搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三角波瓣混合器的超声速流场精细结构和掺混特性

张冬冬 谭建国 李浩 侯聚微

引用本文:
Citation:

基于三角波瓣混合器的超声速流场精细结构和掺混特性

张冬冬, 谭建国, 李浩, 侯聚微

Fine flow structure and mixing characteristic in supersonic flow induced by a lobed mixer

Zhang Dong-Dong, Tan Jian-Guo, Li Hao, Hou Ju-Wei
PDF
导出引用
  • 在超声速吸气式混合层风洞中,采用基于纳米粒子的平面激光散射(NPLS)技术对平板混合层和三角波瓣混合器诱导的混合层流场精细结构进行了对比实验研究.上下两层来流的实测马赫数分别为1.98和2.84,对流马赫数为0.2.NPLS图像清晰地展示了Kelvin-Helmholtz涡、流向涡、波系结构以及大尺度涡结构的配对合并过程.通过对比分析时间相关的NPLS流场图像,发现了大尺度拟序结构随时间发展演化的非定常特性.基于流动显示结果,采用分形维数和间歇因子指标对流场结构和混合特性进行了定量分析.实验研究表明,三角波瓣混合器诱导的流向涡结构显著提高了上下两层来流的掺混效率,其流动远场的分形维数突破了平板混合层中完全湍流区的分形维数值,达到了1.88,流场结构表现出明显的破碎性,有利于流动在标量层面的扩散和掺混.流动间歇性分析表明,流向涡与展向涡的相互剪切作用主导着混合层的掺混特性,同时由于流向涡的卷吸作用,三角波瓣混合器诱导的混合层混合区域更大,更多的流质被卷入混合区完成混合.
    In a supersonic suction type of mixing layer wind tunnel, by employing nanoparticle-based planar laser scattering (NPLS) method, contrast experiments are carried out with the emphasis on the fine flow structures of planar mixing layer and the mixing layer induced by triangular lobed mixer. The normal-shock equation, isentropic equation and sound speed relationship are utilized to calculate the flow parameters. The calculated Mach numbers are 1.98 and 2.84 for upper and lower airstreams respectively with a convective Mach number of 0.2. The NPLS images clearly shows the Kelvin-Helmholtz vortices, streamwise vortices, shock waves and the pairing processes of large-scale vortex structures. The unsteady properties of development and evolution for large-scale vortices are obtained by contrasting the NPLS images at different times. Also, it has been demonstrated by the present experimental investigation that in supersonic mixing layer with low convective Mach number, the small shock waves are still existing. These small shock waves that occur have negative effects on the mixing process. It is because the convection flow process of upper and lower airstreams is non-isentropic, causing the total pressure to lose. Based on the NPLS results, flow structures and mixing characteristics are analyzed quantitatively by using fractal and intermittency theory. The results show that the mixing efficiency increases obviously with the introducing of large-scale streamwise vortices. The nibbling of vortex clusters induced by large-scale streamwise vortices obviously increases the interface area of mixing. Meanwhile, compared with planar mixing layer, larger spanwise structures roll up in triangular lobed mixing layer, leading to more entrainment of upper and lower airstreams. In the present investigation of supersonic planar mixing layer, the value of fractal dimension of fully turbulent region is stable at 1.55-1.6. Whereas the value of fractal dimension for triangular lobed mixing layer reaches 1.88 at the flow field far away downstream, which breaks through the value of fully developed turbulence for planar mixing layer. Besides, in triangular lobed mixing layer, the shear action between streamwise vortices and spanwise structures plays a leading role in promoting mixing. The mixing flow shows the property of apparent crushability and three-dimensional behavior, which plays a positive role in promoting mixing at a scalar level. The analysis of intermittency indicates that the interaction between streamwise and spanwise vortices dominates the mixing characteristics, and due to the entrainment of streamwise vortices, the mixing region induced by triangular lobed mixer becomes larger, and more fluids are engulfed into the mixing region to complete the mixing process.
      通信作者: 张冬冬, zhangdd0902@163.com
    • 基金项目: 国家自然科学基金(批准号:11272351和91441121)和湖南省研究生科研创新项目(批准号:CX2016B001)资助的课题.
      Corresponding author: Zhang Dong-Dong, zhangdd0902@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272351, 91441121) and Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2016B001).
    [1]

