搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速钝锥对不同类型来流扰动的三维感受性

万兵兵 胡伟波 李晓虎 黄文锋 陈坚强 涂国华

引用本文:
Citation:

高速钝锥对不同类型来流扰动的三维感受性

万兵兵, 胡伟波, 李晓虎, 黄文锋, 陈坚强, 涂国华
cstr: 32037.14.aps.73.20241383

Three-dimensional receptivity of high-speed blunt cone to different types of freestream disturbances

Wan Bing-Bing, Hu Wei-Bo, Li Xiao-Hu, Huang Wen-Feng, Chen Jian-Qiang, Tu Guo-Hua
cstr: 32037.14.aps.73.20241383
PDF
HTML
导出引用
  • 来流扰动感受性是边界层转捩的起始阶段, 能决定边界层扰动以何种路径触发转捩. 目前二维感受性研究较为充分, 但现实来流扰动往往以非零角入射, 导致空间扰动在圆锥周向上存在分量, 造成感受性呈现三维特征, 该问题研究偏少. 前期仅研究了低频慢声波入射的三维感受性, 对于不同类型扰动的三维感受性问题还未做系统性研究. 本文采用高精度三维数值模拟技术和线性稳定性理论, 开展有入射角的不同频率快/慢声波、熵波和涡波的钝锥三维感受性研究. 结果发现, 入射慢声波能够激发边界层第一和第二模态; 快声波很难激发不稳定模态; 熵波和涡波在低频条件下难以激发第一模态, 但在高频下可激发第二模态. 扰动入射角可造成感受性因周向位置而异, 体现在主导扰动形式的差异和边界层扰动幅值的差异. 不同扰动类型、频率下这种差异表现出不同的规律, 入射正面、背面和侧面都有可能是最强感受性. 导致这些现象可能是上游头部和入射正面扰动的共同作用结果.
    Receptivity to freestream disturbances is the initial stage of the boundary-layer transition process, which can determine the final path of boundary-layer disturbance triggering transition. At present, there is relatively sufficient research on the receptivity of two-dimensional boundary layers to zero incident angle disturbances. In fact, the freestream disturbances often propagate into the boundary layer in the form of non-zero incident angle, resulting in a component of spatial disturbance in the circumferential direction of rotating body (such as a cone). It is a receptivity problem with distinct three-dimensional features. However, there is relatively little research on this three-dimensional receptivity issue. The preliminary work only studied the three-dimensional receptivity to low-frequency incident slow acoustic waves. There has not been a systematic study on the three-dimensional receptivity to different types of freestream disturbances. The three-dimensional receptivity of a blunt cone to different freestream disturbances is studied in this work. Firstly, a high-resolution numerical simulation method is used to investigate the three-dimensional receptivity process by introducing freestream disturbances with an incident angle of 15°. The freestream disturbances include fast acoustic wave, slow acoustic wave, entropy wave, and vortex wave. Their frequencies are chosen as dimensionless 1.1 and 5, corresponding to the first mode frequency and the second mode frequency, respectively. Then, the phase velocity and shape function of the boundary-layer disturbances at each position of circumference for the numerical results are obtained by Fourier transform. To explain the receptivity mechanisms, the corresponding results by linear stability analysis are obtained for comparisons. The results are shown below. The first mode and the second mode of the boundary layer can be effectively excited by the incident slow acoustic waves; it is difficult for the incident fast acoustic waves to excite unstable modes in the boundary layer; the incident entropy wave and vortex wave are difficult to excite the first mode at low frequency, but can excite the second mode at high frequency. Furthermore, the incident angle of the freestream disturbances can lead to the differences in the receptivity at different circumferential positions of the cone, which can be reflected in two ways. One is the difference in the dominant disturbance form at different circumferential positions, and the other is the difference in the amplitude of boundary-layer disturbances. Under different disturbance types and frequencies, these differences between different circumferential positions exhibit different results. The strongest receptivity may occur on the incident front, the incident back, and the incident side. These phenomena may result from the combined action of the upstream head disturbance and the disturbance on the incident front.
      通信作者: 涂国华, ghtu@skla.cardc.cn
      Corresponding author: Tu Guo-Hua, ghtu@skla.cardc.cn
    [1]

