 63 011202

    [17]

    Stillinger F H, Rahman A 1974 J. Chem. Phys. 60 1545

    [18]

    Shiratani E, Sasai M 1996 J. Chem. Phys. 104 7671

    [19]

    Shiratani E, Sasai M 1998 J. Chem. Phys. 108 3264

    [20]

    Appignanesi G A, Fris J A R, Sciortino F 2009 Eur. Phys. J. E 29 305

    [21]

    Accordino S R, Fris J A R, Sciortino F, Appignanesi G A 2011 Eur. Phys. J. E 34 1

    [22]

    Wikfeldt K T, Nilsson A, Pettersson L G M 2011 Phys. Chem. Chem. Phys. 13 19918

    [23]

    Wikfeldt K T 2011 Ph. D. Dissertation (Stockholm University, Faculty of Science, Department of Physics)

    [24]

    Abascal J L F, Vega C 2005 J. Chem. Phys. 123 234505

    [25]

    Vega C, Abascal J L F 2011 Phys. Chem. Chem. Phys. 13 19663

    [26]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [27]

    Paolantoni M, Lago N F, Albert M, Lagana A 2009 J. Phys. Chem. A 113 15100

    [28]

    Smith J D, Cappa C D, Wilson K R, Cohen, R C, Geissler P L, Saykally R J 2005 Proc. Natl. Acad. Sci. 102 14171

    [29]

    Vehring R, Schweiger G 1992 Appl. Spectrosc. 46 25

    [30]

    Green J L, Lacey A R, Sceats M G 1986 J. Phys. Chem. 90 3958

    [31]

    Tokushima T, Harada Y, Takahashi O, Senba Y, Ohashi H, Pettersson L G M, Nilsson A, Shin S 2008 Chem. Phys. Lett. 460 387

    [32]

    Nilsson A, Huang C, Pettersson L G M 2012 J. Mol. Liq. 176 2

    [33]

    Nilsson A, Pettersson L G M 2011 Chem. Phys. 389 1

    [34]

    Tokushima T, Harada Y, Horikawa Y, Takahashi, O, Senba Y, Ohashi H, Pettersson L G M, Nilsson A, Shin S 2010 J. Electron Spectrosc. 177 192

    [35]

    Abdi H, Williams L J 2010 Wiley Interdisciplinary Reviews: Computational Statistics 2 433

    [36]

    Errington J R, Debenedetti P G 2001 Nature 409 318

    [37]

    Ponyatovskii E G, Sinand V V, Pozdnyakova T A 1994 Jetp Lett. 60 360

    [38]

    Ponyatovsky E G, Sinitsyn V V, Pozdnyakova T A 1998 J. Chem. Phys. 109 2413

    [39]

    Russo J, Tanaka H 2014 Nat. Commun. 5 3556

    [40]

    Giovambattista N 2013 Liquid Polymorphism 152 113

    [41]

    Tanaka H 2000 Europhys. Lett. 50 340

    [42]

    Poole P H, Sciortino F, Essmann U, Stanley H E 1992 Nature 360 324

    [43]

    Liu D, Zhang Y, Chen C C, Mou C Y, Poole P H, Chen S H 2007 Proc. Natl. Acad. Sci. 104 9570

    [44]

    Mallamace F, Branca C, Broccio M, Corsaro C, Mou C Y, Chen S H 2007 Proc. Natl. Acad. Sci. 104 18387

    [45]

    Xu L, Kumar P, Buldyrev S V, Chen S H, Poole P H, Sciortino F, Stanley H E 2005 Proc. Natl. Acad. Sci. 102 16558

    [46]

    Liu Y, Palmer J C, Panagiotopoulos A Z, Debenedetti P G 2012 J. Chem. Phys. 137 214505

    [47]

    Yagasaki T, Matsumoto M, Tanaka H 2014 Phys. Rev. E 89 020301

    [48]

    Pallares G, Azouzi M E M, Gonzlez M A, Aragones J L, Abascal J L F, Valeriani C, Caupin F 2014 Proc. Natl. Acad. Sci. 111 7936

