搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声透镜的多频经颅聚焦

卜梦旭 顾文庭 李博艺 朱秋晨 江雪 他得安 刘欣

引用本文:
Citation:

基于声透镜的多频经颅聚焦

卜梦旭, 顾文庭, 李博艺, 朱秋晨, 江雪, 他得安, 刘欣
cstr: 32037.14.aps.73.20241123

Multifrequency transcranial focusing based on acoustic lensing

Bu Meng-Xu, Gu Wen-Ting, Li Bo-Yi, Zhu Qiu-Chen, Jiang Xue, Ta De-An, Liu Xin
cstr: 32037.14.aps.73.20241123
PDF
HTML
导出引用
  • 经颅聚焦超声是一种具有发展前景的技术, 具有无创、安全、穿透深度大等优点. 声全息透镜作为一种低成本且便捷的经颅聚焦方法, 具有较大的发展潜力. 然而, 基于单片声全息透镜通常只能实现单一经颅聚焦声场的重建, 在实际应用场景下缺乏应用灵活性. 针对该问题, 本文提出了一种用于经颅聚焦的多频声全息透镜的设计方法, 通过提取在不同频率下设计的聚焦到不同位置的两片声全息透镜中的有效信息, 并将其整合到一片声全息透镜中来实现, 生成的声全息透镜可以在不同频率的激发下聚焦到不同位置. 仿真和实验结果表明, 通过此方法设计的声全息透镜在不同频率的超声波激发下, 可以克服颅骨对超声波的散射效应, 在颅骨后方精确地形成高质量的声聚焦点.
    Transcranial focused ultrasound (tFUS) possesses significant advantages such as non-invasiveness and high tissue penetration depth, making it a promising tool in the field of brain science. Acoustic holographic lenses can manipulate the sound field through phase modulation, providing a low-cost and convenient approach for realizing transcranial focusing. Acoustic holographic lenses have been successfully utilized for achieving precise transcranial focusing in living mice to open the blood-brain barrier and for performing neural modulation, which shows considerable application potential. However, existing transcranial acoustic holographic lenses can only be driven by specific ultrasound frequencies and focused at predetermined positions, which limits their flexibility in complex applications. To address this issue, this study establishes a multi-frequency transcranial focusing method based on acoustic holographic lenses to enhance its adaptability in the field of tFUS. By integrating acoustic holographic lenses designed for different focal positions at various frequencies, we generate multi-frequency acoustic holographic lenses suitable for transcranial focusing and conduct experiments to evaluate their performance. In simulations, for single-focus tasks, the peak signal to noise ratio(PSNR) of the proposed method achieves 32.16 dB under 1 MHz ultrasound excitation, and 40.18 dB and 2 MHz ultrasound excitation, respectively; for multi-focus tasks, the PSNR values are 29.39 dB and 39.89 dB, respectively. In experiments, for single-focus tasks, the PSNR value of the proposed method is 27.48 dB under 1 MHz ultrasound excitation, and 32.33 dB under 2 MHz ultrasound excitation, respectively; for multi-focus tasks, the PSNR values are 23.30 dB and 32.17 dB, respectively. These results demonstrate that the multi-frequency transcranial acoustic holographic lens can effectively modulate the sound field under varying ultrasound frequencies and create high-quality focal points at different locations behind the skull, which significantly enhances the application flexibility of transcranial acoustic holographic lenses.
      通信作者: 江雪, xuejiang@fudan.edu.cn ; 刘欣, xin_liu@fudan.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12274092)、国家重点研发计划 (批准号: 2023YFC2410903)和上海市探索者计划(批准号: 21TS1400200)资助的课题.
      Corresponding author: Jiang Xue, xuejiang@fudan.edu.cn ; Liu Xin, xin_liu@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12274092), the National Key Research and Development Program of China (Grant No. 2023YFC2410903), and the Explorer Program of Shanghai, China (Grant No. 21TS1400200).
    [1]

    Landhuis E 2017 Nature 551 257Google Scholar

    [2]

    张玫玫, 吴意赟, 于洁, 屠娟, 章东 2023 物理学报 72 084301Google Scholar

    Zhang M M, Wu Y Y, Yu J, Tu J, Zhang D 2023 Acta Phys. Sin. 72 084301Google Scholar

    [3]

    Ballantine H, Bell E, Manlapaz J 1960 J. Neurosurg. 17 858Google Scholar

    [4]