    陈坚强, 涂国华, 张毅锋, 徐国亮, 袁先旭, 陈诚 2017 空气动力学学报 35 311Google Scholar

    Chen J Q, Tu G H, Zhang Y F, Xu G L, Yuan X X, Chen C 2017 Acta Aero. Sin. 35 311Google Scholar

    [2]

    Saric W S, Reed H L, Kerschen E J 2002 Annu. Rev. Fluid Mech. 34 291Google Scholar

    [3]

    周恒, 张涵信 2017 空气动力学学报 35 151Google Scholar

    Zhou H, Zhang H X 2017 Acta Aero. Sin. 35 151Google Scholar

    [4]

    Goldstein M E 1983 J. Fluid Mech. 127 59Google Scholar

    [5]

    Goldstein M E 1985 J. Fluid Mech. 154 509Google Scholar

    [6]

    Ruban A I 1985 Fluid Dyn. 19 709Google Scholar

    [7]

    Choudhari M, Streett C 1992 Phys. Fluids 4 2495Google Scholar

    [8]

    Choudhari M 1993 Theor. Comp. Fluid Dyn. 4 101Google Scholar

    [9]

    Duck P W, Ruban A I, Zhikharev C N 1996 J. Fluid Mech. 312 341Google Scholar

    [10]

    Hammerton P W, Kerschen E J 1996 J. Fluid Mech. 310 243Google Scholar

    [11]

    Wanderley J B V, Corke T C 2001 J. Fluid Mech. 429 1Google Scholar

    [12]

    Wu X S 2001 J. Fluid Mech. 449 373Google Scholar

    [13]

    Wu X S 2001 J. Fluid Mech. 431 91Google Scholar

    [14]

    Dong M, Liu Y H, Wu X S 2020 J. Fluid Mech. 896 A23Google Scholar

    [15]

    陆昌根, 朱晓清, 沈露予 2017 物理学报 66 204702Google Scholar

    Lu C G, Zhu X Q, Shen L Y 2017 Acta Phys. Sin. 66 204702Google Scholar

    [16]

    Fedorov A 2011 Annu. Rev. Fluid Mech. 43 79Google Scholar

    [17]

    Zhong X, Wang X 2012 Annu. Rev. Fluid Mech. 44 527Google Scholar

    [18]

    江贤洋, 李存标 2017 实验流体力学 31 1Google Scholar

    Jiang X Y, Lee C B 2017 J. Exp. Fluid Mech. 31 1Google Scholar

    [19]

    苏彩虹 2020 空气动力学学报 38 355Google Scholar

    Su C H 2020 Acta Aero. Sin. 38 355Google Scholar

    [20]

    Fedorov A V, Khokhlov A P 1991 Fluid Dyn. 26 531Google Scholar

    [21]

    Fedorov A V, Khokhlov A P 2001 Theor. Comp. Fluid Dyn. 14 359Google Scholar

    [22]

    Fedorov A V 2003 J. Fluid Mech. 491 101Google Scholar

    [23]

    Ma Y B, Zhong X L 2003 J. Fluid Mech. 488 31Google Scholar

    [24]

    Ma Y B, Zhong X L 2003 J. Fluid Mech. 488 79Google Scholar

    [25]

    Ma Y B, Zhong X L 2005 J. Fluid Mech. 532 63Google Scholar

    [26]

    Zhong X L, Ma Y B 2006 J. Fluid Mech. 556 55Google Scholar

    [27]

    He S M, Zhong X L 2021 AIAA J. 59 3546Google Scholar

    [28]

    He S M, Zhong X L 2022 Phys. Fluids 34 054104Google Scholar

    [29]

    Balakumar P 2006 36th AIAA Fluid Dynamics Conference and Exhibit. San Francisco, California, June 5–8, p3053

    [30]

    Balakumar P 2015 49th AIAA Fluid Dynamics Conference Dallas, Texas, p247

    [31]

    Balakumar P, King R A, Chou A, Owens L R, Kegerise M A 2018 AIAA J. 56 510Google Scholar

    [32]

    张玉东, 傅德薰, 马延文, 李新亮 2008 中国科学G辑, 物理学 力学 天文学 38 1246

    Zhang Y D, Fu D X, Ma Y W, Li X L 2008 Sci. Sin. Phys. Mech. Astron. 38 1246

    [33]