    [49]

    Poole P H, Bowles R K, Saika-Voivod I, Sciortino F 2013 J. Chem. Phys. 138 034505

    [50]

    Sellberg J A, Huang C, McQueen T A, Loh N D, Laksmono H, Schlesinger D, Sierra R G, Nordlund D, Hampton C Y, Starodub D, Deponte D P, Beye M, Chen C, Martin A V, Barty A, Wikfeldt K T, Weiss T M, Caronna C, Feldkamp J, Skinner L B, Seibert M M, Messerscshmidt M, Williams G J, Boutet S, Pettersson L G M, Bogan M J, Nilsson A 2014 Nature 510 381

    [51]

    Kesselring T A, Franzese G, Buldyrev S V, Herrmann H J, Stanley H E 2012 Sci. Res. 2 474

    [52]

    Matsumoto M, Baba A, Ohmine I 2007 J. Chem. Phys. 127 134504

    [53]

    Sun Z R, Sun G, Chen Y X, Xu L M 2014 Sci. China: Phys. Mech. Astron. 57 810

    [54]

    Sun G, Xu L M 2016 Sci. China: Phys. Mech. Astron. 46 057005 (in Chinese) [孙刚, 徐莉梅 2016 中国科学: 物理学 力学 天文学 46 057005]

    [55]

    Balagurov A M, Barkalov O I, Kolesnikov A I, Mironova, G M, Ponyatovsky E G, Sinitsyn V V, Fedotov V K 1991 JETP Lett. 53 30

    [56]

    Limmer D T, Chandler D 2011 J. Chem. Phys. 135 134503

    [57]

    Limmer D T, Chandler D 2013 J. Chem. Phys. 138 214504

    [58]

    Palmer J C, Martelli F, Liu Y, Car R, Panagiotopoulos A Z, Debenedetti P G 2014 Nature 510 385

    [59]

    Liu Y, Panagiotopoulos A Z, Debenedetti P G 2009 J. Chem. Phys. 131 104508

    [60]

    Frenkel D, Smit B 2002 Understanding Molecular Simulation: from Algorithms to Applications (2nd Ed.) (Academic Press) pp192-199

    [61]

    Barducci A, Bussi G, Parrinello M 2008 Phys. Rev. Lett. 100 020603

    [62]

    Duane S, Kennedy A D, Pendleton B J, Roweth D 1987 Phys. Lett. B 195 216

    [63]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [64]

    Lechner W, Dellago C 2008 J. Chem. Phys. 129 114707

    [65]

    Russo J, Tanaka H 2012 Sci. Res. 2 505

  • [1]

    Arunan E, Desiraju G R, Klein R A, Sadlej J, Scheiner S, Alkorta I, Clary D C, Crabtree R H, Dannenberg J J, Hobza P, Kjaergaard H G, Legon A C, Mennucci B, Nesbitt D J 2011 Pure Appl. Chem. 83 1619

    [2]

    Debenedetti P G 2003 J. Phys. Condens. Matter 15 R1669

    [3]

    Nilsson A, Pettersson L G M 2015 Nat. Commun. 6 8998

    [4]

    Tanaka H 2012 Eur. Phys. J. E 35 1

    [5]

    Malenkov G 2009 J. Phys. Condens. Matter 21 283101

    [6]

    Mishima O, Calvert L D, Whalley E 1984 Nature 310 393

    [7]

    Mishima O, Calvert L D, Whalley E 1985 Nature 314 76

    [8]

    Handa Y P, Mishima O, Whalley E 1986 J. Chem. Phys. 84 2766

    [9]

    Mishima O 1994 J. Chem. Phys. 100 5910

    [10]

    Whalley E 1988 Journal of The Less Common Metals 140 361

    [11]

    Smith J D, Cappa C D, Wilson K R, Messer B M, Cohen R C, Saykally R J 2004 Science 306 851

    [12]

