搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迭代反演的非磁性材料复介电常数测量及初值选取方法

覃维 安书悦 陈帅 龚荣洲 王鲜

引用本文:
Citation:

基于迭代反演的非磁性材料复介电常数测量及初值选取方法

覃维, 安书悦, 陈帅, 龚荣洲, 王鲜

A method of measuring complex ermittivity of nonmagnetic materials and selecting its initial value based on iterative inversion

Qin Wei, An Shu-Yue, Chen Shuai, Gong Rong-Zhou, Wang Xian
PDF
HTML
导出引用
  • 复介电常数是反映材料宏观电磁性质的重要参数, 电磁领域相关材料和器件的选取、设计及应用都必须基于材料在工作频段的电磁参数. 数值迭代法是反演计算材料复介电常数的重要方法, 但一直存在难以准确给出迭代初始值的问题. 本文基于吸波材料介电常数与反射率的关系, 提出了一种迭代法反演吸波材料介电常数的初值选取方法, 以此为基础构建了一种利用反射参数反演计算单层吸波材料、多层材料中唯一未知层材料复介电常数的方法, 并通过实例测试验证了方法的有效性.
    Complex permittivity is an important parameter to reflect the macroscopic electromagnetic properties of material. The selection, design, and application of related materials and devices in the electromagnetic field must be based on the electromagnetic parameters of materials in the working frequency band. The numerical iterative method is an important method to inverse and calculate the complex permittivity of material. But there always exists a difficult problem that the initial value of iteration is difficult to give accurately. Based on the relationship between the complex permittivity and the reflectivity of absorbing material, an initial value selecting method for iteration to invert permittivity of absorbing material is proposed in this work. For absorbing materials with arbitrary thickness at a certain frequency, the complex permittivity must be near the complex permittivity of perfect matching layer. Therefore, the permittivity of perfect matching layer can be used as the initial value of the iterative algorithm. On this basis, a method of calculating the complex permittivity of monolayer absorbing material by using the reflection parameter is constructed. The experimental results show that the complex permittivity of lossy material can be calculated more accurately at the frequency with absorbing performance. However a great error can be caused at the frequency where the reflectivity is close to zero. Based on the iterative solution of the complex permittivity of single-layer absorbing material, a new method of measuring the complex permittivity of material is constructed by combining multi-layer absorbing materials to enhance full-band reflectivity. Given the electromagnetic parameters of other layer materials , the permittivity of absorbing materials and low-loss materials can be obtained accurately.
      通信作者: 陈帅, shinehc@foxmail.com
      Corresponding author: Chen Shuai, shinehc@foxmail.com
    [1]

    Zoughi R 2000 Microwave Non-destructive Testing and Evaluation Principles (Vol. 4) (Dordrecht: Springer Science & Business Media) pp12–13

    [2]

    Chen L F, Ong C K, Neo C, Varadan V V, Varadan V K 2004 Microwave Electronics: Measurement and Materials Characterization (Vol. 1) (West Sussex: John Wiley & Sons) pp2–6

    [3]

    Weir W B 1974 Proc. IEEE 62 33Google Scholar

    [4]

    Lau I, Frank M, Shi K, Lurz F, Talai A, Weigel R, Koelpin A 2018 2018 48 th European Microwave Conference (EuMC) Madrid, September 23–27, 2018 pp202–205

    [5]

    Houtz D A, Gu D, Walker D K 2016 IEEE Trans. Microw. Theory Tech. 64 3820Google Scholar

    [6]

    Hasar U C 2017 IEEE Trans. Microw. Theory Tech. 66 1090

    [7]

    Hasar U C 2009 Prog. Electromagn. Res. 95 365Google Scholar

    [8]

    Cuong H M, Duc N T, Van Yem V 2017 2017 International Conference on Advanced Technologies for Communications (ATC) Quy Nhon, October 18–20, 2017 pp156–160

    [9]

    田步宁, 杨德顺, 唐家明, 刘其中 2001 电波科学学报 16 57Google Scholar

    Tian B L, Yang D S, Tang J M, Liu Q Z 2001 Chin. J. Radio 16 57Google Scholar

    [10]

    Li Q, Chen Y, Caisse C, Horn A, Harris V G 2020 IEEE Trans. Microw. Theory Tech. 68 4940Google Scholar

    [11]

    丁世敬, 黄刘宏, 李跃波, 薛凡喜 2012 物理学报 61 220601Google Scholar

    Ding S J, Huang L H, Li Y B, Xue F X 2012 Acta Phys. Sin. 61 220601Google Scholar