    Qin F F, Wu X S 2016 J. Fluid Mech. 797 874Google Scholar

    [34]

    Ba W T, Niu M H, Su C H 2023 AIAA J. 61 518Google Scholar

    [35]

    Niu M H, Su C H 2023 Phy. Fluids 35 034109Google Scholar

    [36]

    Wan B B, Luo J S, Su C H 2018 Appl. Math. Mech. (English Edition) 39 1643Google Scholar

    [37]

    Wan B B, Su C H, Chen J Q 2020 AIAA J. 58 4047Google Scholar

    [38]

    Chen Y F, Tu G H, Wan B B, Su C H, Yuan X X, Chen J Q 2021 Phys. Fluids 33 084114Google Scholar

    [39]

    Stetson K F, Thompson E R, Donaldson J C, Siler L G 1984 AIAA 22nd Aerospace Sciences Meeting Reno, Nevada, January 9–12, 1984 p0006

    [40]

    Fedorov A V 1990 J. Appl. Mech. Tech. Phy. 31 722Google Scholar

    [41]

    万兵兵, 罗纪生 2018 空气动力学学报 36 247Google Scholar

    Wan B B, Luo J S 2018 Acta Aero. Sin. 36 247Google Scholar

    [42]

    欧吉辉, 万兵兵, 刘建新, 曹伟 2018 空气动力学报 36 238Google Scholar

    Ou J H, Wan B B, Liu J X, Cao W 2018 Acta Aero. Sin. 36 238Google Scholar

    [43]

    Han Y F, Zhou J T, Cao W 2022 Phys. Fluids 34 026101Google Scholar

    [44]

    McKenzie J F, Westphal K O 1968 Phys. Fluids 11 2350Google Scholar

    [45]

    Su C H, Geng J L 2017 Appl. Math. Mech. (English Edition) 38 1601Google Scholar

    [46]

    Huang Z F, Wang H L 2019 J. Fluid Mech. 873 1179Google Scholar

    [47]

    Malik M R, Balakumar P 2007 Theor. Comp. Fluid Dyn. 21 323Google Scholar

    [48]

    Balakumar P 2007 37th AIAA Fluid Dynamics Conference and Exhibit Miami, FL, June 25–28, 2007 p4491

    [49]

    Wan B B, Chen J Q, Yuan X X, Hu W B, Tu G H 2022 AIAA J. 60 4523Google Scholar

    [50]

    Zhang S H, Zhu J, Shu C 2019 Adv. Aerod. 1 16Google Scholar

    [51]

    Ma Y K, Mao M L, Yan Z G, Bai J W, Zhu H J 2024 J. Comp. Phy. 510 113064Google Scholar

  • 图 1  钝锥子午面示意图

    Fig. 1.  Schematic diagram of blunt-cone meridian plane.

    图 2  钝锥计算域示意图

    Fig. 2.  Schematic diagram of blunt-cone computation domain.

    图 3  第一模态、第二模态和熵层模态的中性曲线[37]

    Fig. 3.  Neutral curves of the first mode, the second mode, and the entropy-layer mode[37].

    图 4  频率ω = 5条件下感受性数值模拟的网格无关性验证

    Fig. 4.  Grid independent verification of receptivity numerical simulation for ω = 5.

    图 5  不同来流低频扰动波的三维感受性数值模拟

    Fig. 5.  Three dimensional receptivity numerical simulations for different freestream disturbances with low frequency.

    图 6  不同来流低频扰动波条件下x = 30处的横截面显示

    Fig. 6.  Cross section displays at x = 30 for different freestream disturbances with low frequency.

    图 7  不同来流低频扰动波条件下壁面压力脉动扰动演化 (a) 快声波; (b)慢声波; (c)熵波; (d)涡波

    Fig. 7.  Evolution of the wall pressure fluctuations for different freestream disturbances with low frequency: (a) Fast acoustic wave; (b) slow acoustic wave; (c) entropy wave; (d) vortex wave.

    图 8  不同来流低频扰动波条件下壁面扰动相速度与稳定性理论比较 (a) 快声波; (b)慢声波; (c)熵波; (d)涡波

    Fig. 8.  Phase speeds of the wall disturbances compared with the stability theory for different freestream disturbances with low frequency: (a) Fast acoustic wave; (b) slow acoustic wave; (c) entropy wave; (d) vortex wave.