    Huang C C, Wikfeldt K T, Tokushima T, Nordlund D, Harada Y, Bergmann U, Niebuhr M, Weiss T M, Horikawa Y, Leetmaa M, Ljungberg M P, Takahashi O, Lenz A, Ojamae L, Lyubartsev A P, Shin S, Pettersson L G M, Nilsson A 2009 Proc. Natl. Acad. Sci. 106 15214

    [13]

    Rntgen W C 1891 Ann. Phys. Chem. N.F. XLV 91

    [14]

    Bernal J D 1964 Proc. R. Soc. Lond. A: Math. Phys. Sci. 280 299

    [15]

    Cuthbertson M J, Poole P H 2011 Phys. Rev. Lett. 106 115706

    [16]

    Saika-Voivod I, Sciortino F, Poole P H 2000 Phys. Rev. E 63 011202

    [17]

    Stillinger F H, Rahman A 1974 J. Chem. Phys. 60 1545

    [18]

    Shiratani E, Sasai M 1996 J. Chem. Phys. 104 7671

    [19]

    Shiratani E, Sasai M 1998 J. Chem. Phys. 108 3264

    [20]

    Appignanesi G A, Fris J A R, Sciortino F 2009 Eur. Phys. J. E 29 305

    [21]

    Accordino S R, Fris J A R, Sciortino F, Appignanesi G A 2011 Eur. Phys. J. E 34 1

    [22]

    Wikfeldt K T, Nilsson A, Pettersson L G M 2011 Phys. Chem. Chem. Phys. 13 19918

    [23]

    Wikfeldt K T 2011 Ph. D. Dissertation (Stockholm University, Faculty of Science, Department of Physics)

    [24]

    Abascal J L F, Vega C 2005 J. Chem. Phys. 123 234505

    [25]

    Vega C, Abascal J L F 2011 Phys. Chem. Chem. Phys. 13 19663

    [26]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [27]

    Paolantoni M, Lago N F, Albert M, Lagana A 2009 J. Phys. Chem. A 113 15100

    [28]

    Smith J D, Cappa C D, Wilson K R, Cohen, R C, Geissler P L, Saykally R J 2005 Proc. Natl. Acad. Sci. 102 14171

    [29]

    Vehring R, Schweiger G 1992 Appl. Spectrosc. 46 25

    [30]

    Green J L, Lacey A R, Sceats M G 1986 J. Phys. Chem. 90 3958

    [31]

    Tokushima T, Harada Y, Takahashi O, Senba Y, Ohashi H, Pettersson L G M, Nilsson A, Shin S 2008 Chem. Phys. Lett. 460 387

    [32]

    Nilsson A, Huang C, Pettersson L G M 2012 J. Mol. Liq. 176 2

    [33]

    Nilsson A, Pettersson L G M 2011 Chem. Phys. 389 1

    [34]

    Tokushima T, Harada Y, Horikawa Y, Takahashi, O, Senba Y, Ohashi H, Pettersson L G M, Nilsson A, Shin S 2010 J. Electron Spectrosc. 177 192

    [35]

    Abdi H, Williams L J 2010 Wiley Interdisciplinary Reviews: Computational Statistics 2 433

    [36]

    Errington J R, Debenedetti P G 2001 Nature 409 318

    [37]

    Ponyatovskii E G, Sinand V V, Pozdnyakova T A 1994 Jetp Lett. 60 360

    [38]

    Ponyatovsky E G, Sinitsyn V V, Pozdnyakova T A 1998 J. Chem. Phys. 109 2413

    [39]

    Russo J, Tanaka H 2014 Nat. Commun. 5 3556

    [40]

    Giovambattista N 2013 Liquid Polymorphism 152 113

    [41]

    Tanaka H 2000 Europhys. Lett. 50 340

    [42]

    Poole P H, Sciortino F, Essmann U, Stanley H E 1992 Nature 360 324

    [43]

    Liu D, Zhang Y, Chen C C, Mou C Y, Poole P H, Chen S H 2007 Proc. Natl. Acad. Sci. 104 9570

    [44]

    Mallamace F, Branca C, Broccio M, Corsaro C, Mou C Y, Chen S H 2007 Proc. Natl. Acad. Sci. 104 18387