    Curran E T 2001 J. Propul. Power 17 1138

    [2]

    Drummond J P, Diskin G S, Cutler A D 2002 AIAA Paper 2002-3878

    [3]

    Seiner J M, Dash S M, Kenzakowski D C 2001 J. Propul. Power 17 1273

    [4]

    Fernando E M, Menon S 1993 AIAA J. 31 278

    [5]

    Brown G L, Roshko A 1974 J. Fluid Mech. 64 775

    [6]

    Azim M A, Islam A K M S 2003 Aeronaut. J. 107 241

    [7]

    Zhang D D, Tan J G, L L 2015 Acta Astronaut. 117 440

    [8]

    Gutmark E T, Schadow K C, Yu K H 1995 Annu. Rev. Fluid Mech. 27 375

    [9]

    Freund J B, Lele S K, Moin P 2000 J. Fluid Mech. 421 229

    [10]

    Martens S, Kinzie K W, Mclaughlin D K 1994 AIAA Paper 1994-0822

    [11]

    Doty M J, Mclaughlin D K 2000 AIAA J. 38 1871

    [12]

    Sunami T, Wendt M, Nishioka M 1998 AIAA Paper 1998-3271

    [13]

    Heeb N, Gutmark E, Kailasanath K 2015 Phys. Fluids 26 086102

    [14]

    Brinkerhoff J R, Oria H, Yaras M I 2013 J. Propul. Power 29 1017

    [15]

    Tew D E, Hermanson J C, Waitz I A 2004 AIAA J. 42 2393

    [16]

    Paterson R W 1982 NASA Paper CR-3492

    [17]

    Gang D D, Yi S H, Zhao Y F 2015 Acta Phys. Sin. 64 054705 (in Chinese) [冈敦殿, 易仕和, 赵云飞 2015 物理学报 64 054705]

    [18]

    Zhao Y X, Yi S H, Tian L F 2009 Sci. China: Ser. E 52 3640

    [19]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 084219 (in Chinese) [武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 物理学报 62 084219]

    [20]

    Tew D E 1997 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [21]

    Nastase I, Meslem A 2010 Exp. Fluids 48 693

    [22]

    Dimotakis P E 1991 AIAA Paper 1991-2012

    [23]

    Rossmann T, Mungal M G, Hanson R K 2002 J. Turbul. 3 9

    [24]

    Olsen M G, Dutton J C 2003 J. Fluid Mech. 486 51

    [25]

    Jahanbakhshi R, Vaghefi N S, Madnia C K 2015 Phys. Fluids 27 105105

    [26]

    Sreenivasan K R 1991 Annu. Rev. Fluid Mech. 23 539

    [27]

    Humble R A, Peltier S J, Bowersox R D W 2012 Phys. Fluids 24 106103

    [28]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2009 Sci. China: Ser. G 51 1134

    [29]

    Humble R A, Peltier S J, Bowersox R D W 2012 Phys. Fluids 24 106103

    [30]

    Christensen E M 1973 Annu. Rev. Fluid Mech. 5 101

  • [1]

    Curran E T 2001 J. Propul. Power 17 1138

    [2]

    Drummond J P, Diskin G S, Cutler A D 2002 AIAA Paper 2002-3878

    [3]

    Seiner J M, Dash S M, Kenzakowski D C 2001 J. Propul. Power 17 1273

    [4]

    Fernando E M, Menon S 1993 AIAA J. 31 278

    [5]

    Brown G L, Roshko A 1974 J. Fluid Mech. 64 775

    [6]

    Azim M A, Islam A K M S 2003 Aeronaut. J. 107 241

    [7]

    Zhang D D, Tan J G, L L 2015 Acta Astronaut. 117 440

    [8]