    图 9  不同扰动形状函数与稳定性理论(快模态、熵层模态和第一模态)比较 (a) 快声波, ξ = 200, φ = 90; (b)慢声波, ξ = 60, φ = 90; (c)慢声波, ξ = 350, φ = 90

    Fig. 9.  Disturbance shape functions (fast mode, entropy-layer mode, and first mode) compared with the stability theory: (a) Fast acoustic wave, ξ = 200, φ = 90; (b) slow acoustic wave, ξ = 60, φ = 90; (c) slow acoustic wave, ξ = 350, φ = 90.

    图 10  不同来流高频扰动波的三维感受性数值模拟

    Fig. 10.  Three dimensional receptivity numerical simulations for different freestream disturbances with high frequency.

    图 11  不同来流高频扰动波条件下x = 30的横截面显示

    Fig. 11.  Cross section displays at x = 30 for different freestream disturbances with high frequency.

    图 12  不同来流高频扰动波条件下壁面压力脉动扰动演化 (a) 快声波; (b)慢声波; (c)熵波; (d)涡波

    Fig. 12.  Evolution of the wall pressure fluctuations for different freestream disturbances with high frequency: (a) Fast acoustic wave; (b) slow acoustic wave; (c) entropy wave; (d) vortex wave.

    图 13  不同来流高频扰动波条件下壁面扰动相速度与稳定性理论比较 (a) 快声波; (b)慢声波; (c) 熵波; (d)涡波

    Fig. 13.  Phase speeds of the wall disturbances compared with the stability theory for different freestream disturbances with high frequency: (a) Fast acoustic wave; (b) slow acoustic wave; (c) entropy wave; (d) vortex wave.

    图 14  不同扰动形状函数与稳定性理论(快模态和第二模态)比较 (a) 慢声波, ξ = 60, φ = 90; (b) 慢声波, ξ = 350, φ = 90

    Fig. 14.  Disturbance shape functions (fast mode and second mode) compared with the stability theory: (a) Slow acoustic wave, ξ = 60, φ = 90; (b) slow acoustic wave, ξ = 350, φ = 90.

  • [1]

    陈坚强, 涂国华, 张毅锋, 徐国亮, 袁先旭, 陈诚 2017 空气动力学学报 35 311Google Scholar

    Chen J Q, Tu G H, Zhang Y F, Xu G L, Yuan X X, Chen C 2017 Acta Aero. Sin. 35 311Google Scholar

    [2]

    Saric W S, Reed H L, Kerschen E J 2002 Annu. Rev. Fluid Mech. 34 291Google Scholar

    [3]

    周恒, 张涵信 2017 空气动力学学报 35 151Google Scholar

    Zhou H, Zhang H X 2017 Acta Aero. Sin. 35 151Google Scholar

    [4]

    Goldstein M E 1983 J. Fluid Mech. 127 59Google Scholar

    [5]

    Goldstein M E 1985 J. Fluid Mech. 154 509Google Scholar

    [6]

    Ruban A I 1985 Fluid Dyn. 19 709Google Scholar

    [7]

    Choudhari M, Streett C 1992 Phys. Fluids 4 2495Google Scholar

    [8]

    Choudhari M 1993 Theor. Comp. Fluid Dyn. 4 101Google Scholar

    [9]

    Duck P W, Ruban A I, Zhikharev C N 1996 J. Fluid Mech. 312 341Google Scholar

    [10]

    Hammerton P W, Kerschen E J 1996 J. Fluid Mech. 310 243Google Scholar

    [11]

    Wanderley J B V, Corke T C 2001 J. Fluid Mech. 429 1Google Scholar

    [12]

    Wu X S 2001 J. Fluid Mech. 449 373Google Scholar

    [13]

    Wu X S 2001 J. Fluid Mech. 431 91Google Scholar

    [14]

    Dong M, Liu Y H, Wu X S 2020 J. Fluid Mech. 896 A23Google Scholar

    [15]

    陆昌根, 朱晓清, 沈露予 2017 物理学报 66 204702Google Scholar

    Lu C G, Zhu X Q, Shen L Y 2017 Acta Phys. Sin. 66 204702Google Scholar

    [16]