    [45]

    Xu L, Kumar P, Buldyrev S V, Chen S H, Poole P H, Sciortino F, Stanley H E 2005 Proc. Natl. Acad. Sci. 102 16558

    [46]

    Liu Y, Palmer J C, Panagiotopoulos A Z, Debenedetti P G 2012 J. Chem. Phys. 137 214505

    [47]

    Yagasaki T, Matsumoto M, Tanaka H 2014 Phys. Rev. E 89 020301

    [48]

    Pallares G, Azouzi M E M, Gonzlez M A, Aragones J L, Abascal J L F, Valeriani C, Caupin F 2014 Proc. Natl. Acad. Sci. 111 7936

    [49]

    Poole P H, Bowles R K, Saika-Voivod I, Sciortino F 2013 J. Chem. Phys. 138 034505

    [50]

    Sellberg J A, Huang C, McQueen T A, Loh N D, Laksmono H, Schlesinger D, Sierra R G, Nordlund D, Hampton C Y, Starodub D, Deponte D P, Beye M, Chen C, Martin A V, Barty A, Wikfeldt K T, Weiss T M, Caronna C, Feldkamp J, Skinner L B, Seibert M M, Messerscshmidt M, Williams G J, Boutet S, Pettersson L G M, Bogan M J, Nilsson A 2014 Nature 510 381

    [51]

    Kesselring T A, Franzese G, Buldyrev S V, Herrmann H J, Stanley H E 2012 Sci. Res. 2 474

    [52]

    Matsumoto M, Baba A, Ohmine I 2007 J. Chem. Phys. 127 134504

    [53]

    Sun Z R, Sun G, Chen Y X, Xu L M 2014 Sci. China: Phys. Mech. Astron. 57 810

    [54]

    Sun G, Xu L M 2016 Sci. China: Phys. Mech. Astron. 46 057005 (in Chinese) [孙刚, 徐莉梅 2016 中国科学: 物理学 力学 天文学 46 057005]

    [55]

    Balagurov A M, Barkalov O I, Kolesnikov A I, Mironova, G M, Ponyatovsky E G, Sinitsyn V V, Fedotov V K 1991 JETP Lett. 53 30

    [56]

    Limmer D T, Chandler D 2011 J. Chem. Phys. 135 134503

    [57]

    Limmer D T, Chandler D 2013 J. Chem. Phys. 138 214504

    [58]

    Palmer J C, Martelli F, Liu Y, Car R, Panagiotopoulos A Z, Debenedetti P G 2014 Nature 510 385

    [59]

    Liu Y, Panagiotopoulos A Z, Debenedetti P G 2009 J. Chem. Phys. 131 104508

    [60]

    Frenkel D, Smit B 2002 Understanding Molecular Simulation: from Algorithms to Applications (2nd Ed.) (Academic Press) pp192-199

    [61]

    Barducci A, Bussi G, Parrinello M 2008 Phys. Rev. Lett. 100 020603

    [62]

    Duane S, Kennedy A D, Pendleton B J, Roweth D 1987 Phys. Lett. B 195 216

    [63]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [64]

    Lechner W, Dellago C 2008 J. Chem. Phys. 129 114707

    [65]