    Vykhodtseva N, Hynynen K, Damianou C 1995 Ultrasound Med. Biol. 21 969Google Scholar

    [5]

    Elias W J, Khaled M, Hilliard J D, Aubry J F, Frysinger R C, Sheehan J P, Wintermark M, Lopes M B 2013 J. Neurosurg. 119 307Google Scholar

    [6]

    张芸芸, 李义方, 石勤振, 许乐修, 戴菲, 邢文宇, 他得安 2023 物理学报 72 154303Google Scholar

    Zhang Y Y, Li Y F, Shi Q Z, Xu L X, Dai F, Xing W Y, Ta D A 2023 Acta Phys. Sin. 72 154303Google Scholar

    [7]

    Yang Y, Wang C Z, Li Y C, Huang J Q, Cai F Y, Xiao Y, Ma T, Zheng H R 2019 IEEE Trans. Neural Syst. Rehabil. Eng. 28 361

    [8]

    Tufail Y, Yoshihiro A, Pati S, Li M M, Tyler W J 2011 Nat. Protoc. 6 1453Google Scholar

    [9]

    Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar

    [10]

    Leith E N, Upatnieks J 1962 J. Opt. Soc. Am. 52 1123Google Scholar

    [11]

    钟志, 赵婉婷, 单明广, 刘磊 2021 物理学报 70 154202Google Scholar

    Zhong Z, Zhao W T, Shan M G, Liu L 2021 Acta Phys. Sin. 70 154202Google Scholar

    [12]

    Andrés D, Jiménez-Gambín S, Jiménez N, Camarena F 2020 IEEE International Ultrasonics Symposium Las Vegas, NV, USA, November 17, 2020 p1

    [13]

    Jiménez-Gambín S, Jiménez N, Benlloch J M, Camarena F 2019 Phys. Rev. Appl. 12 014016Google Scholar

    [14]

    Shah B R, Lehman V T, Kaufmann T J, Blezek D, Waugh J, Imphean D, Yu F F, Patel T R, Chitnis S, Dewey Jr R B 2020 Brain 143 2664Google Scholar

    [15]

    Yin Y, Yan S, Huang J, Zhang B 2023 Sensors 23 9702Google Scholar

    [16]

    Jiménez-Gambín S, Jiménez N, Pouliopoulos A N, Benlloch J M, Konofagou E E, Camarena F 2021 IEEE Trans. Biomed. Eng. 69 1359

    [17]

    Pouliopoulos A N, Wu S Y, Burgess M T, Karakatsani M E, Kamimura H A, Konofagou E E 2020 Ultrasound Med. Biol. 46 73Google Scholar

    [18]

    Tillander M, Hokland S, Koskela J, Dam H, Andersen N P, Pedersen M, Tanderup K, Ylihautala M, Köhler M 2016 Med. Phys. 43 1539Google Scholar

    [19]

    Treeby B E, Cox B T 2010 J. Biomed. Opt. 15 021314Google Scholar

    [20]

    Mast T D, Souriau L P, Liu D L, Tabei M, Nachman A I, Waag R C 2001 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48 341Google Scholar

    [21]

    Tabei M, Mast T D, Waag R C 2002 J. Acoust. Soc. Am. 111 53Google Scholar

    [22]

    Kook G, Jo Y, Oh C, Liang X, Kim J, Lee S M, Kim S, Choi J W, Lee H J 2023 Microsyst. Nanoeng. 9 45Google Scholar

    [23]

    Treeby B E, Cox B T 2010 J. Acoust. Soc. Am. 127 2741Google Scholar

    [24]

    Thomas J L, Fink M A 1996 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 1122Google Scholar

    [25]

    Aubry J F, Tanter M, Pernot M, Thomas J L, Fink M 2003 J. Acoust. Soc. Am. 113 84Google Scholar

    [26]

    Brown M D, Cox B T, Treeby B E 2017 Appl. Phys. Lett. 111 244101Google Scholar

    [27]

    He J R, Wu J W, Zhu Y Y, Chen Y, Yuan M D, Zeng L M, Ji X R 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69 662

    [28]

    Tanchenko A 2014 J. Vis. Commun. Image Represent. 25 874Google Scholar

    [29]

    Bakaric M, Miloro P, Javaherian A, Cox B T, Treeby B E, Brown M D 2021 J. Acoust. Soc. Am. 150 2798Google Scholar

  • 图 1  目标焦点、时间反演法生成的声全息图以及多频声全息图

    Fig. 1.  Target foci, acoustic holograms generated by the time inversion method, and multi-frequency acoustic holograms.