    Fedorov A 2011 Annu. Rev. Fluid Mech. 43 79Google Scholar

    [17]

    Zhong X, Wang X 2012 Annu. Rev. Fluid Mech. 44 527Google Scholar

    [18]

    江贤洋, 李存标 2017 实验流体力学 31 1Google Scholar

    Jiang X Y, Lee C B 2017 J. Exp. Fluid Mech. 31 1Google Scholar

    [19]

    苏彩虹 2020 空气动力学学报 38 355Google Scholar

    Su C H 2020 Acta Aero. Sin. 38 355Google Scholar

    [20]

    Fedorov A V, Khokhlov A P 1991 Fluid Dyn. 26 531Google Scholar

    [21]

    Fedorov A V, Khokhlov A P 2001 Theor. Comp. Fluid Dyn. 14 359Google Scholar

    [22]

    Fedorov A V 2003 J. Fluid Mech. 491 101Google Scholar

    [23]

    Ma Y B, Zhong X L 2003 J. Fluid Mech. 488 31Google Scholar

    [24]

    Ma Y B, Zhong X L 2003 J. Fluid Mech. 488 79Google Scholar

    [25]

    Ma Y B, Zhong X L 2005 J. Fluid Mech. 532 63Google Scholar

    [26]

    Zhong X L, Ma Y B 2006 J. Fluid Mech. 556 55Google Scholar

    [27]

    He S M, Zhong X L 2021 AIAA J. 59 3546Google Scholar

    [28]

    He S M, Zhong X L 2022 Phys. Fluids 34 054104Google Scholar

    [29]

    Balakumar P 2006 36th AIAA Fluid Dynamics Conference and Exhibit. San Francisco, California, June 5–8, p3053

    [30]

    Balakumar P 2015 49th AIAA Fluid Dynamics Conference Dallas, Texas, p247

    [31]

    Balakumar P, King R A, Chou A, Owens L R, Kegerise M A 2018 AIAA J. 56 510Google Scholar

    [32]

    张玉东, 傅德薰, 马延文, 李新亮 2008 中国科学G辑, 物理学 力学 天文学 38 1246

    Zhang Y D, Fu D X, Ma Y W, Li X L 2008 Sci. Sin. Phys. Mech. Astron. 38 1246

    [33]

    Qin F F, Wu X S 2016 J. Fluid Mech. 797 874Google Scholar

    [34]

    Ba W T, Niu M H, Su C H 2023 AIAA J. 61 518Google Scholar

    [35]

    Niu M H, Su C H 2023 Phy. Fluids 35 034109Google Scholar

    [36]

    Wan B B, Luo J S, Su C H 2018 Appl. Math. Mech. (English Edition) 39 1643Google Scholar

    [37]

    Wan B B, Su C H, Chen J Q 2020 AIAA J. 58 4047Google Scholar

    [38]

    Chen Y F, Tu G H, Wan B B, Su C H, Yuan X X, Chen J Q 2021 Phys. Fluids 33 084114Google Scholar

    [39]

    Stetson K F, Thompson E R, Donaldson J C, Siler L G 1984 AIAA 22nd Aerospace Sciences Meeting Reno, Nevada, January 9–12, 1984 p0006

    [40]

    Fedorov A V 1990 J. Appl. Mech. Tech. Phy. 31 722Google Scholar

    [41]

    万兵兵, 罗纪生 2018 空气动力学学报 36 247Google Scholar

    Wan B B, Luo J S 2018 Acta Aero. Sin. 36 247Google Scholar

    [42]

    欧吉辉, 万兵兵, 刘建新, 曹伟 2018 空气动力学报 36 238Google Scholar

    Ou J H, Wan B B, Liu J X, Cao W 2018 Acta Aero. Sin. 36 238Google Scholar

    [43]

    Han Y F, Zhou J T, Cao W 2022 Phys. Fluids 34 026101Google Scholar

    [44]

    McKenzie J F, Westphal K O 1968 Phys. Fluids 11 2350Google Scholar

    [45]

    Su C H, Geng J L 2017 Appl. Math. Mech. (English Edition) 38 1601Google Scholar

    [46]

    Huang Z F, Wang H L 2019 J. Fluid Mech. 873 1179Google Scholar

    [47]