    [12]

    Qi Y, Bai Y, Mi B 2016 Progress in Electromagnetic Research Symposium (PIERS) Shanghai, China, August 8–11, 2016 pp4583–4586

    [13]

    Baker-Jarvis J, Vanzura E J, Kissick W A 1990 IEEE Trans. Microw. Theory Tech. 38 1096Google Scholar

    [14]

    Baker-Jarvis J, Geyer R G, Domich P D 1992 IEEE Trans. Instrum. Meas. 41 646Google Scholar

    [15]

    Guo G, Li E, Li Z, Zhang Q, He F 2011 Meas. Sci. Technol. 22 045707Google Scholar

    [16]

    Pozar D M 2011 Microwave Engineering (Vol. 4) (Hoboken: John Wiley & Sons) pp57–58

    [17]

    Rozanov K N, Koledintseva M Y 2017 Procedia Eng. 216 79Google Scholar

    [18]

    Li D, Li Y, Wang X, Yang J, Chen F, Luo H, Nie Y, Gong R 2021 J. Electromagnet. Wave 35 801Google Scholar

    [19]

    Zhou Q, Yin X, Ye F, Mo R, Liu X, Fan X, Cheng L, Zhang L 2018 J. Am. Ceram. Soc. 101 5552Google Scholar

    [20]

    刘海韬, 黄文质, 周永江 2017 高温吸波结构材料 (第1版) (北京: 科学出版社) 第109页

    Liu H T, Huang W Z, Zhou Y J 2017 High-Temperature Structural Materials for Microwave Absorption (Vol. 1) (Beijing: Science Press) p109 (in Chinese)

    [21]

    Wang C, Li J, Guo S 2019 Compos. Part A: Appl. S. 125 105522Google Scholar

    [22]

    Zhou Q, Yin X, Xu H, Li M, Fan X, Yu Z, Ye F, Cheng L, Zhang L 2019 J. Phys. D: Appl. Phys. 52 435102Google Scholar

  • 图 1  3 mm吸波材料在16 GHz处的性能特征 (a)介电常数等反射率圆; (b)输入阻抗奈奎斯特图; (c)反射率幅度; (d)反射率相位

    Fig. 1.  3 mm thick absorbing material at 16 GHz: (a) Iso reflectivity curve of permittivity; (b) input impedance Nyquist diagram; (c) return loss; (d) phase of reflectivity.

    图 2  3 mm不同反射率阈值对应介电常数范围 (a)介电常数实部; (b)介电常数虚部

    Fig. 2.  The range of permittivity corresponding to different reflectivity thresholds of 3 mm thick absorbing materials: (a) Real part of εr; (b) imaginary part of εr.

    图 3  不同反射率阈值对应中间层介电常数范围

    Fig. 3.  Different reflectivity thresholds correspond to the permittivity range of the middle layer.

    图 4  碳系吸波材料实测反射率幅度和相位

    Fig. 4.  Measured reflectivity amplitude and phase of carbon absorbing materials.

    图 5  迭代法反演值与实测值 (a)介电常数实部与虚部 (b)计算与实际值偏差

    Fig. 5.  Inversion value and measured value: (a) Real and imaginary parts of permittivity; (b) calculated deviation from the actual value.

    图 6  3 GHz和4 GHz实际值与初值位置关系

    Fig. 6.  The relationship between the actual value and initial value of 3 GHz and 4 GHz.

    图 7  多层吸波材料 (a)顶层和底层电磁参数 (b)反射率幅度和相位

    Fig. 7.  Multilayer absorbing materials: (a) Electromagnetic parameters of top and bottom materials; (b) reflectivity amplitude and phase.

    图 8  迭代法反演值与实测值 (a)介电常数实部与虚部; (b)计算与实际值偏差

    Fig. 8.  Inversion value by iterative method and measured value: (a) Real part and imaginary part of permittivity; (b) deviation between calculation and actual value.

    图 9  吸波材料加FR-4 (a)反射率幅度与相位值; (b)FR-4介电常数反演值

    Fig. 9.  absorbing materials with FR-4: (a) Amplitude and phase of reflectivity; (b) inversion of FR-4 permittivity.