    Russo J, Tanaka H 2012 Sci. Res. 2 505

  • [1] 季梦, 尤云祥, 韩盼盼, 邱小平, 马乔, 吴凯健. 亚临界区圆柱绕流相干结构壁面模化混合RANS/LES模型. 物理学报, 2024, 73(5): 054701. doi: 10.7498/aps.73.20231745
    [2] 佟磊, 赵明亮, 张钰如, 宋远红, 王友年. 带有射频偏压源的感性耦合Ar/O2/Cl2等离子体放电的混合模拟研究. 物理学报, 2024, 73(4): 045201. doi: 10.7498/aps.73.20231369
    [3] 张钰如, 高飞, 王友年. 低气压感性耦合等离子体源模拟研究进展. 物理学报, 2021, 70(9): 095206. doi: 10.7498/aps.70.20202247
    [4] 王振兴, 曹志远, 李瑞, 陈峰, 孙丽琼, 耿英三, 王建华. 纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟. 物理学报, 2021, 70(5): 055201. doi: 10.7498/aps.70.20201701
    [5] 吴博强, 刘海蓉, 刘让苏, 莫云飞, 田泽安, 梁永超, 关绍康, 黄昌雄. 冷速对液态金属Mg凝固过程中微观结构演变的影响. 物理学报, 2017, 66(1): 016101. doi: 10.7498/aps.66.016101
    [6] 傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培. 水热法合成纳米花状二硫化钼及其微观结构表征. 物理学报, 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [7] 王文鹏, 刘福生, 张宁超. 冲击加载下液态水的结构相变. 物理学报, 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [8] 伍飞飞, 廖瑞金, 杨丽君, 刘兴华, 汪可, 周之. 棒-板电极直流负电晕放电特里切尔脉冲的微观过程分析. 物理学报, 2013, 62(11): 115201. doi: 10.7498/aps.62.115201
    [9] 弭光宝, 李培杰, 黄旭, 曹春晓. 液态结构与性质关系Ⅲ剩余键理论模型. 物理学报, 2012, 61(18): 186106. doi: 10.7498/aps.61.186106
    [10] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变. 物理学报, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [11] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究. 物理学报, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [12] 王晶, 马瑞玲, 王龙, 孟俊敏. 采用混合模型数值模拟从深海到浅海内波的传播. 物理学报, 2012, 61(6): 064701. doi: 10.7498/aps.61.064701
    [13] 弭光宝, 李培杰, Охапкин А В, Константинова Н Ю, Сабирзянов А А, Попель П С. 液态结构与性质关系Ⅱ——Mg-9Al熔体的运动黏度及与熔体微观结构的关系. 物理学报, 2011, 60(5): 056601. doi: 10.7498/aps.60.056601
    [14] 弭光宝, 李培杰, Охапкин А В, Константинова Н Ю, Сабирзянов А А, Попель П С. 液态结构与性质关系Ⅰ——Mg熔体的运动黏度及与熔体微观结构的关系. 物理学报, 2011, 60(4): 046601. doi: 10.7498/aps.60.046601
    [15] 侯兆阳, 刘让苏, 王 鑫, 田泽安, 周群益, 陈振华. 熔体初始温度对液态金属Na凝固过程中微观结构影响的模拟研究. 物理学报, 2007, 56(1): 376-383. doi: 10.7498/aps.56.376
    [16] 张海涛, 刘让苏, 侯兆阳, 张爱龙, 陈晓莹, 杜生海. 冷速对液态金属Ga凝固过程中微观结构演变影响的模拟研究. 物理学报, 2006, 55(5): 2409-2417. doi: 10.7498/aps.55.2409
    [17] 易学华, 刘让苏, 田泽安, 侯兆阳, 王 鑫, 周群益. 冷却速率对液态金属Cu凝固过程中微观结构演变影响的模拟研究. 物理学报, 2006, 55(10): 5386-5393. doi: 10.7498/aps.55.5386
    [18] 侯兆阳, 刘让苏, 李琛珊, 周群益, 郑采星. 冷速对液态金属Na凝固过程中微观结构影响的模拟研究. 物理学报, 2005, 54(12): 5723-5729. doi: 10.7498/aps.54.5723
    [19] 刘让苏, 覃树萍, 侯兆阳, 陈晓莹, 刘凤翔. 液态金属In凝固过程中微观结构转变的模拟研究. 物理学报, 2004, 53(9): 3119-3124. doi: 10.7498/aps.53.3119
    [20] 陈魁英, 李庆春, 陈熙琛. 液态过渡金属Pd和Pt的结构与微观动力学行为. 物理学报, 1993, 42(2): 283-289. doi: 10.7498/aps.42.283
计量
  • 文章访问数:  6030
  • PDF下载量:  491
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-18
  • 修回日期:  2016-05-19
  • 刊出日期:  2016-09-05

/

返回文章
返回