    Gutmark E T, Schadow K C, Yu K H 1995 Annu. Rev. Fluid Mech. 27 375

    [9]

    Freund J B, Lele S K, Moin P 2000 J. Fluid Mech. 421 229

    [10]

    Martens S, Kinzie K W, Mclaughlin D K 1994 AIAA Paper 1994-0822

    [11]

    Doty M J, Mclaughlin D K 2000 AIAA J. 38 1871

    [12]

    Sunami T, Wendt M, Nishioka M 1998 AIAA Paper 1998-3271

    [13]

    Heeb N, Gutmark E, Kailasanath K 2015 Phys. Fluids 26 086102

    [14]

    Brinkerhoff J R, Oria H, Yaras M I 2013 J. Propul. Power 29 1017

    [15]

    Tew D E, Hermanson J C, Waitz I A 2004 AIAA J. 42 2393

    [16]

    Paterson R W 1982 NASA Paper CR-3492

    [17]

    Gang D D, Yi S H, Zhao Y F 2015 Acta Phys. Sin. 64 054705 (in Chinese) [冈敦殿, 易仕和, 赵云飞 2015 物理学报 64 054705]

    [18]

    Zhao Y X, Yi S H, Tian L F 2009 Sci. China: Ser. E 52 3640

    [19]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 084219 (in Chinese) [武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 物理学报 62 084219]

    [20]

    Tew D E 1997 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [21]

    Nastase I, Meslem A 2010 Exp. Fluids 48 693

    [22]

    Dimotakis P E 1991 AIAA Paper 1991-2012

    [23]

    Rossmann T, Mungal M G, Hanson R K 2002 J. Turbul. 3 9

    [24]

    Olsen M G, Dutton J C 2003 J. Fluid Mech. 486 51

    [25]

    Jahanbakhshi R, Vaghefi N S, Madnia C K 2015 Phys. Fluids 27 105105

    [26]

    Sreenivasan K R 1991 Annu. Rev. Fluid Mech. 23 539

    [27]

    Humble R A, Peltier S J, Bowersox R D W 2012 Phys. Fluids 24 106103

    [28]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2009 Sci. China: Ser. G 51 1134

    [29]

    Humble R A, Peltier S J, Bowersox R D W 2012 Phys. Fluids 24 106103

    [30]