  • [1]

    Zoughi R 2000 Microwave Non-destructive Testing and Evaluation Principles (Vol. 4) (Dordrecht: Springer Science & Business Media) pp12–13

    [2]

    Chen L F, Ong C K, Neo C, Varadan V V, Varadan V K 2004 Microwave Electronics: Measurement and Materials Characterization (Vol. 1) (West Sussex: John Wiley & Sons) pp2–6

    [3]

    Weir W B 1974 Proc. IEEE 62 33Google Scholar

    [4]

    Lau I, Frank M, Shi K, Lurz F, Talai A, Weigel R, Koelpin A 2018 2018 48 th European Microwave Conference (EuMC) Madrid, September 23–27, 2018 pp202–205

    [5]

    Houtz D A, Gu D, Walker D K 2016 IEEE Trans. Microw. Theory Tech. 64 3820Google Scholar

    [6]

    Hasar U C 2017 IEEE Trans. Microw. Theory Tech. 66 1090

    [7]

    Hasar U C 2009 Prog. Electromagn. Res. 95 365Google Scholar

    [8]

    Cuong H M, Duc N T, Van Yem V 2017 2017 International Conference on Advanced Technologies for Communications (ATC) Quy Nhon, October 18–20, 2017 pp156–160

    [9]

    田步宁, 杨德顺, 唐家明, 刘其中 2001 电波科学学报 16 57Google Scholar

    Tian B L, Yang D S, Tang J M, Liu Q Z 2001 Chin. J. Radio 16 57Google Scholar

    [10]

    Li Q, Chen Y, Caisse C, Horn A, Harris V G 2020 IEEE Trans. Microw. Theory Tech. 68 4940Google Scholar

    [11]

    丁世敬, 黄刘宏, 李跃波, 薛凡喜 2012 物理学报 61 220601Google Scholar

    Ding S J, Huang L H, Li Y B, Xue F X 2012 Acta Phys. Sin. 61 220601Google Scholar

    [12]

    Qi Y, Bai Y, Mi B 2016 Progress in Electromagnetic Research Symposium (PIERS) Shanghai, China, August 8–11, 2016 pp4583–4586

    [13]

    Baker-Jarvis J, Vanzura E J, Kissick W A 1990 IEEE Trans. Microw. Theory Tech. 38 1096Google Scholar

    [14]

    Baker-Jarvis J, Geyer R G, Domich P D 1992 IEEE Trans. Instrum. Meas. 41 646Google Scholar

    [15]

    Guo G, Li E, Li Z, Zhang Q, He F 2011 Meas. Sci. Technol. 22 045707Google Scholar

    [16]

    Pozar D M 2011 Microwave Engineering (Vol. 4) (Hoboken: John Wiley & Sons) pp57–58

    [17]

    Rozanov K N, Koledintseva M Y 2017 Procedia Eng. 216 79Google Scholar

    [18]

    Li D, Li Y, Wang X, Yang J, Chen F, Luo H, Nie Y, Gong R 2021 J. Electromagnet. Wave 35 801Google Scholar

    [19]

    Zhou Q, Yin X, Ye F, Mo R, Liu X, Fan X, Cheng L, Zhang L 2018 J. Am. Ceram. Soc. 101 5552Google Scholar

    [20]

    刘海韬, 黄文质, 周永江 2017 高温吸波结构材料 (第1版) (北京: 科学出版社) 第109页

    Liu H T, Huang W Z, Zhou Y J 2017 High-Temperature Structural Materials for Microwave Absorption (Vol. 1) (Beijing: Science Press) p109 (in Chinese)

    [21]

    Wang C, Li J, Guo S 2019 Compos. Part A: Appl. S. 125 105522Google Scholar

    [22]

    Zhou Q, Yin X, Xu H, Li M, Fan X, Yu Z, Ye F, Cheng L, Zhang L 2019 J. Phys. D: Appl. Phys. 52 435102Google Scholar