    图 2  用于经颅聚焦的多频声全息透镜 (a)多频声全息透镜的3D视图; (b)多频声全息透镜俯视图; (c)多频声全息透镜的正视图

    Fig. 2.  Multi-frequency acoustic holographic lens for transcranial focusing: (a) 3D view of the multi-frequency acoustic holographic lens; (b) top view of the multi-frequency acoustic holographic lens; (c) front view of the multi-frequency acoustic holographic lens.

    图 3  经颅聚焦实验平台

    Fig. 3.  Experimental platform for transcranial focusing.

    图 4  多频声全息透镜的仿真与实验结果 (a) 1 MHz仿真中, 焦点附近的纵向声场; (b)1 MHz激发下的仿真与实验重建的聚焦平面与目标焦点; (c) 2 MHz仿真中, 焦点附近的纵向声场; (d) 2 MHz激发下的仿真与实验重建的聚焦平面与目标焦点; (e) 1 MHz激发的情况下, 在仿真和实验中, 沿着x = 7.3 mm的虚线上的声压对比; (f) 2 MHz激发的情况下, 在仿真和实验中, 沿着x = 7.3 mm的虚线上的声压对比

    Fig. 4.  Simulation and experimental results of multi-frequency acoustic holographic lenses: (a) Longitudinal acoustic field near the focal point in 1 MHz simulation; (b) focusing plane and target foci reconstructed by simulation and experiment under 1 MHz excitation; (c) longitudinal acoustic field near the focal point in 2 MHz simulation; (d) focusing plane versus target foci reconstructed from simulation and experiment under 2 MHz excitation; (e) sound pressure comparison along the dashed line at x = 7.3 mm in simulation and experiment for the case of 1 MHz excitation; (f) sound pressure comparison along the dashed line at x = 7.3 mm in simulation and experiment for the case of 2 MHz excitation.

    图 5  多频声全息透镜在多焦点情况下的仿真与实验结果 (a) 1 MHz仿真中, 焦点附近的纵向声场; (b)1 MHz激发下的仿真与实验重建的聚焦平面与目标焦点; (c)在2 MHz仿真中, 焦点附近的纵向声场; (d) 2 MHz激发下的仿真与实验重建的聚焦平面与目标焦点; (e)1 MHz激发的情况下, 在仿真和实验中, 沿着y = 7.3 mm的虚线上的声压对比; (f)2 MHz激发的情况下, 在仿真和实验中, 沿着y = 7.3 mm的虚线上的声压对比

    Fig. 5.  Simulation and experimental results of multi-frequency acoustic holographic lenses in the case of multiple focal points: (a) Longitudinal acoustic field near the focal point in the 1 MHz simulation; (b) focused plane and target foci reconstructed by simulation and experiment for the 1 MHz excitation; (c) longitudinal acoustic field near the focal point in the 2 MHz simulation; (d) focused plane and target foci reconstructed by simulation and experiment for the 2 MHz excitation; (e) sound pressure comparison in the 1 MHz excitation case in the simulation and experiment along the y = 7.3 mm dashed line; (f) sound pressure comparison along the dashed line at y = 7.3 mm in simulation and experiment for the case of 2 MHz excitation.

    表 1  聚焦平面的声场与目标图像之间的PSNR

    Table 1.  PSNR between the sound field at the focal plane and the target image

    频率/MHzPSNR(仿真)PSNR(实验)
    132.1627.48
    240.1832.33
    下载: 导出CSV

    表 2  聚焦平面的声场与目标图像之间的PSNR

    Table 2.  PSNR between the sound field at the focal plane and the target image.

    频率/MHzPSNR(仿真)PSNR(实验)
    129.3923.30
    239.8932.17
    下载: 导出CSV
  • [1]

    Landhuis E 2017 Nature 551 257Google Scholar

    [2]

    张玫玫, 吴意赟, 于洁, 屠娟, 章东 2023 物理学报 72 084301Google Scholar

    Zhang M M, Wu Y Y, Yu J, Tu J, Zhang D 2023 Acta Phys. Sin. 72 084301Google Scholar

    [3]

    Ballantine H, Bell E, Manlapaz J 1960 J. Neurosurg. 17 858Google Scholar

    [4]

    Vykhodtseva N, Hynynen K, Damianou C 1995 Ultrasound Med. Biol. 21 969Google Scholar