    Malik M R, Balakumar P 2007 Theor. Comp. Fluid Dyn. 21 323Google Scholar

    [48]

    Balakumar P 2007 37th AIAA Fluid Dynamics Conference and Exhibit Miami, FL, June 25–28, 2007 p4491

    [49]

    Wan B B, Chen J Q, Yuan X X, Hu W B, Tu G H 2022 AIAA J. 60 4523Google Scholar

    [50]

    Zhang S H, Zhu J, Shu C 2019 Adv. Aerod. 1 16Google Scholar

    [51]

    Ma Y K, Mao M L, Yan Z G, Bai J W, Zhu H J 2024 J. Comp. Phy. 510 113064Google Scholar

  • [1] 邹雄, 漆小波, 张涛先, 高章帆, 黄卫星. 惯性约束聚变靶丸内杂质气体抽空流洗过程的数值模拟. 物理学报, 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [2] 陈国华, 石科军, 储进科, 吴昊, 周池楼, 肖舒. 环形磁场金属等离子体源冷却流场的数值模拟与优化. 物理学报, 2021, 70(7): 075203. doi: 10.7498/aps.70.20201368
    [3] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [4] 胡悦, 曹凤朝, 董仁婧, 郝辰悦, 刘大禾, 石锦卫. 共焦腔稳定性突变的分析. 物理学报, 2020, 69(22): 224202. doi: 10.7498/aps.69.20200814
    [5] 杨玉晶, 赵汗青, 王鹏飞, 林婷婷. 绝热脉冲磁共振地下水探测技术数值模拟及影响分析. 物理学报, 2020, 69(12): 123301. doi: 10.7498/aps.69.20200015
    [6] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析. 物理学报, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [7] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [8] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [9] 陆昌根, 沈露予, 朱晓清. 压力梯度对壁面局部吹吸边界层感受性的影响研究. 物理学报, 2019, 68(22): 224701. doi: 10.7498/aps.68.20190684
    [10] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析. 物理学报, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [11] 孔江涛, 黄健, 龚建兴, 李尔玉. 基于复杂网络动力学模型的无向加权网络节点重要性评估. 物理学报, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [12] 沈露予, 陆昌根. 前缘曲率变化对平板边界层感受性问题的影响. 物理学报, 2018, 67(18): 184703. doi: 10.7498/aps.67.20180593
    [13] 沈露予, 陆昌根. 三维边界层内定常横流涡的感受性研究. 物理学报, 2017, 66(1): 014703. doi: 10.7498/aps.66.014703
    [14] 陆昌根, 朱晓清, 沈露予. 三维边界层内诱导横流失稳模态的感受性机理. 物理学报, 2017, 66(20): 204702. doi: 10.7498/aps.66.204702
    [15] 王日兴, 贺鹏斌, 肖运昌, 李建英. 铁磁/重金属双层薄膜结构中磁性状态的稳定性分析. 物理学报, 2015, 64(13): 137201. doi: 10.7498/aps.64.137201
    [16] 陆昌根, 沈露予. 壁面局部吹吸边界层感受性的数值研究. 物理学报, 2015, 64(22): 224702. doi: 10.7498/aps.64.224702
    [17] 靳冬欢, 刘文广, 陈星, 陆启生, 赵伊君. 三股互击式喷注器及燃烧室流场的数值模拟. 物理学报, 2012, 61(6): 064206. doi: 10.7498/aps.61.064206
    [18] 张立东, 贾磊, 朱文兴. 弯道交通流跟驰建模与稳定性分析. 物理学报, 2012, 61(7): 074501. doi: 10.7498/aps.61.074501
    [19] 魏高峰, 李开泰, 冯 伟, 高洪芬. 非协调数值流形方法的稳定性和收敛性分析. 物理学报, 2008, 57(2): 639-647. doi: 10.7498/aps.57.639
    [20] 王 涛, 高自友, 赵小梅. 多速度差模型及稳定性分析. 物理学报, 2006, 55(2): 634-640. doi: 10.7498/aps.55.634
计量
  • 文章访问数:  810
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-02
  • 修回日期:  2024-10-24
  • 上网日期:  2024-10-28
  • 刊出日期:  2024-12-05

/

返回文章
返回