  • [1] 陈明东, 揭晓华, 张海燕. 碳纳米管复合吸波涂层微波吸收性能的模拟计算. 物理学报, 2014, 63(6): 066103. doi: 10.7498/aps.63.066103
    [2] 黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕. Ni/Ag/Ti/Au与p-GaN的欧姆接触性能及光反射率. 物理学报, 2014, 63(12): 127302. doi: 10.7498/aps.63.127302
    [3] 王丰, 贾国柱, 刘莉, 刘凤海, 梁文海. 温度相关的微波频率下氯化钠水溶液介电特性. 物理学报, 2013, 62(4): 048701. doi: 10.7498/aps.62.048701
    [4] 李建, 文光俊, 黄勇军, 王平, 孙元华. 基于电谐振单元的超介质吸波材料及矩形波导匹配终端应用研究. 物理学报, 2013, 62(8): 087801. doi: 10.7498/aps.62.087801
    [5] 关庆丰, 吕鹏, 王孝东, 万明珍, 顾倩倩, 陈波. 质子辐照下Mo/Si多层膜反射镜的微观结构状态. 物理学报, 2012, 61(1): 016107. doi: 10.7498/aps.61.016107
    [6] 周仁来, 鞠有伦, 杨超, 王巍, 王月珠. 一种对双包层大芯径光纤光栅反射率和纤芯折射率调制估算的方法. 物理学报, 2012, 61(24): 244205. doi: 10.7498/aps.61.244205
    [7] 陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣. 含有源频率选择表面可调复合吸波体. 物理学报, 2011, 60(7): 074202. doi: 10.7498/aps.60.074202
    [8] 王建, 李会峰, 黄运华, 余海波, 张跃. 碳纳米管/四针状纳米氧化锌复合涂层的电磁波吸收特性. 物理学报, 2010, 59(3): 1946-1951. doi: 10.7498/aps.59.1946
    [9] 王振德, 刘念华. 正负折射率材料组成的半无限一维光子晶体的反射率. 物理学报, 2009, 58(1): 559-564. doi: 10.7498/aps.58.559
    [10] 曹佳伟, 黄运华, 张 跃, 廖庆亮, 邓战强. 四针状纳米氧化锌电磁波吸收特性. 物理学报, 2008, 57(6): 3641-3645. doi: 10.7498/aps.57.3641
    [11] 刘世元, 顾华勇, 张传维, 沈宏伟. 基于修正等效介质理论的微纳深沟槽结构反射率快速算法研究. 物理学报, 2008, 57(9): 5996-6001. doi: 10.7498/aps.57.5996
    [12] 何燕飞, 龚荣洲, 王 鲜, 赵 强. 蜂窝结构吸波材料等效电磁参数和吸波特性研究. 物理学报, 2008, 57(8): 5261-5266. doi: 10.7498/aps.57.5261
    [13] 徐 敏, 张月蘅, 沈文忠. 半导体远红外反射镜中反射率和相位研究. 物理学报, 2007, 56(4): 2415-2421. doi: 10.7498/aps.56.2415
    [14] 冯素娟, 尚 亮, 毛庆和. 利用偏振控制器连续调节光纤环镜的反射率. 物理学报, 2007, 56(8): 4677-4685. doi: 10.7498/aps.56.4677
    [15] 王晓慧, 吕志伟, 林殿阳, 王 超, 汤秀章, 龚 坤, 单玉生. 宽带KrF激光抽运的受激布里渊散射反射率研究. 物理学报, 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
    [16] 刘顺华, 崔晓冬, 赵彦波. 涂层球体混合体系的等效介电常数计算及应用. 物理学报, 2006, 55(11): 5764-5768. doi: 10.7498/aps.55.5764
    [17] 王洪昌, 王占山, 李佛生, 秦树基, 杜芸, 王利, 张众, 陈玲燕. 帽层对极紫外多层膜反射特性影响分析. 物理学报, 2004, 53(7): 2368-2372. doi: 10.7498/aps.53.2368
    [18] 郭少锋, 陆启生, 程湘爱, 黎全, 曾学文, 银燕. 光学透明材料中瞬态SBS过程的数值研究. 物理学报, 2004, 53(1): 99-104. doi: 10.7498/aps.53.99
    [19] 孙可煦, 易荣清, 杨国洪, 江少恩, 崔延莉, 刘慎业, 丁永坤, 崔明启, 朱佩平, 赵屹东, 朱杰, 郑雷, 张景和. 软x射线平面镜不同掠射角下的反射率标定. 物理学报, 2004, 53(4): 1099-1104. doi: 10.7498/aps.53.1099
    [20] 吕志伟, 王晓慧, 林殿阳, 王 超, 赵晓彦, 汤秀章, 张海峰, 单玉生. KrF激光受激布里渊散射反射率稳定性的研究. 物理学报, 2003, 52(5): 1184-1189. doi: 10.7498/aps.52.1184
计量
  • 文章访问数:  2060
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-21
  • 修回日期:  2023-01-26
  • 上网日期:  2023-02-14
  • 刊出日期:  2023-04-05

/

返回文章
返回