    [5]

    Elias W J, Khaled M, Hilliard J D, Aubry J F, Frysinger R C, Sheehan J P, Wintermark M, Lopes M B 2013 J. Neurosurg. 119 307Google Scholar

    [6]

    张芸芸, 李义方, 石勤振, 许乐修, 戴菲, 邢文宇, 他得安 2023 物理学报 72 154303Google Scholar

    Zhang Y Y, Li Y F, Shi Q Z, Xu L X, Dai F, Xing W Y, Ta D A 2023 Acta Phys. Sin. 72 154303Google Scholar

    [7]

    Yang Y, Wang C Z, Li Y C, Huang J Q, Cai F Y, Xiao Y, Ma T, Zheng H R 2019 IEEE Trans. Neural Syst. Rehabil. Eng. 28 361

    [8]

    Tufail Y, Yoshihiro A, Pati S, Li M M, Tyler W J 2011 Nat. Protoc. 6 1453Google Scholar

    [9]

    Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar

    [10]

    Leith E N, Upatnieks J 1962 J. Opt. Soc. Am. 52 1123Google Scholar

    [11]

    钟志, 赵婉婷, 单明广, 刘磊 2021 物理学报 70 154202Google Scholar

    Zhong Z, Zhao W T, Shan M G, Liu L 2021 Acta Phys. Sin. 70 154202Google Scholar

    [12]

    Andrés D, Jiménez-Gambín S, Jiménez N, Camarena F 2020 IEEE International Ultrasonics Symposium Las Vegas, NV, USA, November 17, 2020 p1

    [13]

    Jiménez-Gambín S, Jiménez N, Benlloch J M, Camarena F 2019 Phys. Rev. Appl. 12 014016Google Scholar

    [14]

    Shah B R, Lehman V T, Kaufmann T J, Blezek D, Waugh J, Imphean D, Yu F F, Patel T R, Chitnis S, Dewey Jr R B 2020 Brain 143 2664Google Scholar

    [15]

    Yin Y, Yan S, Huang J, Zhang B 2023 Sensors 23 9702Google Scholar

    [16]

    Jiménez-Gambín S, Jiménez N, Pouliopoulos A N, Benlloch J M, Konofagou E E, Camarena F 2021 IEEE Trans. Biomed. Eng. 69 1359

    [17]

    Pouliopoulos A N, Wu S Y, Burgess M T, Karakatsani M E, Kamimura H A, Konofagou E E 2020 Ultrasound Med. Biol. 46 73Google Scholar

    [18]

    Tillander M, Hokland S, Koskela J, Dam H, Andersen N P, Pedersen M, Tanderup K, Ylihautala M, Köhler M 2016 Med. Phys. 43 1539Google Scholar

    [19]

    Treeby B E, Cox B T 2010 J. Biomed. Opt. 15 021314Google Scholar

    [20]

    Mast T D, Souriau L P, Liu D L, Tabei M, Nachman A I, Waag R C 2001 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48 341Google Scholar

    [21]

    Tabei M, Mast T D, Waag R C 2002 J. Acoust. Soc. Am. 111 53Google Scholar

    [22]

    Kook G, Jo Y, Oh C, Liang X, Kim J, Lee S M, Kim S, Choi J W, Lee H J 2023 Microsyst. Nanoeng. 9 45Google Scholar

    [23]

    Treeby B E, Cox B T 2010 J. Acoust. Soc. Am. 127 2741Google Scholar

    [24]

    Thomas J L, Fink M A 1996 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 1122Google Scholar

    [25]

    Aubry J F, Tanter M, Pernot M, Thomas J L, Fink M 2003 J. Acoust. Soc. Am. 113 84Google Scholar

    [26]

    Brown M D, Cox B T, Treeby B E 2017 Appl. Phys. Lett. 111 244101Google Scholar

    [27]

    He J R, Wu J W, Zhu Y Y, Chen Y, Yuan M D, Zeng L M, Ji X R 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69 662

    [28]

    Tanchenko A 2014 J. Vis. Commun. Image Represent. 25 874Google Scholar

    [29]

    Bakaric M, Miloro P, Javaherian A, Cox B T, Treeby B E, Brown M D 2021 J. Acoust. Soc. Am. 150 2798Google Scholar