    Christensen E M 1973 Annu. Rev. Fluid Mech. 5 101

  • [1] 赵大帅, 孙志, 孙兴, 孙怀得, 韩柏. 基于分形理论的微间隙空气放电. 物理学报, 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [2] 郭广明, 朱林, 邢博阳. 超声速混合层涡结构内部流体的密度分布特性. 物理学报, 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [3] 王鹏, 沈赤兵. 等离子体合成射流对超声速混合层的混合增强. 物理学报, 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [4] 苟学强, 张义军, 李亚珺, 陈明理. 闪电双向先导理论及观测:极性不对称、不稳定及间歇性. 物理学报, 2018, 67(20): 205201. doi: 10.7498/aps.67.20181079
    [5] 武宇, 易仕和, 何霖, 全鹏程, 朱杨柱. 基于流动显示的压缩拐角流动结构定量研究. 物理学报, 2015, 64(1): 014703. doi: 10.7498/aps.64.014703
    [6] 马岩冰, 张怀武, 李元勋. 基于科赫分形的新型超材料双频吸收器. 物理学报, 2014, 63(11): 118102. doi: 10.7498/aps.63.118102
    [7] 尚慧琳. 受迫Holmes-Duffing系统安全域分形及时滞速度反馈控制. 物理学报, 2012, 61(18): 180506. doi: 10.7498/aps.61.180506
    [8] 行鸿彦, 龚平, 徐伟. 海杂波背景下小目标检测的分形方法. 物理学报, 2012, 61(16): 160504. doi: 10.7498/aps.61.160504
    [9] 吴国成, 石祥超. 非光滑热曲线的分数阶次可微性研究 . 物理学报, 2012, 61(19): 190502. doi: 10.7498/aps.61.190502
    [10] 杨娟, 卞保民, 闫振纲, 王春勇, 李振华. 典型随机信号特征参数统计分布的分形特性. 物理学报, 2011, 60(10): 100506. doi: 10.7498/aps.60.100506
    [11] 杨娟, 卞保民, 彭刚, 李振华. 随机信号双参数脉冲模型的分形特征. 物理学报, 2011, 60(1): 010508. doi: 10.7498/aps.60.010508
    [12] 刘耀民, 刘中良, 黄玲艳. 分形理论结合相变动力学的冷表面结霜过程模拟. 物理学报, 2010, 59(11): 7991-7997. doi: 10.7498/aps.59.7991
    [13] 张丽, 刘树堂. 薄板热扩散分形生长的环境干扰控制. 物理学报, 2010, 59(11): 7708-7712. doi: 10.7498/aps.59.7708
    [14] 姜泽辉, 赵海发, 郑瑞华. 完全非弹性蹦球倍周期运动的分形特征. 物理学报, 2009, 58(11): 7579-7583. doi: 10.7498/aps.58.7579
    [15] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [16] 孟田华, 赵国忠, 张存林. 亚波长分形结构太赫兹透射增强的机理研究. 物理学报, 2008, 57(6): 3846-3852. doi: 10.7498/aps.57.3846
    [17] 李 彤, 商朋见. 多重分形在掌纹识别中的研究. 物理学报, 2007, 56(8): 4393-4400. doi: 10.7498/aps.56.4393
    [18] 疏学明, 方 俊, 申世飞, 刘勇进, 袁宏永, 范维澄. 火灾烟雾颗粒凝并分形特性研究. 物理学报, 2006, 55(9): 4466-4471. doi: 10.7498/aps.55.4466
    [19] 陈京元, 陈式刚, 王光瑞. 间歇性大气湍流中光传播问题的近Gauss极限分析. 物理学报, 2005, 54(7): 3123-3131. doi: 10.7498/aps.54.3123
    [20] 刘海文, 孙晓玮, 李征帆, 钱 蓉, 周 旻. 基于分形特征和双层光子带隙结构的宽阻带低通滤波器. 物理学报, 2003, 52(12): 3082-3086. doi: 10.7498/aps.52.3082
计量
  • 文章访问数:  3153
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-24
  • 修回日期:  2017-03-06
  • 刊出日期:  2017-05-05

基于三角波瓣混合器的超声速流场精细结构和掺混特性

  • 1. 国防科学技术大学, 高超声速冲压发动机技术重点实验室, 长沙 410073
  • 通信作者: 张冬冬, zhangdd0902@163.com
    基金项目: 国家自然科学基金(批准号:11272351和91441121)和湖南省研究生科研创新项目(批准号:CX2016B001)资助的课题.

摘要: 在超声速吸气式混合层风洞中,采用基于纳米粒子的平面激光散射(NPLS)技术对平板混合层和三角波瓣混合器诱导的混合层流场精细结构进行了对比实验研究.上下两层来流的实测马赫数分别为1.98和2.84,对流马赫数为0.2.NPLS图像清晰地展示了Kelvin-Helmholtz涡、流向涡、波系结构以及大尺度涡结构的配对合并过程.通过对比分析时间相关的NPLS流场图像,发现了大尺度拟序结构随时间发展演化的非定常特性.基于流动显示结果,采用分形维数和间歇因子指标对流场结构和混合特性进行了定量分析.实验研究表明,三角波瓣混合器诱导的流向涡结构显著提高了上下两层来流的掺混效率,其流动远场的分形维数突破了平板混合层中完全湍流区的分形维数值,达到了1.88,流场结构表现出明显的破碎性,有利于流动在标量层面的扩散和掺混.流动间歇性分析表明,流向涡与展向涡的相互剪切作用主导着混合层的掺混特性,同时由于流向涡的卷吸作用,三角波瓣混合器诱导的混合层混合区域更大,更多的流质被卷入混合区完成混合.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回