-
来流扰动感受性是边界层转捩的起始阶段,能够决定边界层扰动以何种路径触发转捩。目前二维感受性研究较为充分,但现实来流扰动往往以非零角入射,导致空间扰动在圆锥周向上存在分量,造成感受性呈现三维特征,该问题研究偏少。前期仅研究了低频慢声波入射的三维感受性,对于不同类型扰动的三维感受性问题还未作系统性研究。本文采用高精度三维数值模拟技术和线性稳定性理论,开展有入射角的不同频率快/慢声波、熵波和涡波的钝锥三维感受性研究。结果发现,入射慢声波能够激发边界层第一和第二模态;快声波很难激发不稳定模态;熵波和涡波在低频条件下难以激发第一模态,但在高频下可激发第二模态。扰动入射角可造成感受性因周向位置而异,体现在:一主导扰动形式的差异;二边界层扰动幅值的差异。不同扰动类型、频率下这种差异表现出不一样的规律,入射正面、背面和侧面都有可能是最强感受性。导致这些现象可能是上游头部和入射正面扰动的共同作用结果。Receptivity to freestream disturbances is the initial stage of the boundary-layer transition process, which can determine the final path of boundary-layer disturbance triggering transition. At present, researches on the receptivity of two-dimensional boundary layer to disturbances with zero incident angles, are relatively sufficient. In fact, the freestream disturbances often propagate into the boundary layer in the form of non-zero incident angles, resulting in a component of spatial disturbances in the circumferential direction of rotating bodies (such as a cone). It is a receptivity problem with a distinct three-dimensional feature. However, research on this three-dimensional receptivity problem is relatively scarce. The preliminary work only studied the three-dimensional receptivity to low-frequency incident slow acoustic waves. There has not been a systematic study on the three-dimensional receptivity to different types of freestream disturbances. The paper conducts a study on the three-dimensional receptivity of a blunt cone to different freestream disturbances. Firstly, a high-resolution numerical simulation method is used to compute the three-dimensional receptivity process by introduce freestream disturbances with 15 degree incident angles. The freestream disturbances include fast acoustic wave, slow acoustic wave, entropy wave, and vortex wave. Their frequencies are selected as dimensionless 1.1 and 5, corresponding to the frequencies of the first mode and second mode, respectively. Then, the phase velocity and shape function of the boundary-layer disturbances at each circumferential position for the numerical results are obtained by Fourier transform. To interpret the receptivity mechanisms, the corresponding results by linear stability analysis are obtained for comparisons. It is found that, the first and second modes of the boundary layer can be effectively excited by the incident slow acoustic waves; It is difficult for the incident fast acoustic waves to excite unstable modes in the boundary layer; The incident entropy wave and vortex wave are difficult to excite the first mode at low frequency, but can excite the second mode at high frequency. Furthermore, the incident angle of the freestream disturbances can cause the differences in the receptivity at different circumferential positions of the cone, which can be reflected in two ways. One is the difference in the dominant disturbance form at different circumferential positions; The second is the difference in the amplitude of boundary-layer disturbances. Under different disturbance types and frequencies, these differences between different circumferential positions exhibit different results. The strongest receptivity may occur on the incident front, the incident back, and the incident side. These phenomena may be the result of the combined action of the upstream head disturbances and the disturbances on the incident front.