  • [1] 杨雨桦, 何龙, 邓林宵, 朱立全, 顾春, 许立新. 基于全色全息透镜的增强现实系统. 物理学报, 2023, 72(11): 114201. doi: 10.7498/aps.72.20222388
    [2] 狄苗, 何湘, 刘明智, 闫善善, 魏龙龙, 田野, 尹冠军, 郭建中. 共聚焦超声换能器的声场优化与粒子捕获. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221547
    [3] 唐艳秋, 孙强, 赵建, 姚凯男. 一种基于全息术的光学系统闭环像差补偿方法. 物理学报, 2015, 64(2): 024206. doi: 10.7498/aps.64.024206
    [4] 王林, 袁操今, 聂守平, 李重光, 张慧力, 赵应春, 张秀英, 冯少彤. 数字全息术测定涡旋光束拓扑电荷数. 物理学报, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [5] 王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞. 无透镜傅里叶变换显微数字全息成像系统的焦深. 物理学报, 2012, 61(4): 044208. doi: 10.7498/aps.61.044208
    [6] 崔华坤, 王大勇, 王云新, 刘长庚, 赵洁, 李艳. 无透镜傅里叶变换数字全息术中非共面误差的自动补偿算法. 物理学报, 2011, 60(4): 044201. doi: 10.7498/aps.60.044201
    [7] 谢红兰, 胡 雯, 罗红心, 杜国浩, 邓 彪, 陈荣昌, 薛艳玲, 师绍猛, 肖体乔. X射线荧光全息术中消除光源偏振效应和孪生像的重构新算法. 物理学报, 2008, 57(11): 7044-7051. doi: 10.7498/aps.57.7044
    [8] 袁操今, 翟宏琛, 王晓雷, 吴 兰. 采用短相干光数字全息术实现反射型微小物体的三维形貌测量. 物理学报, 2007, 56(1): 218-223. doi: 10.7498/aps.56.218
    [9] 王晓雷, 翟宏琛, 王 毅, 母国光. 超短脉冲数字全息术中的立体角分复用技术. 物理学报, 2006, 55(3): 1137-1142. doi: 10.7498/aps.55.1137
    [10] 朱佩平, 王寯越, 吴自玉, 田玉莲, 贾全杰, 胡天斗, 巫 翔, 储旺盛, 黎 刚, 冼鼎昌. 内源全息术的原理和数学描述. 物理学报, 2004, 53(8): 2526-2533. doi: 10.7498/aps.53.2526
    [11] 谢红兰, 高鸿奕, 陈建文, 王寯越, 朱佩平, 熊诗圣, 洗鼎昌, 徐至展. 具有原子分辨率的x射线荧光全息术的数值模拟研究. 物理学报, 2003, 52(9): 2223-2228. doi: 10.7498/aps.52.2223
    [12] 钱盛友, 王鸿樟. 聚焦超声源对生物媒质加热的理论研究. 物理学报, 2001, 50(3): 501-506. doi: 10.7498/aps.50.501
    [13] 董碧珍, 顾本源. 利用双全息透镜实现光学普遍变换. 物理学报, 1986, 35(3): 413-418. doi: 10.7498/aps.35.413
    [14] 董碧珍, 顾本源. 实现光学变换的单个全息透镜的有效设计. 物理学报, 1986, 35(2): 235-242. doi: 10.7498/aps.35.235
    [15] 陶世荃, 凌德洪. 使用全息透镜作色散和聚焦元件的摄谱仪器. 物理学报, 1984, 33(3): 285-293. doi: 10.7498/aps.33.285
    [16] 程路. 用全息术获得单片广义变换掩膜板的方案. 物理学报, 1982, 31(3): 386-392. doi: 10.7498/aps.31.386
    [17] 杨国桢. 利用单个全息透镜实现光学变换的理论. 物理学报, 1981, 30(10): 1340-1350. doi: 10.7498/aps.30.1340
    [18] 陈岩松, 王玉堂, 董碧珍. 一种新型的彩色全息术. 物理学报, 1978, 27(6): 723-728. doi: 10.7498/aps.27.723
    [19] 董碧珍, 陈正豪, 陈岩松, 邓道群, 鞠蕊. 广角全息术. 物理学报, 1978, 27(4): 483-486. doi: 10.7498/aps.27.483
    [20] 检测超声组. 液面法超声全息成象技术. 物理学报, 1975, 24(1): 12-20. doi: 10.7498/aps.24.12
计量
  • 文章访问数:  812
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-12
  • 修回日期:  2024-11-01
  • 上网日期:  2024-11-08
  • 刊出日期:  2024-12-05

/

返回文章
返回