-
Keywords:
- Receptivity /
- Freestream disturbances /
- Numerical simulation /
- Stability analysis
-
[1] Chen J Q, Tu G H, Zhang Y F, Xu G L, Yuan X X, Chen C 2017 Acta Aero. Sin. 35 311 (in Chinese) [陈坚强,涂国华,张毅锋,徐国亮,袁先旭,陈诚 2017 空气动力学学报 35 311]
[2] Saric W S, Reed H L, Kerschen E J 2002 Annu. Rev. Fluid Mech. 34 291
[3] Zhou H, Zhang H X 2017 Acta Aero. Sin. 35 151 (in Chinese) [周恒, 张涵信 2017 空气动力学学报 35 151]
[4] Goldstein M E 1983 J. Fluid Mech. 127 59
[5] Goldstein M E 1985 J. Fluid Mech. 154 509
[6] Ruban A I 1985 Fluid Dyn. 19 709
[7] Choudhari M, Streett C 1992 Phys. Fluids 4 2495
[8] Choudhari M 1993 Theor. Comp. Fluid Dyn. 4 101
[9] Duck P W, Ruban A I, Zhikharev C N 1996 J. Fluid Mech. 312 341
[10] Hammerton P W, Kerschen E J 1996 J. Fluid Mech. 310 243
[11] Wanderley J B V, Corke T C 2001 J. Fluid Mech. 429 1
[12] Wu X 2001 J. Fluid Mech. 397 285
[13] Wu X 2001 J. Fluid Mech. 431 91
[14] Dong M, Liu Y H, Wu X 2020 J. Fluid Mech. 896 A23
[15] Lu C G, Zhu X Q, Shen L Y 2017 Acta Phys. Sin. 66 172 (in Chinese) [陆昌根,朱晓清,沈露予 2017 物理学报 66 172]
[16] Fedorov A 2011 Annu. Rev. Fluid Mech. 43 79
[17] Zhong X, Wang X 2012 Annu. Rev. Fluid Mech. 44 527
[18] Jiang X Y, Lee C B 2017 J. Exp. Fluid Mech. 31 1 (in Chinese) [江贤洋,李存标 2017 实验流体力学 31 1]
[19] Su C H 2020 Acta Aero. Sin. 38 355 (in Chinese) [苏彩虹 2020 空气动力学学报 38 355]
[20] Fedorov A V, Khokhlov A P 1991 Fluid Dyn. 26 531
[21] Fedorov A V, Khokhlov A P 2001 Theor. Comp. Fluid Dyn. 14 359
[22] Fedorov A V 2003 J. Fluid Mech. 491 101
[23] Ma Y, Zhong X 2003 J. Fluid Mech. 488 31
[24] Ma Y, Zhong X 2003 J. Fluid Mech. 488 79
[25] Ma Y, Zhong X 2005 J. Fluid Mech. 532 63
[26] Zhong X, Ma Y 2006 J. Fluid Mech. 556 55
[27] He S, Zhong X 2021 AIAA J. 59 3546
[28] He S, Zhong X 2022 Phys. Fluids 34 054104
[29] Balakumar P 2006 36th AIAA Fluid Dynamics Conference and Exhibit. San Francisco, California, June 5-8, p3053
[30] Balakumar P 2015 45th AIAA Fluid Dynamics Conference Dallas, Texas, p247
[31] Balakumar P, King R A, Chou A, Owens L R, Kegerise M A 2018, AIAA J. 56 510
[32] Zhang Y D, Fu D X, Ma Y W, Li X L 2008 Sci. Sin. Phys., Mech., Astron. 38 1246 (in Chinese) [张玉东,傅德薰,马延文,李新亮 2008 中国科学. G辑,物理学,力学,天文学 38 1246]
[33] Qin F, Wu X 2016 J. Fluid Mech. 797 874
[34] Ba W T, Niu M H, Su C H 2022 AIAA J. 61 518
[35] Niu M H, Su C H 2023 Phy. Fluids 35 034109
[36] Wan B B, Luo J S, Su C H 2018 Appl. Math. Mech. (English Edition) 39 1643
[37] Wan B B, Su C H, Chen J Q AIAA J. 58 4047
[38] Chen Y F, Tu G H, Wan B B, Su C H, Yuan X X, Chen J Q Phys. Fluids 33 084114
[39] Stetson K F, Thompson E R, Donaldson J C, Siler L G 1984 AIAA 22nd Aerospace Sciences Meeting Reno, Nevada, January 9-12, p0006
[40] Fedorov A V 1990 J. Appl. Mech. Tech. Phy. 31 722
[41] Wan B B, Luo J S 2018 Acta Aero. Sin. 36 247 (in Chinese) [万兵兵,罗纪生 2018 空气动力学学报 36 247]
[42] Ou J H, Wan B B, Liu J X, Cao W 2018 Acta Aero. Sin. 36 238 (in Chinese) [欧吉辉,万兵兵,刘建新,曹伟 2018 空气动力学报 36 238]
[43] Han Y F, Zhou J T, Cao W 2022 Phys. Fluids 34 026101
[44] McKenzie J F, Westphal K O 1968 Phys. Fluids 11 2350
[45] Su C H, Geng J L 2017 Appl. Math. Mech. (English Edition) 38 1601
[46] Huang Z F, Wang H L 2019 J. Fluid Mech. 873 1179
计量
- 文章访问数: 101
- PDF下载量: 8
- 被引次数: 0